头像

薄方 教授

招生专业: 光学

电话:

邮箱: bofang@nankai.edu.cn

办公地点: 三教309

个人资料

  • 性别:
  • 部门: 物理科学学院
  • 联系电话:
  • 通讯地址: 卫津路94号南开大学三教309
  • 职称: 教授
  • 电子邮箱: bofang@nankai.edu.cn
  • 办公地址: 三教309

教育经历

2002—2007年,南开大学,凝聚态物理专业,理学博士;
1998—2002年,南开大学,应用光学和经济学专业,理学和经济学学士;

工作经历

2017-今,南开大学物理科学学院,副院长;
2015-今,南开大学泰达应用物理研究院,教授;
2013-2014年,美国圣路易斯华盛顿大学,访问学者;
2009-2015年,南开大学泰达应用物理学院,副教授;
2007-2009年,南开大学泰达应用物理学院,讲师。

个人简介

薄方,南开大学,教授,物理科学学院副院长。2002年,南开大学,理学和经济学学士;2007年,南开大学,理学博士。2013年至2014年,美国圣路易斯华盛顿大学,访问学者。

近期主要从事铌酸锂微纳光子学研究,在片上光源,耦合、传输控制、非线性光学器件研究方面取得系列成果。实现了高品质因子二氧化硅-铌酸锂复合微腔,单晶、多晶、周期极化、稀土离子掺杂铌酸锂微腔的批量制备。对铌酸锂微腔共振波长的主动调控,热光效应,倍频、和频等非线性光学效应开展了系统研究。实现片上微盘、微环腔激光器。

迄今为止,在Phys. Rev. Lett.、Adv. Mater.等杂志上发表论文100余篇,SCI引用3000余次,h-index:30。与他人合著英文专著章节一章。主持重大项目(课题)3项,国家自然科学基金项目5项,其他项目6 项;参与国家重大科学研究计划、国家自然科学基金重点项目等十余项科研项目。

每年招收博士研究生2-3名、硕士研究生2-3名。欢迎对集成(微纳)光电子学器件及其应用感兴趣,拟从事微纳光学、非线性光学、激光物理、量子光学等方面研究的同学联系报考!

研究方向

近期主要从事铌酸锂微纳光子学相关的研究。每年招收博士研究生2名、硕士研究生2-3名。欢迎对集成(微纳)光电子学器件设计、加工、测试和应用相关工作感兴趣,拟从事微纳光学、非线性光学、激光物理、量子光学等方面研究的同学联系报考!


科研项目:

[9] 2022YFA1404602SiC 非线性效应及光子器件研究,国家重点研发计划项目课题,2023.01-2027.12,参与(南开部分负责人)

[8] 92250302微腔非对称光场调控及集成光子器件应用,国家自然科学基金重大研究计划项目集成项目,2023.01-2025.12,主持

[7] 92050111,掺镱LNOI微环腔光频率梳研究,国家自然科学基金重大研究计划项目培育项目,2021.01-2023.12,主持

[6] 2019YFA0705003,铌酸锂薄膜光子结构中的非线性效应与频率梳应用,国家重点研发计划项目课题,2019.12-2024.11,主持

[5] 11734009,铌酸锂晶体微腔中的非线性过程与调控研究,国家自然科学基金重点项目,2018.01-2022.12,参与(南开部分负责人)

[4] 11674181,基于铌酸锂微盘腔的窄带宽可调谐宣布式单光子源,国家自然科学基金面上项目,2017.01-2020.12,主持

[3] 11374165,微米尺寸铌酸锂晶体回音壁模式微腔的制备和光学非线性增强研究,国家自然科学基金面上项目,2014.01-2017.12,主持

[2] 10904077,利用法珀腔共振效应提高有机材料中慢光的相对延迟,国家自然科学基金青年项目,2010.01-2012.12,主持

[1] 200800551034,动态和静态光栅中光脉冲形变的抑制,教育部新教师基金项目,2009.01-2011.12,主持


代表性工作:

[5] 与孔勇发老师课题组合作,从晶体生长开始,制备铒离子掺杂LNOI微纳光学器件。基于铒离子掺杂LNOI平台实现了微盘腔激光器(Sci. China-Phys. Mech. & Astron., 64(3), 234263 (2021))、微环腔激光器(Opt. Lett., 46(13), 3275 (2021))、光波导放大器(Chin. Opt. Lett., 19(6), 60008 (2021))和基于耦合微腔光学分子的单模激光器(Sci. China-Phys. Mech. & Astron., 64(9), 294216 (2021))。 


图5 LNOI单模激光器性能测试结果。



[4] 光纤光波导耦合器件。利用粒子群优化算法,设计高效率(89%/coupler)铌酸锂薄膜光栅耦合器。并利用电子束光刻是反应离子束刻蚀实现制备,TE(TM)模式耦合效率达到72%/coupler和62%/coupler,上述指标均为当时铌酸锂薄膜光栅耦合器效率最高值(Opt. Lett., 45, 6651 (2020))。设计、制备了铌酸锂波导模斑转换器(发明创造名称:光波导耦合器及其制备方法;专利号:202210335051.4),该转换器中最小线宽600nm,可以利用i-line光刻机批量制备,该专利已经在江苏省产业技术研究院重大项目支持下进行了转化。



图4. LNOI光栅耦合显微图片


[3] 利用光刻、刻蚀、化学机械抛光和基于原子力显微镜的畴极化技术,我们成功实现了品质因子1e5量级,单周期、双周期等周期极化铌酸锂微盘腔的制备(Photon. Res., 8, 311 (2020)),在其中实现铌酸锂最大二阶非线性系数d33的使用和倍频、三倍频、四倍频等非线性过程。


图3周期极化铌酸锂微腔的(a-c)显微镜图像和(d, e)透射谱。



[2] 利用激光脉冲沉积技术在二氧化硅盘形微腔上镀铌酸锂薄膜的办法,我们在无需后处理的情况下成功实现了1e5品质因子铌酸锂/二氧化硅复合微盘腔的制备(Adv. Mater. 27, 8075 (2015)),该工作提出了一种全新的从下到上的铌酸锂微腔制备方案。


图2铌酸锂二氧化硅复合腔的(a)结构示意图、(b)光学显微镜图像、(c)扫描电子显微镜图像和(d)原子力显微镜图片。


[1] 在国际上首次实现了1e6以上品质因子的位于晶片上的铌酸锂微盘腔的批量制备,利用电光效应实现了微腔共振波长的主动调控(Opt. Express 23, 23072 (2015));系统研究了单晶铌酸锂微盘腔内的热光效应,观察并解释了强光泵浦情况下,微腔透射谱的振荡效应(Opt. Express, 24, 21869 (2016))


图1单晶铌酸锂微盘腔的(a)扫描电子显微镜图像与(b)其边缘的放大图像。





研究成果

2024

[97] S. Kang, D. Jia, X. Yu, F. Gao, F. Bo*, G. Zhang*, J. Xu*, High quality lithium niobate Euler racetrack resonators, Laser Photon. Rev., na, 202400807 (2024).

[96] Y. Zhang, J. Li, F. Gao*, W. Zhang, F. Bo, G. Zhang, J. Xu*, Configurable add-drop filter with stable insertion loss for X-band microwave photonics, J. Lightwave Technol., 42, 6057-6062 (2024).

[95] D. Jia, Q. Luo, C. Yang, R. Ma, X. Yu, F. Gao, Q. Yang*, F. Bo*, G. Zhang*, J. Xu*, High-efficiency and easy-processing thin-film lithium niobate edge coupler, Appl. Phys. Lett., 125, 183503 (2024).

[94] Z. Xie, F. Bo, J. Lin, H. Hu, X. Cai, X.-H. Tian, Z. Fang, J. Chen, M. Wang, F. Chen, Y. Cheng*, J. Xu*, S. Zhu*, Recent development in integrated Lithium niobate photonics, Adv. Phys. X, 9, 2322739 (2024).

[93] Y. Zhang, S. Li, Y. Jiao, X. Wang, F. Gao, F. Bo, J. Xu, G. Zhang*, Thickness-dependent photovoltaic effect in monocrystalline lithium niobate films of nanoscale thickness, Phys. Rev. Appl., 21, 054009 (2024).

[92] Z. Hao, X. Wu, Q. Luo, Z. Li, R. Ma, F. Bo*, F. Gao, G. Zhang, J. Xu, Efficient second and third harmonic generation in dual-layer lithium niobate microdisk resonator, Sci. China-Phys. Mech. Astron., 67, 254211 (2024).

[91] P.-Y. Wang, S. Wan, R. Ma, W. Li, F. Bo*, G.-C. Guo, C.-H. Dong*, Octave soliton microcombs in lithium niobate microresonators, Opt. Lett., 49, 1729 (2024).

[90] X. Wu, Z. Hao, L. Zhang, D. Jia, R. Ma, C. Tao, F. Gao, F. Bo*, G. Zhang, J. Xu, Second-Harmonic Generation with a 440 000% W−1 Conversion Efficiency in a Lithium Niobate Microcavity without Periodic Poling, Laser Photon. Rev., 18, 2300951 (2024).

[89] S. Kang, X. Lv, C. Yang, R. Ma, F. Gao, X. Yu, F. Bo*, G. Zhang, J. Xu, Electro-Optical Comb Envelope Engineering Based on Mode Crossing, Materials, 17, 1190 (2024).

[88] X. Wu, L. Zhang, Z. Hao, Y. Zhang, S. Kang, R. Ma, F. Gao, F. Bo*, G. Zhang*, J. Xu*, Efficient Cascaded Third-Harmonic Generation in Sampled-Grating Periodically-Poled Lithium Niobate Waveguides, Laser Photon. Rev., 18, 2300953 (2024).

[87] F. Xin*, L. Falsi, Y. Gelkop, D. Pierangeli, G. Zhang, F. Bo, F. Fusella, A.J. Agranat, E. DelRe, Evidence of 3D Topological-Domain Dynamics in KTN:Li Polarization-Supercrystal Formation, Phys. Rev. Lett., 132, 066603 (2024).

[86] S. Wan, P.-Y. Wang, R. Ma, Z.-Y. Wang, R. Niu, D.-Y. He, G.-C. Guo, F. Bo*, J. Liu, C.-H. Dong*, Photorefraction-Assisted Self-Emergence of Dissipative Kerr Solitons, Laser Photon. Rev., 18, 2300627 (2024).



2023

[85] D. Jia, Q. Luo, C. Yang, R. Ma, X. Yu, F. Gao, Q. Yang*, F. Bo*, G. Zhang*, J. Xu*, High-efficiency edge couplers enabled by vertically tapering on lithium-niobate photonic chips, Appl. Phys. Lett., 123, 263502 (2023).

[84] R. Niu, S. Wan, W. Li, P.-Y. Wang, F.-W. Sun, F. Bo*, J. Liu, G.-C. Guo, C.-H. Dong*, An integrated wavemeter based on fully-stabilized resonant electro-optic frequency comb, Commun. Phys., 6, 329 (2023).

[83] J. Zhu, C. Wang, C. Tao, Z. Fu, H. Liu*, F. Bo*, L. Yang*, G. Zhang*, J. Xu*, Local chirality at exceptional points in optical whispering-gallery microcavities, Phys. Rev. A, 108, L041501 (2023).

[82] Y. Zhang, Q. Luo, D. Zheng*, S. Wang, S. Liu, H. Liu*, F. Bo*, Y. Kong*, J. Xu*, Highly efficient on-chip erbium-ytterbium co-doped lithium niobate waveguide amplifiers, Photon. Res., 11, 1733 (2023).

[81] C. Yang, S. Yang, F. Du, X. Zeng, B. Wang, Z. Yang, Q. Luo, R. Ma, R. Zhang, D. Jia, Z. Hao, Y. Li, Q. Yang, X. Yi, F. Bo*, Y. Kong, G. Zhang*, J. Xu*, 1550-nm band soliton microcombs in ytterbium-doped lithium-niobate microrings, Laser Photon. Rev., 2200510 (2023).

[80] Q. Luo, C. Yang, Z. Hao, R. Zhang, R. Ma, D. Zheng, H. Liu, X. Yu, F. Gao, F. Bo*, Y. Kong*, G. Zhang*, J. Xu*, On-chip erbium-ytterbium co-doped lithium niobate microdisk lasers with ultralow threshold, Opt. Lett., 48, 3447-3450 (2023). (Editor's Pick)

[79] D. Jia, R. Zhang, C. Yang, Z. Hao, X. Yu, F. Gao, F. Bo*, G. Zhang*, J. Xu*, Electrically tuned coupling of lithium niobate microresonators, Opt. Lett., 48, 2744-2747 (2023).

[78] Q. Luo, F. Bo*, Y. Kong, G. Zhang, J. Xu, Advances in lithium niobate thin-film lasers and amplifiers: a review, Adv. Photon., 5, 034002 (2023).

[77] S. Kang, F. Gao, X. Yu, F. Bo*, G. Zhang*, J. Xu*, Lithium niobate thin film grating couplers optimized by particle swarm optimization and a neural network, J. Opt. Soc. Am. B, 40, D21-D25 (2023).

[76] X. Gan, Z. Ban, F. Gao*, F. Bo, G. Zhang, J. Xu*, Fano-Like Spectrum With a Quasi-Independent Tuning of Slope Ratio Based on HE Mode Components Coupled Whispering Gallery Mode, J. Lightwave Technol., 41, 2501 (2023).

[75] Y. Zhang, Q. Luo, S. Wang, D. Zheng*, S. Liu, H. Liu*, F. Bo*, Y. Kong*, J. Xu, On-chip ytterbium-doped lithium niobate waveguide amplifiers with high net internal gain, Opt. Lett., 48, 1810-1813 (2023). 

[74] L. Zhang, X. Wu, Z. Hao*, R. Ma, F. Gao, F. Bo*, G. Zhang*, J. Xu*, Second-harmonic and cascaded third-harmonic generation in generalized quasiperiodic poled lithium niobate waveguides, Opt. Lett., 48, 1906-1909 (2023).

[73] H. He, S. Zhang, J. Qi, F. Bo, H. Li*, Faraday rotation in nonreciprocal photonic time-crystals, Appl. Phys. Lett., 122, 051703 (2023).

 


2022

[72] S. Wang, Y. Shan, D. Zheng*, S. Liu, F. Bo, H. Liu*, Y. Kong*, J. Xu*, The real-time dynamic holographic display of LN:Bi,Mg crystals and defect-related electron mobility, Opto-Electron. Adv., 5, 210135 (2022).

[71] X. Han, Z. Wang, F. Gao, W. Zhang, F. Bo, X. Dong, G. Zhang, J. Xu, Robust and low cost in-fiber acousto-optic MachZehnder interferometer and its application in a dual-wavelength laser, Appl. Opt., 61, 22-27 (2022).

[70] X. Wu, Z. Hao*, F. Bo* F, G. Zhang, J. Xu, Advances in second-order nonlinear optical effects of lithium niobate micro/nano waveguides (in Chinese), Chin. Sci. Bull., 67, 3915392 (2022).

[69] Y. Zhang, Y. Qian, Y. Jiao, X. Wang, F. Gao, F. Bo, J. Xu, G. Zhang*, Conductive domain walls in x-cut lithium niobate crystals, J. Appl. Phys., 132, 044102 (2022).

[68] S. Song, L. Jia, S. Wang, D. Zheng, H. Liu, F. Bo, Y. Kong, J. Xu, Enhancement of ferromagnetism in a multiferroic LaCo co-doped BiFeO3 thin films, Journal of Physics D: Applied Physics, 55, 355002 (2022).

[67] Z. Hao, L. Zhang, J. Wang, F. Bo*, F. Gao, G. Zhang*, J. Xu*, Sum-frequency generation of a laser and its background in an on-chip lithium-niobate microdisk, Chin. Opt. Lett., 20, 111902 (2022). (Editors' Pick)

[66] Q. Luo, F. Bo*, Y. Kong, G. Zhang, J. Xu, Research progress in lithium niobate on insulator lasers (In Chinese), Scientia Sinica Physica, Mechanica & Astronomica, 52, 294221 (2022). 

[65] J. Liu*, F. Bo*, L. Chang*, C.-H. Dong*, X. Ou*, B. Regan*, X. Shen*, Q. Song*, B. Yao*, W. Zhang*, C.-L. Zou*, Y.-F. Xiao*, Emerging material platforms for integrated microcavity photonics, Sci. China-Phys. Mech. & Astron, 65  104201 (2022). (Invited, ESI highly cited paper

[64] X. Wu, L. Zhang, Z. Hao, R. Zhang, R. Ma, F. Bo*, G. Zhang*, and J. Xu*, Broadband second-harmonic generation in step-chirped periodically poled lithium niobate waveguides, Opt. Lett. 47, 1574-1577 (2022).

[63] Q. Luo#, C. Yang#, Z. Hao, R. Zhang, R. Ma, D. Zheng, H. Liu, F. Gao, X. Yu, F. Bo*, Y. Kong*, G. Zhang*, J. Xu*, Integrated ytterbium-doped lithium niobate microring lasers, Opt. Lett.,  47(6), 1427-1430 (2022).

[62] Q. Luo, C. Yang, Z. Hao, R. Zhang, R. Ma, D. Zheng, H. Liu, X. Yu, F. Gao, F. Bo*, Y. Kong*, G. Zhang*, J. Xu*, On-chip ytterbium-doped lithium niobate microdisk lasers with high conversion efficiency, Opt. Lett., 47, 854-857 (2022).

[61] A. Gao#, C. Yang#, L. Chen#, R. Zhang, Q. Luo, W. Wang, Q. Cao, Z. Hao, F. Bo*, G. Zhang*, J. Xu*, Directional emission in X-cut lithium niobate microresonators without chaos dynamics, Photon. Res., 10(2), 401 (2022).

 

 

2021

[60] R. Gao, H. Zhang, F. Bo, W. Fang, Z. Hao, N. Yao, J. Lin*, J. Guan, L. Deng, M. Wang, L. Qiao, Y. Cheng*, Broadband highly efficient nonlinear optical processes in on-chip integrated lithium niobate microdisk resonators of Q-factor above 10^8, New J. Phys., 23, 123027 (2021).

[59] R. Zhang, C. Yang, Z. Hao, D. Jia, Q. Luo, D. Zheng, H. Liu, X. Yu, F. Gao, F. Bo*, Y. Kong*, G. Zhang*, and J. Xu*, Integrated lithium niobate single-mode lasers by the Vernier effect. Sci. China-Phys. Mech. & Astron., 64(9), 294216 (2021).

[58] Q. Luo#, C. Yang#,  R. Zhang, Z. Hao, D. Zheng, H. Liu, X. Yu, F. Gao, F. Bo*, Y. Kong*, G. Zhang*, J. Xu*, On-chip erbium doped lithium niobate microring lasers. Opt. Lett., 46(13), 3275 (2021). (Top Cited Papers from Optics Letters)

[57] Q. Luo, C. Yang, Z. Hao, R. Zhang, D. Zheng, F. Bo*, Y. Kong*, G. Zhang*, J. Xu*, On-chip erbium-doped lithium niobate waveguide amplifiers. Chin. Opt. Lett., 19(6), 60008 (2021).  (Invited)

[56] Q. Luo, Z. Hao, C. Yang, R. Zhang, D. Zheng, S. Liu, H. Liu, F. Bo*, Y. Kong*, G. Zhang*, J. Xu*, Microdisk lasers on an erbium-doped lithium-niobite chip, Sci. China-Phys. Mech. & Astron., 64(3), 234263 (2021). (Editors' Focus, ESI highly cited paper,Hot paper)

 

 

2020

[55] S. Kang#, R. Zhang#, Z. Hao, D. Jia, F. Gao, F. Bo*, G. Zhang*, J. Xu*, High-efficiency chirped grating couplers on lithium niobate on insulator, Opt. Lett., 45(24), 6651-6654 (2020) .  (Editors' Pick)

[54] J. Lin, F. Bo*, Y. Cheng*, J. Xu*, Advances in on-chip photonic devices based on lithium niobate on insulator, Photon. Res., 8(12) 1910-1936 (2020). (ESI highly cited paper)

[53] X. Gao, L. Yang, H. Lin, L. Zhang, J. Li, F. Bo, Z. Wang, L. Lu*, Dirac-vortex topological cavities, Nat. Nanotechnol., 15, 1012-1018 (2020).

[52] L. Zhang, Z. Hao, Q. Luo, A. Gao, R. Zhang, C. Yang, F. Gao, F. Bo*, G. Zhang*, J. Xu*, Dual-periodically poled lithium niobate microcavities supporting multiple coupled parametric processes, Opt. Lett., 45 (12), 3353-3356 (2020).

[51] J. Zhu, H. Liu*, F. Bo*, C. Tao, G. Zhang*, J. Xu*, Intuitive model of exceptional points in an optical whispering-gallery microcavity perturbed by nanoparticles, Phys. Rev. A, 101 (5), 053842 (2020).

[50] X. Gao, L. Yang, F. Bo*, J. Li*, G. Zhang, J. Xu, Vector beams in planar photonic crystal cavities with rotating air holes, Opt. Lett., 45(6), 1587-1590 (2020).

[49] Z. Hao, L. Zhang, W. Mao, A. Gao, X. Gao, F. Gao, F. Bo*, G. Zhang*, J. Xu*, Second-harmonic generation using d33 in periodically poled lithium niobate microdisk resonators, Photon. Res., 8, 311-317 (2020).

[48] Y. Kong*, F. Bo, W. Wang, D. Zheng, H. Liu, G. Zhang, R. Rupp, and J. Xu*, Recent Progress in Lithium Niobate: Optical Damage, Defect Simulation, and On-Chip Devices, Adv. Mater. 32 (3), 1806452 (2020).

[47] Y. Jiao, Z. Shao, S. Li, X. Wang, F. Bo, J. Xu, G. Zhang*, Improvement on Thermal Stability of Nano-Domains in Lithium Niobate Thin Films, Crystals, 10, 74 (2020).

[46] J. Yang, C. Qian, X. Xie, K. Peng, S. Wu, F. Song, S. Sun, J. Dang, Y. Yu, S. Shi, J. He, M. Steer, I. Thayne, B. Li, F. Bo, Y. Xiao, Z. Zuo, K. Jin, C. Gu, X. Xu*, Diabolical points in coupled active cavities with quantum emitters, Light-Sci. Appl., 9, 8 (2020).

 

2019

[45] L. Zhang#, D. Zheng#, W. Li, F. Bo*, F. Gao, Y. Kong*, G. Zhang*, J. Xu*, Microdisk resonators with lithium-niobate film on silicon substrate, Opt. Express, 27, 33662-33669 (2019).

[44] J. Lin#, N. Yao#, Z. Hao, J. Zhang, W. Mao, M. Wang, W. Chu, R. Wu, Z. Fang, L. Qiao, W. Fang*, F. Bo*, and Y. Cheng*, Broadband Quasi-Phase-Matched Harmonic Generation in an On-Chip Monocrystalline Lithium Niobate Microdisk Resonator, Phys. Rev. Lett. 122, 173903 (2019). (ESI highly cited paper)

[43] P. Chang, B. Cao, F. Gao*, L. Huang, W. Zhang, F. Bo, X. Yu, G. Zhang, J. Xu*, Enhance stable coupling region of a high-Q WGM up to micrometer, Appl. Phys. Lett., 115, 4 (2019).

[42] X. Li, P. Chang, L. Huang, W. Zhang, F. Gao*, F. Bo, G. Zhang, J. Xu, Feasibility of quasicritical coupling based on LP modes and its application as a filter with tunable bandwidth and stable insertion loss, Opt. Express, 27, 23610-23619 (2019).

[41] Y. Jiao, L. Xu, B. Han, F. Bo, J. Xu, G. Zhang*, Self-focusing and self-bending of surface plasmons in longitudinally modulated metasurfaces, Opt. Commun., 450, 136-140 (2019).

[40] Q. Fu, X. Wang*, F. Liu*, Y. Dong, Z. Liu, S. Zheng, A. Chaturvedi, J. Zhou, P. Hu*, Z. Zhu, F. Bo, Y. Long, Z. Liu*, Ultrathin RuddlesdenPopper Perovskite Heterojunction for Sensitive Photodetection, Small, 15, 1902890 (2019).

[39] H. Chen, L. Wu, F. Bo, J. Jian, L. Wu*, H. Zhang*, L. Zheng*, Y. Kong, Y. Zhang, J. Xu, Coexistence of self- reduction from Mn4+ to Mn2+ and elastico-mechano luminescence in diphase KZn( PO33: Mn2+, J. Mater. Chem. C, 7, 7096-7103 (2019).

 

2018

[38] P. Chang, X. Li, L. Huang, F. Gao*, W. Zhang, F. Bo, G. Zhang and J. Xu*, Fast light in the generation configuration of stimulated Brillouin scattering based on high-Q micro-cavities, Opt. Express, 26(12), 15377-15383 (2018). 

[37] L. Wang, C. Wang, J. Wang, F. Bo*, M. Zhang, Q. Gong, M. Loncar*, Y. Xiao*, High-Q chaotic lithium niobate microdisk cavity, Opt. Lett., 43(12), 2917-2920 (2018).

[36] W. Mao, W. Deng, F. Bo*, F. Gao, G. Zhang*, J. Xu*, Upper Temperature Limit and Multi-channel Effects in Spherical Lithium-niobate Optical Parametric Oscillators, Opt. Express, 26(12), 15268-15275 (2018).

[35] Z. Hao, L. Zhang, A. Gao, W. Mao, X. Lyu, F. Bo*, F. Gao, G. Zhang*, J. Xu*, Periodically poled lithium niobate whispering gallery mode microcavities on a chip, Sci. China-Phys. Mech. Astron., 61, 114211 (2018).

 

2017

[34] Z. Hao, J. Wang, S. Ma, W. Mao, F. Bo*, F. Gao, G. Zhang, and J. Xu, Sum-frequency generation in on-chip lithium niobate microdisk resonators, Photonics Res. 5, 623-628 (2017).

[33] X. Wang, B. Zhu, Y. Dong, S. Wang, Z. Zhu, F. Bo, and X. Li*, Generation of equilateral-polygon-like flat-top focus by tightly focusing radially polarized beams superposed with off-axis vortex arrays, Opt. Express 25, 26844-26852 (2017).

[32] F. Bo*, S. K. Ozdemir*, F. Monifi, J. Zhang, G. Zhang, J. Xu, and L. Yang*, Controllable oscillatory lateral coupling in a waveguide-microdisk-resonatorsystem, Sci. Rep. 7, 8045 (2017).

[31] Y. Sun, F. Song, C. Qian, K. Peng, S. Sun, Y. Zhao, Z. Bai, J. Tang, S. Wu, H. Ali, F. Bo, H. Zhong, K. Jin, and X. Xu*, High-Q Microcavity Enhanced Optical Properties of CuInS2/ZnS Colloidal Quantum Dots toward Non-Photodegradation, ACS Photon. 4, 369-377 (2017).

[30] X. Gao, X., J. Li*, Z. Hao, F. Bo*, C. Hu, J. Wang, Z. Liu, Z.-Y. Li, G. Zhang and J. Xu, Vertical microgoblet resonator with high sensitivity fabricated by direct laser writing on a Si substrate. J. Appl. Phys. 121(6), 064502 (2017).

 

2016

[29] J. Wang,  B. Zhu, Z. Hao, F. Bo*, X. Wang*, F. Gao, Y. Li,  G. Zhang*, and J. Xu, Thermo-optic effects in on-chip lithium niobate microdisk resonators. Opt. Express 24(19), 21869-21879 (2016).

[28] F. Monifi, J. Zhang*, S. K. Ozdemir*, B. Peng, Y.-x. Liu, F. Bo, F. Nori, and L. Yang*, Optomechanically induced stochastic resonance and chaos transfer between optical fields, Nat. Photon. 10, 399-405 (2016).

[27] L. Huang, J. Wang, W. Peng, W. Zhang, F. Bo, X. Yu, F. Gao*, P. Chang, X. Song, G. Zhang, and J. Xu, Mode conversion in a tapered fiber via a whispering gallery mode resonator and its application as add/drop filter, Opt. Lett. 41, 638-641 (2016).

[26] L. Huang, X. Song, P. Chang, W. Peng, W. Zhang, F. Gao*, F. Bo, G. Zhang, and J. Xu, All-fiber tunable laser based on an acousto-optic tunable filter and a tapered fiber, Opt. Express 24, 7449-7455 (2016).

[25] L. Huang, P. Chang, X. Song, W. Peng, W. Zhang, F. Gao*, F. Bo, G. Zhang, and J. Xu, Tunable in-fiber Mach-Zehnder interferometer driven by unique acoustic transducer and its application in tunable multi-wavelength laser, Opt. Express 24, 2406-2412 (2016).

 

2015

[24] F. Bo, J. Wang, J. Cui, S. K. Ozdemir*, Y. Kong, G. Zhang*, J. Xu, and L. Yang*, Lithium-NiobateSilica Hybrid Whispering-Gallery-Mode Resonators, Adv. Mater. 27, 8075-8081 (2015).

[23] F. Bo*, S. K. Ozdemir*, B. Peng, J. Wang, G. Zhang, J. Xu, and L. Yang*, Vertically coupled microresonators and oscillatory mode splitting in photonic molecules, Opt. Express 23, 30793-30800 (2015).

[22] F. Bo*, X. Wang, Y. Li, F. Gao, G. Zhang*, and J. Xu, Mode characteristics of silver-coated inverted-wedge silica microdisks, Sci. China-Phys. Mech. Astron. 58, 1-5 (2015).

[21] L. Xu, Y. Dou, F. Bo, J. Xu, and G. Zhang*, Two-photon correlation and photon transport in disordered passive parity-time-symmetric lattices, Phys. Rev. A 91, 023817 (2015).

[20] J. Wang, F. Bo*, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation, Opt. Express 23, 23072-23078 (2015).

[19] L. Huang, W. Peng, F. Gao*, F. Bo, G. Zhang, and J. Xu, Mutually modulated cross-gain modulation with a considerable modulation wave number-interaction length product, Opt. Express 23, 12004-12012(2015).

 

2014

[18] L. Xu, Y. Yin, F. Bo, J. Xu, and G. Zhang*, Anomalous refraction indisordered one-dimensional photonic lattices, J. Opt. Soc. Am. B 31, 105-109 (2014).

[17] Y. Li, H. Liu*, H. Jia, F. Bo, G. Zhang, and J. Xu, Fully vectorial modeling of cylindrical microresonators with aperiodic Fourier modal method, J. Opt. Soc. Am. A 31, 2459-2466 (2014).

[16] Y. Dou, L. Xu, B. Han, F. Bo, J. Xu, and G. Zhang*, Quantum correlation of path-entangled two-photon states in waveguide arrays with defects, AIP Advances 4, 047117 (2014).

[15] F. Bo, S. H. Huang, S. K. Ozdemir, G. Zhang, J. Xu, and L. Yang*, Inverted-wedge silica resonators for controlled and stable coupling, Opt. Lett. 39, 1841-1844 (2014).

 

2013年以前

[14] W. Zhang, L. Huang, F. Gao, F. Bo, G. Zhang, and J. Xu, Tunable broadband light coupler based on two parallel all-fiber acousto-optic tunable filters, Opt. Express 21, 16621-16628 (2013).

[13] W. Zhang, L. Huang, F. Gao, F. Bo, G. Zhang, and J. Xu, All-fiber tunable Mach-Zehnder interferometer based on an acousto-optic tunable filter cascaded with a tapered fiber, Opt. Commun. 292, 46-48(2013).

[12] L. Xu, Y. Yin, F. Bo, J. Xu, and G. Zhang, Transverse localization of light in the disordered one-dimensional waveguide arrays in the linear and nonlinear regimes, Opt. Commun. 296, 65-71 (2013).

[11] W. Zhang, L. Huang, F. Gao, F. Bo, L. Xuan, G. Zhang, and J. Xu, Tunable add/drop channel coupler based on an acousto-optic tunable filter and a tapered fiber, Opt. Lett. 37, 1241-1243 (2012).

[10] W. Zhang, F. Gao, F. Bo, Q. Wu, G. Zhang, and J. Xu, All-fiber acousto-optic tunable notch filter with a fiber winding driven by a cuneal acoustic transducer, Opt. Lett. 36, 271-273 (2011).

[9] F. Xin, G. Zhang, F. Bo, H. Sun, Y. Kong, J. Xu, T. Volk, and N. M. Rubinina, Ultraviolet photorefraction at 325 nm in doped lithium niobate crystals, J. Appl. Phys. 107, 033113 (2010).

[8] F. Bo, Z. Liu, F. Gao, G. Zhang, and J. Xu, Slow and fast light in photorefractive GaAs--AlGaAs multiple quantum wells in transverse geometry, J. Appl. Phys. 108, 063101 (2010).

[7] L. Xu, G. Q. Zhang, N. N. Xu, F. Bo, F. Gao, W. D. Fan, J. J. Xu, K.P. Lor, and K. S. Chiang, Active chromatic control on the group velocityof light at arbitrary wavelength in benzocyclobutene polymer, Opt. Express 17, 18292-18303 (2009).

[6] G. Q. Zhang, F. Bo, F. Gao, R. Dong, Y. F. Tu, and J. J. Xu, Slow and fast lights with moving and stationary refractive index gratings in solids at room temperature, Int. J. Mod. Phys. B 22, 447-468 (2008).

[5] F. Gao, J. Xu, G. Q. Zhang, F. Bo, and H. Liu, Paraxialenergy transport of a focused Gaussian beam in ruby with nondegenerate two-wave coupling like mechanism, Appl. Phys. Lett. 92 (2008).

[4] F. Bo, G. Zhang, and J. Xu, Ultraslow Gaussian pulse propagation induced by a dispersive phase coupling in photorefractive bismuth silicon oxide crystals at room temperature, Opt. Commun. 261, 349-352 (2006).

[3] F. Bo, G. Zhang, and J. Xu, Transition between superluminal and subluminal light propagation in photorefractive Bi_{12}SiO_{20} crystals, Opt. Express 13, 8198-8203 (2005).

[2] G. Zhang, R. Dong, F. Bo, and J. Xu, Slowdown of group velocity of light by means of phase coupling in photorefractive two-wave mixing, Appl. Optics. 43, 1167-1173 (2004).

[1] G. Zhang, F. Bo, R. Dong, and J. Xu, Phase-coupling-induced ultraslow light propagation in solids at room temperature, Phys. Rev. Lett. 93, 133903-133903 (2004)

 


社会兼职

中国物理学会光物理专业委员会 委员

中国仪器仪表学会量子传感与精密测量仪器分会,常务理事

IOP's China Scientific Advisory Board, Member

Chin. Opt. Lett.,编委

Chin. Phys. Lett.、Chin. Phys. B、物理学报、物理,编委

Sci. Rep.,编委


教学经历

本科生课程

光学》,主讲

《大学物理II-2(电磁学、光学和近代物理部分)》,主讲(2008-2019)

《大学物理II-2(波动、热学部分)》,主讲(2019-2020)

General Physics》,主讲,全英文授课

《大学物理实验(力热部分)》,参与

《光学和光子学前沿讲座》,参与


研究生课程

《微腔光子学》,主讲


教学奖励

2012年,第十一届天津市高校青年教师教学基本功竞赛,一等奖







荣誉称号

306 访问