About
EducationWorkExperience2018.1 ~ now, Professor of School of Physical Sciences, Nankai University
2016.12-2017.12, Visiting scholar of IBS soft and active substances research center in South Korea
2011.1-2017.12, Associate professor, School of Physical Sciences, Nankai University
2008.7-2010.12, Lecturer, School of Physical Sciences, Nankai University
2001.7-2005.8, Process / R & D Engineer of Yangtze Optical Fibre & Cable Co., Ltd.
ResumeTu Chenghou, male, born in August 1976 in Henan Province, is a professor, doctoral supervisor and deputy director of the Department of Optical Science and technology. In 2008, he graduated from the school of physics of Nankai University, majoring in optics, and received a doctor of Science degree and stayed on as a teacher. He is mainly engaged in the research of spatial manipulation and application of light field, femtosecond laser micro/nano processing and nonlinear optics. He has presided over or completed many projects such as general projects of the National Natural Science Foundation of China, key projects and general projects of the Tianjin Natural Science Foundation, and education reform projects of Nankai University, and participated in two major national scientific research projects and one key project of the National Natural Science Foundation as a backbone. He has published more than 80 papers in well-known academic journals at home and abroad such as optica, science advances and photonics research, has been invited to make conferences / academic reports for many times, and has authorized 6 invention patents. He is a reviewer of journals such as Opt Lett., Opt. Express, Sci. Rep. and Appl. Opt., the reviewer of the National Natural Science Foundation of China and the degree center of the Ministry of education, and a permanent member of the Chinese physical society.
Research Fields
Research interests: light field manipulation, vector light field, nonlinear optics and applications, etc. u Multi-dimensional manipulation (including polarization, phase, mode, etc.) and applications of new light fields u Angular momentum manipulation of light field and its application u Singularity light field and topology characteristics of light field u Light field manipulation and optical tweezer u Nonlinear interaction of spatially structured light field with matter/microstructure and its application u Femtosecond vector light field and efficient micro-nano processing Achievement1. K. Wang, J. Li, F. Dai, M. S. Wang, C. H. Wang, Q. Wang, C. H. Tu, Y. N. Li* and H.-T. Wang*, “Quadratic microcomb assisted by Kerr nonlinearity”, Front. Phys. accepted (2022). 2. F. Dai, S.-Y. Huang, M. Wang, C. H. Tu, Y. N. Li* and H.-T. Wang*, “High-dimensional orbital angular momentum entanglement from an ultrathin nonlinear film”, Front. Phys. 10, 971360 (2022). 3. J.-H. Zhao, Y. Pan*. X.-Z. Gao, R. D. Ma, Z.-X. Man, Z.-C. Ren, C. H. Tu, Y. N. Li and H.-T. Wang*, “Five-dimensional Poincaré sphere system for representing azimuthally varying vector optical fields”, Phys. Rev. A 106, 023506 (2022) 4. Q. Wang, C. H. Tu*, H. He, Z. C. Xia, X. Z. Hou, Y. N. Li, and H.-T. Wang*, “Local angular momentum induced dual orbital effect”, APL Photonics 7, 086102 (2022). Featured and Cover-1 article. 5. M. Q. Cai, Q. Wang, Y. N. Li, and C. H. Tu*, “Propagation and focusing properties of vortex beams based on light ray tracing”, Front. Phys. 10, 931131 (2022). 6. W. R. Qi, J. Zhou, L. J. Kong, Z. P. Xu, H. X. Meng, R. Liu, Z. X. Wang, C. H. Tu, Y. N. Li*, A. Cabello, J. L. Chen*, and H.-T. Wang*, “ Stronger Hardy-Like Proof of Quantum Contextuality”, Photon. Res. 10, 1582-1593 (2022). 7. M. Q. Cai, Q. Wang, C. H. Tu*, Y. N. Li, and H. T. Wang, “Dynamically taming focal fields of femtosecond lasers for fabricating microstructures,” Chin. Opt. Lett. 20, 010502 (2022). 8. S. Y. Huang, G.-L. Zhang, Q. Wang, M. Wang, C. H. Tu, Y. N. Li*, and H.-T. Wang*, “Spin-to-orbital angular momentum conversion via light intensity gradient,” Optica 9, 1231-1236 (2021). 9. Q. Wang, C. H. Tu*, Y. N. Li, and H. T. Wang*, “Polarization singularities: Progress, fundamental physics, and prospects,” APL Photonics 6, 040901 (2021) (Invited review) 10. W. R. Qi, R. Liu, L. J. Kong, Z. X. Wang, S. Y. Huang, C. H. Tu, Y. N. Li*, and H. T. Wang*, “Pancharatnam–Berry geometric phase memory based on spontaneous parametric down-conversion,” Opt. Lett. 45(3), 682-685 (2020). 11. L. J. Kong, R. Liu, W. R. Qi, Z. X. Wang, S. Y. Huang, C. H. Tu, Y. N. Li*, and H. T. Wang*, “Asymptotical Locking Tomography of High-Dimensional Entanglement,” Chin. Phys. Lett. 37(3), 034204 (2020). 12. J. Q. Lü, X. L. Wang, G. L. Zhang, C. H. Tu, Y. N. Li, and H. T. Wang*, “Bessel-like beams with controllable rotating local linear polarization during propagation,” Opt. Lett. 45(7), 1738-1741 (2020). 13. Y. Pan*, Z. C. Ren, L. J. Kong, C. H. Tu, Y. N. Li, and H. T. Wang*, “Theoretical analysis based on mirror symmetry for tightly focused vector optical fields,” Opt. Express 28(16), 23416-23432 (2020). 14. X. Z. Gao, P. C. Zhao, X. F. Sun, F. Yang, Y. Pan*, Y. N. Li, C. H. Tu, and H. T. Wang*, “Highly purified transversely polarized optical needle generated by the hybridly polarized vector optical field with hyperbolic symmetry,” J. Opt. 22(10), 105604 (2020). 15. W. R. Qi, R. Liu, L. J. Kong, Z. X. Wang, S. Y. Huang, C. H. Tu, Y. N. Li*, and H. T. Wang*, “Double-slit interference of single twisted photons,” Chin. Opt. Lett. 18(10), 102601 (2020). 16. R. Liu, L. J. Kong, Y. Si, Z. X. Wang, W. R. Qi, C. H. Tu, Y. N. Li*, and H. T. Wang*, “Multi-Path Ghost Imaging by Means of an Additional Time Correlation,” Chin. Phys. Lett. 36(4), 044205 (2019). 17. G. L. Zhang, M. Q. Cai, X. L. He, X. Z. Gao, M. D. Zhao, D. Wang, Y. N. Li, C. H. Tu*, and H. T. Wang*, “Pseudo-topological property of Julia fractal vector optical fields,” Opt. Express 27(9), 13263–13279 (2019). 18. R. Liu, L. J. Kong, W. R. Qi, S. Y. Huang, Z. X. Wang, C. H. Tu, Y. N. Li*, and H. T. Wang*, “Compact, robust, and high-efficiency generator of vector optical fields,” Opt. Lett. 44(9), 2382-2385 (2019). 19. L. J. Kong, R. Liu, W. R. Qi, Z. X. Wang, S. Y. Huang, Q. Wang, C. H. Tu, Y. N. Li*, and H. T. Wang*, “Manipulation of eight-dimensional Bell-like states,” Sci. Adv. 5(6), eaat9206 (2019). 20. G. L. Zhang, C. H. Tu, Y. N. Li*, and H. T. Wang*, “Observation of polarization topological singular lines,” Photon. Res. 7(6), 705–710 (2019). 21. M. D. Zhao, X. Z. Gao, Q. Wang, G. L. Zhang, K. Wang, F. Dai, D. Wang, Y. N. Li, C. H. Tu*, and H. T. Wang*, “Multifractal vector optical fields,” Opt. Express 27(15), 20608–20620 (2019). 22. L. J. Kong, Y. N. Li*, R. Liu, W. R. Qi, Q. Wang, Z. X. Wang, S. Y. Huang, Y. Si, C. H. Tu, W. Hu, F. Xu, Y. Q. Lu, and H. T. Wang*, “Complete measurement and multiplexing of orbital angular momentum Bell states,” Phys. Rev. A 100(2), 023822 (2019). 23. Y. Pan*, X. Z. Gao, G. L. Zhang, Y. Li, C. H. Tu, and H. T. Wang*, “Spin angular momentum density and transverse energy flow of tightly focused kaleidoscope-structured vector optical fields,” APL Photonics 4(9), 096102 (2019). 24. Y. Pan*, M. S. Wang, X. Z. Gao, X. Zhang, R. Ma, Y. N. Li, C. H. Tu, and H. T. Wang*, “Energy transfer of the tightly focused hybridly polarized vector optical fields with elliptic symmetry in free space,” J. Opt. Soc. Am. A 36(11), 1898-1907 (2019). 25. Y. Pan*, X. Z. Gao, X. Zhang, J. H. Zhao, P. C. Zhao, Y. N. Li, C. H. Tu, and H. T. Wang*, “Diffraction properties and applications of spatially structured optical fields with fractal amplitude masks,” Appl. Opt. 58(31), 8631-8637 (2019). 26. Z. X. Wang, Y. C. Xie, H. Zhou,S. Y. Huang, M. Wang, R. Liu, W. R. Qi, Q. Q. Tian, L. J. Kong, C. H. Tu, Y. N. Li, and H. T. Wang*, “Identifying the symmetry of an object based on orbital angular momentum through a few-mode fiber,” Chin. Phys. Lett. 36(12), 124207 (2019). 27. Z. X. Wang, Y. C. Xie, S. Y. Huang, H. Zhou, R. Liu, Z. F. Liu, M. Wang, W. R. Qi, Q. Q. Tian, L. J. Kong, C. H. Tu, Y. N. Li, and H. T. Wang*, “Propagation characteristics of orbital angular momentum modes at 810 nm in step-index few-mode fibers”, Chin. Opt. Lett. 17(12), 120601(2019) 28. P. P. Li, M. Q. Cai, J. Q. Lu, D. Wang, G. G. Liu, C. H. Tu, Y. N. Li*, and H. T. Wang*, “Unveiling of control on the polarization of supercontinuum spectra based on ultrafast birefringence induced by filamentation,” J. Opt. Soc. Am. B 35(11), 2916-2922(2018). 29. R. Liu, L. J. Kong, Z. X. Wang, Y. Si, W. R. Qi, S. Y. Huang. C. H. Tu, Y. N. Li*, and H. T. Wang*, “Two-Photon interference constructed by two Hong-Ou-Mandel effects in one Mach-Zehnder interferometer,” Chin. Phys. Lett. 35(9), 090303 (2018). 30. G. G. Liu, K. Wang. Y. H. Lee, D. Wang, P. P. Li, F. W. Gou, Y. N. Li, C. H. Tu*, S. T. Wu, and H. T. Wang*, “Measurement of the topological charge and index of vortex vector optical fields with a space-variant half-wave plate,” Opt. Lett. 43(4), 823-826 (2018). 31. G. L. Zhang, X. Z. Gao, Y. Pan, M. D. Zhao, D. Wang, H. H. Zhang, Y. N. Li, C. H. Tu*, and H. T. Wang*, “Inverse method to engineer uniform-intensity focal fields with arbitrary shape,” Opt. Express 26(13), 16782-16796 (2018). 32. M. D. Zhao, X. Z. Gao, Y. Pan, G. L. Zhang, C. H. Tu, Y. N. Li*, and H. T. Wang*, “Image encryption based on fractal-structured phase mask in fractional Fourier transform domain,” J. Opt. 20, 045703 (2018). 33. X. Z. Gao, Y. Pan, M. D. Zhao, G. L. Zhang, Y. Zhang, C. H. Tu, Y. N. Li*, and H. T. Wang*, “Focusing behavior of the fractal vector optical fields designed by fractal lattice growth model,” Opt. Express 26(2), 1597-1614 (2018). 34. D. Wang, G. G. Liu, J. Q. LÜ, P. P. Li, M. Q. Cai, G. L. Zhang, Y. N. Li, C. H. Tu*, and H. T. Wang*, “Femtosecond polarization-structured optical field meets an anisotropic nonlinear medium,” Opt. Express 26(21), 27726-27747 (2018). 35. D. Wang, Y. Pan, J. Q. Lu, P. P. Li, G. G. Liu, M. Q. Cai, Y. N. Li, C. H. Tu*, and H. T. Wang*, “Controlling optical field collapse by elliptical symmetry hybrid polarization structure,” J. Opt. Soc. Am. B 35(10), 2373-2381(2018). 36. J. Q. Lu, P. P. Li, D. Wang, C. H. Tu, Y. N. Li*, and H. T. Wang*, “Control on helical filaments by twisted beams in a nonlinear CS2 medium,” Opt. Express. 26(22), 29527-29538(2018). 37. J. Q. Lu, P. P. Li, D. Wang, C. H. Tu, Y. N. Li*, and H. T. Wang*, “Extending optical filaments with phase-nested laser beams,” Photon. Res. 6(12), 1130-1136 (2018). 38. Y. N. Li, Z. C. Ren, L. J. Kong, C. H. Tu, and H. T. Wang*, “Trajectory-based unveiling of the angular momentum of photons,” Phys. Rev. A 95(4), 043830 (2017). 39. L. J. Kong, R. Liu, Y. Si, Z. X. Wang, C. H. Tu, Y. N. Li*, and H. T. Wang, “Time-resolved multiple imaging by detecting photons with changeable wavelengths,” Chin. Opt. Lett. 15(8), 081101(2017). 40. Y. Si, L. J. Kong, Y. Zhang, Z. C. Ren, Y. Pan, C. H. Tu, Y. N. Li*, and H. T. Wang*, “Spatial-Variant Geometric Phase of Hybrid-Polarized Vector Optical Fields,” Chin. Phys. Lett. 34(4), 044204 (2017). 41. L. J. Kong, Y. Si, R. Liu, Z. X. Wang, W. R. Qi, C. H. Tu, Y. N. Li*, and H. T. Wang*, “Robust ghost imaging based on degenerate spontaneous parametric down-conversion,” Chin. Phys. Lett. 34(5), 054206 (2017). 42. M. Q. Cai, Z. X. Wang, J. Liang, Y. K. Wang, X. Z. Gao, Y. N. Li, C. H. Tu*, and H. T. Wang*, “High-efficiency and flexible generation of vector vortex optical fields by a reflective phase-only spatial light modulator,” Appl. Opt. 56(22), 6175-6180 (2017). 43. X. Z. Gao, Y. Pan, G. L. Zhang, M. D. Zhao, Z. C. Ren, C. H. Tu, Y. N. Li*, and H. T. Wang*, “Redistributing the energy flow of tightly focused ellipticity-variant vector optical fields,” Photon. Res. 5(6), 640-648 (2017). 44. G. G. Liu, Y. H. Lee, Y. G. Huang, Z. Y. Zhu, G. J. Tan, M. Q. Cai, P. P. Li, D. Wang, Y. N. Li, S. Pang, C. H. Tu*, S. T. Wu*, and H.-T. Wang*, “Dielectric broadband meta-vector-polarizers based on nematic liquid crystal”, APL Photonics 2, 126102 (2017). Featured article. 45. Y. Si, L. J. Kong, Y. N. Li, C. H. Tu*, and H. T. Wang*, “Ghost Imaging with High Visibility Using Classical Light Source,” Chin. Phys. Lett. 3(33), 40-43 (2016). 46. X. Z. Gao, Y. Pan, S. M. Li, D. Wang, Y. Li, C. H. Tu*, and H. T. Wang*, “Vector optical fields broken in the spatial frequency domain,” Phys. Rev. A 93(3), 033834 (2016). 47. M. Q. Cai, P. P. Li, D. Feng, Y. Pan, S. X. Qian, Y. N. Li, C. H. Tu*, and H. T. Wang*, “Microstructures fabricated by dynamically controlled femtosecond patterned vector optical fields,”Opt. Lett. 41(7), 1474-1477 (2016). 48. Y. Pan, X. Z. Gao, M. Q. Cai, G. L. Zhang, Y. N. Li, C. H. Tu, and H. T. Wang*, “Fractal vector optical fields,” Opt. Lett. 41(14), 3161-3164 (2016). 49. Y. Pan, X. Z. Gao, Z. C. Ren, X. L. Wang, C. H. Tu, Y. N. Li*, and H. T. Wang*, “Arbitrarily tunable orbital angular momentum of photons,” Sci. Rep. 6, 29212 (2016). 50. S. M. Li, Z. C. Ren, L. J. Kong, S. X. Qian, C. H. Tu*, Y. Li, and H. T. Wang*, “Unveiling stability of multiple filamentation caused by axial symmetry breaking of polarization,” Photon. Res. 4(5), B29-B34 (2016). 51. P. P. Li, M. Q. Cai, J. Q. Lu, D. Wang, G. G. Liu, S. X. Qian, Y. N. Li, C. H. Tu*, and H. T. Wang*, “Control of femtosecond multi-filamentation in glass by designable patterned optical fields,” AIP Adv. 6(12), 125103 (2016). 52. Y. Pan, Z. C. Ren, S. X. Qian, X. Z. Gao, Y. N. Li, C. H. Tu*, and H. T. Wang*, “Uniformly elliptically-polarizedvector optical fields,” J. Opt. 17, 035616 (2015). 53. X. Z. Gao, Y. Pan, M. Q. Cai, Y. N. Li, C. H. Tu*, and H. T. Wang*, “Hyperbolic-symmetry vector fields,” Opt. Express 23(25), 32238-32252 (2015). 54. Z. C. Ren, L. J. Kong, S. M. Li, S. X. Qian, Y. N. Li, C. H. Tu*, and H. T. Wang*, “Generalized Poincare sphere,” Opt. Express 23(20), 26586-26595 (2015). 55. Z. C. Ren, S. X. Qian, C. H. Tu, Y. N. Li*, and H. T. Wang, “Focal shift in tightly focused Laguerre–Gaussian beams,” Optics Commun. 334, 156-159 (2015). 56. S. M. Li, S. X. Qian, L. J. Kong, Z. C. Ren, Y. Li, C. H. Tu, and H. T. Wang*, “An efficient and robust scheme for controlling the states of polarization in a Sagnac interferometric configuration,” Europhys. Lett. 105(6), 64006 (2014). 57. Y. Li, Z. C. Ren, S. X. Qian, C. H. Tu, and H. T. Wang, “Analytical formulae of tightly focused Laguerre–Gaussian vector fields,” J. Opt. 16(10), 105702 (2014). 58. Y. Pan, Y. N. Li*, S. M. Li, Z. C. Ren, L. J. Kong, C. H. Tu, and H. T. Wang*, “Elliptic-symmetry vector optical fields,” Opt. Express 22(16), 19302-19313 (2014). 59. Y. Pan, Y. Li, Z. C. Ren, Y. Si, C. H. Tu, and H. T. Wang*, “Parabolic-symmetry vector optical fields and their tightly focusing properties,” Phys. Rev. A 89(3), 035801 (2014). 60. S. X. Qian, Y. N. Li*, L. J. Kong, C. H. Tu, and H. T. Wang*, “Phase conjugation of vector fields by degenerate four-wave mixing in a Fe-doped LiNbO3,” Opt. Lett. 39(16), 4907-4910 (2014). 61. S. X. Qian, L. J. Kong, Y. Li, C. H. Tu, and H. T. Wang*, “Recording and reconstruction of vector fields in a Fe-doped LiNbO3 crystal,” Opt. Lett. 39(7), 1917-1920 (2014). 62. S. X. Qian, Y. Li, L. J. Kong, S. M. Li, Z. C. Ren, C. H. Tu, and H. T. Wang*, “Security enhancement of double-random phase encryption by iterative algorithm,” J. Opt. 16(8), 085401 (2014). 63. M. Q. Cai, C. H. Tu*, H. Zhang, S. Qian, K. Lou,Y. Li, and H. T. Wang*, “Subwavelength multiple focal spots produced by tight focusing the patterned vector optical fields,” Opt. Express 21, 31469-31482 (2013). 64. Y. Pan, Y. N. Li, S. M. Li, Z. C. Ren, Y. Si, C. H. Tu, and H. T. Wang*, “Vector optical fields with bipolar symmetry of linear polarization,” Opt. Lett. 38, 3700(2013). 65. Y. Pan, S. M. Li, L. Mao, L. J. Kong, Y. N. Li, C. H. Tu, P. Wang, and H. T. Wang*, “Vector optical fields with polarization distributions similar to electric and magnetic field lines,” Opt. Express 21, 16200 (2013). 66. K. Lou, S. X. Qian, Z. C. Ren, C. H. Tu, Y. N. Li*, and H. T. Wang*, “Femtosecond laser processing by using patterned vector optical fields,” Sci. Rep. 3, 2281; DOI:10.1038/srep02281 (2013). 67. S. M. Li, L. J. Kong, Z. C. Ren, Y. N. Li, C. H. Tu, and H. T. Wang*, “Managing orbital angular momentum in second-harmonic generation”, Phys. Rev. A 88, 035801 (2013). 68. L. J. Kong, Y. N. Li, S. X. Qian, S. M. Li, C. H. Tu, and H. T. Wang*, “Encryption of ghost imaging,” Phys. Rev. A 88, 013852 (2013). 69. K. Lou, S. X. Qian, X. L. Wang, Y. N. Li, B. Gu, C. H. Tu, and H. T. Wang*, “Two-dimensional microstructures induced by femtosecond vector light fields on silicon,” Opt. Express 20, 120 (2012). 70. K. Lou, S. X. Qian, Z. C. Ren, X. L. Wang,Y. N. Li, C. H. Tu, and H. T. Wang*, “Self-formed two-dimensional near-wavelength microstructures on copper induced by multipulse femtosecond vector optical fields,” J. Opt. Soc. Am. B 29, 2282 (2012). 71. Y. N. Li, X. L. Wang, H. Zhao, L. J. Kong, K. Lou, B. Gu, C. H. Tu, and H. T. Wang*, “Young’s two-slit interference of vector light fields,” Opt. Lett. 37, 1790 (2012). 72. S. M. Li, Y. N. Li, X. L. Wang, L. J. Kong, K. Lou, C. H. Tu, Y. J. Tian, and H. T. Wang*, “Taming the Collapse of Optical Fields,” Sci. Rep. 2, 1007; DOI:10.1038/ srep01007 (2012). 73. C. H. Tu, Y. X.Deng, M. Q. Cai, Z. C.Huang, Y. N. Li, F. Y. Lu, and E. B. Li, “Theoretical study on instantaneous linewidth of Fourier-domain mode-locked fiber lasers”, Opt. Comm. 285,5287-5292 (2012). 74. C. H. Tu, Z. C. Huang, S. G. Zhang, M. L. Hu, Q. Y. Wang, E. B. Li, Y. N. Li, and F. Y. Lu*,Second harmonic generation by femtosecond Yb-doped fiber laser source based on PPKTP waveguide fabricated by femtosecond laser direct writing, Opt. Commun. 284, 455-459(2011). 75. C. H. Tu, Z. C. Huang, K. Lou, H. J. Liu, Y. S. Wang, Y. N. Li, F. Y. Lu and H. T. Wang*, “Efficient green-light generation by frequency doubling of a picosecond all-fiber ytterbium-doped fiber amplifier in PPKTP waveguide inscribed by femtosecond laser direct writing”, Opt. Express18,25183-25191(2010). 76. T. Lei, C. H. Tu, F. Y. Lu*, Y. X. Deng, and E. B. Li, “Numerical study on self-similar pulses in modelocking fiber laser by coupled Ginzburg- Landau equation model”, Opt. Express 17(2), 585-591(2009). 77. Y. X. Deng, C. H. Tu, F. Y. Lu, “Study of self-similar pulse nonlinear polarization rotation mode-locked fiber laser”, Acta Physica Sinica, 58(5), 297-302(2009) (In Chinese). 78. J. wang, C. H. Tu, S. G. Zhang, F .Y. Lu*, “Experimental research on Frequency doubling in periodically poled KTiOPO4 waveguide fabricated by femtosecond laser”, Acta Physica Sinica, 59(1),307-310(2010) ) (In Chinese). 79. Z. C. Huang, C. H. Tu, S. G. Zhang, F. Y. Lu*, Y. N. Li, Y. X. Fan, and E. B. Li, “Femtosecond second-harmonic generation in periodically poled lithium niobate waveguides written by femtosecond laser pulses”, Opt. Lett. 35(6), 877-879 (2010). 80. H. Zhu, C. H. Tu, T. Lei, W. G. Guo, Y. N. Li, F. Y. Lu*, X. Y. Dong, D. Wei, “Dual-wavelength narrow-linewidth light source with ultranarrow wavelength spacing based on the pump-induced thermal effects in an Er-Yb-codoped distributed-Bragg-reflector fiber laser”, Opt. Eng. 47(09), 094301(2008). 81. S. G. Zhang, J. H. Yao, W. W. Liu, Z. C. Huang, J. Wang, Y. N. Li, C. H. Tu, F. Y. Lu*, “Second harmonic generation of periodically poled potassium titanyl phosphate waveguide using femtosecond laser pulses”, Opt. Express 16(18), 14180-14185(2008). 82. S. G. Zhang, J. H. Yao, Q. Shi, Y. G. Liu, Y. N. Li, C. H. Tu, W. G. Guo, F. Y. Lu*, “Fibre-Format Photonic Source Based on Efficient Frequency Doubling of Continuous-Wave Erbium-Fibre Laser Amplifier”, Chin. Phys. Lett. 25(8), 2873-2875(2008). 83. C. H. Tu, Z. Li, T. Lei, LI Yong-Nan, Y. N. Li, W. G. Guo, D. Wei, H. Zhu, S. G. Zhang, and F. Y. Lu*, “Pulse Evolution Characteristics in Self-Similar Mode-locked Fibre Laser”, Chin. Phy. Lett. 24(11), 3175-3178(2007). 84. C. H. Tu, W. G. Guo, Y. N. Li, S. G. Zhang, and F. Y. Lu*, “Stable Multiwavelength and Passively Mode-locked Yb-doped Fiber Laser based on Nonlinear Palarization Rotation”, Opt. Commun. 280448-452(2007). 85. Y. N. Li, W. G. Guo, C. H. Tu, T. Lei, T. Ha, D. Wei, and F. Y. Lu*, “Experimental research of wideband and gain-flattened hybrid Raman/erbium-doped fiber amplifier”, Opt. Eng. 46(12), 125004, (2007). 86. 涂成厚,雷霆,李勇男,郭文刚,朱辉,魏岱,吕福云,正常色散光纤放大器中超短脉冲自相似演化条件的研究, 中国激34(11), 1512-1516(2007) 87. 涂成厚,吕福云,李勇男,郭文刚,朱辉,魏岱,雷霆,周寿桓,高能量、无波分裂的超短脉冲光源的研究进展,激光与红外37(11), 304-307(2007) 88. 雷霆,涂成厚,李勇男,郭文刚,魏岱,朱辉,吕福云,高能量无波分裂超短脉冲自相似传输的理论研究和数值模拟, 物理学报56(5), 2769-2775(2007) Social AppointmentsTeaching ExperienceHonor Title |