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The Basic Postulates

Postulate 1: State of a system
The state of any physical system is specified, at each time ¢,
by a state vector ly(t)) in a Hilbert space H; ly(t)) contains

(and serves as the basis to extract) all the needed
information about the system. Any superposition of state
vectors is also a state vector.

Postulate 2: Observables and operators

To every physically measurable quantity A, called an
observable or dynamical variable, there corresponds a linear
Hermitian operator A whose eigenvectors form a complete
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The Basic Postulates

Postulate 3: Measurements and eigenvalues of operators
The measurement of an observable A may be represented
formally by the action of A on a state vector ly(t)) . The only

possible result of such a measurement is one of the
eigenvalues a. of the operator A

Postulate 4: Probabilistic outcome of measurements

When measuring an observable A of a system in a state, the
probability of obtaining one of the nondegenerate
eigenvalues a.of the corresponding operator A is given by

2
P,(a,) = {wnlw)l _

(wly) (wly)
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The Basic Postulates

Postulate 5: Time evolution of a system
The time evolution of the state vector ly(t)) of a system is

governed by the time-dependent Schrodinger equation

Lol (@) A

Postulate 6: The wave function of many-particle system

The total wavefunction must be antisymmetric with respect
to the interchange of all coordinates of one fermion with
those of another. Electronic spin must be included in this set
of coordinates. The Pauli exclusion principle is a direct result

of this antisymmetry principle.
W



Average value

Average value of a dynamical variable: The average value,
(A, of a dynamical variable A, in a given state y of the

system, is defined as
e (N T A el 3 3 e * (= -2\ 43
W= [ v@hveles [ [T v ax
where the integration is over the entire region of variation

of the independent variables, x, y, and z. The asterisk
stands for complex conjugation.

If the wave function is normalized to unity, the required
average value is given by

W= [ v @) d
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Average value

For instance, the average value of the position operator, X,
in one spatial dimension in the normalized state v,

—+o0

(x) = / - Y (x)(fy) dx = / Y (x)xy(x) dx.

— 00 —0Q

Similarly, the expectation value of the x component of
momentum, {p.>, is given by

(Px) = /:00 v (x)(Pry(x)) dx = —ih/::o v (x)dlgix) dx.

Let ywi(r), w.(r) wi(r),. . . , be the normalized eigenfunctions

of a hermitian operator A with discrete eigenvalues A, A, A,,.

. , respectively. )
(A) = ZZXkCZCk/ v (A wi(?) dx =YY Mcjer =Y Aeler]”
% —oo X X

14 14

= Mile1” + Azl cal* + Azles|* + ..
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Pictures of Quantum Mechanics

Time derivative of an operator: since an observable cannot
have a definite value at a given instant of time. Therefore, it
is not possible to define the time derivative of an operator
in the usual way of mathematical analysis:

dA(t) .. A(t+At)—A(r)
— lim .
dt At—0 At

However, the expectation (average) value of the observable
A, given by (A), can have a definite value at a given instant
t. Therefore, for defining the time derivative of an operator,

we must use its expectation value rather than the operator
itself.
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Pictures of Quantum Mechanics

The time derivative of the expectation value, (A), of the
observable, is equal to the expectation value of the time
derivative of the operator A itself. That means:

d(A)  /dA
dr <Z>‘
According to the formalism of quantum mechanics, we have
A oo A
{ >=/_w v (7,0)Ay(#1)dT,

Therefore,
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Pictures of Quantum Mechanics 4% 3 £ %7
Using the time-dependent Schrodinger equations, we have

vy 1 , oy 1 e 1
Friecl SR v e e

We get

d{A o TOA 1, . .
%:/ 1,/*[—+,—(— A+AH)]1//dr.

Recollecting that

d(A) 0A 0A\  [t= . 0A |
— <§> where <§>—/ l//(r,t)al//(r,t)d’c,

Finally,
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Pictures of Quantum Mechanics

It can be written as

dA Ay 1,
dt ot Jri_/*z<[A’1LI]>’

In the case when there is no explicit dependence of the

operator A on time, we have

dA)y 1, .
— = (AAH]).
Ehrenfest’s theorem: The average values of observables in

quantum mechanics obey the classical equations of motion.

d<£> <13x> d{px) . aV(x)
dt m dt __< ox >
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Pictures of Quantum Mechanics

We also saw that under a unitary transformation between
different representation, the forms of the wave function and
that of the observables change, but the physical state of
the system remains unaltered because the unitary operator S
is time-independent.

In what follows, we shall show that it is possible to describe
the time-evolution of the state vector by a time-dependent
unitary operator, U(t).

U(t) is called the time-evolution operator or, simply, the
evolution operator. Each of such descriptions is called a

picture of quantum mechanics.
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Pictures of Quantum Mechanics

The Schradinger picture: the state vector, ly(t)), of a

quantum system depends explicitly on time, while the
observables (operators of physical characteristics) of the
system are time-independent.

The time evolution of the state vector is controlled by the
Schrodinger equation

w0 py ),

and can be represented in terms of a time evolution
operator (propagator), U(t,t,), as

(1)) =U(t,10)w(t)).
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Pictures of Quantum Mechanics

The condition of conservation of the norm of the wave
function under this representation reads

(W(O)w (1)) = (O (t.10) y () |0 (2.10) w(10))
= (y(0)|0" (1,10)U (1,10) [y (10)) = (w(10) |y (10))-
This requires the evolution operator, U(t,t,), to be unitary:
U (t,10)U (t,10) = U (t,10) 07 (t,10) = 1.
In addition, the evolution operator also satisfies the
following properties
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Pictures of Quantum Mechanics

The propagator can be determined as follows,

8U t,1 A
ih ét 0) = HU (t,19).

If the Hamiltonian, H, is time independent, its solution
satisfying the initial condition, U(t,t,) = I, can be written as
O (1,t) = e 7 —0)H

The wave function can be written as
(1)) = e 1070y (1)),
We can expand the wave function y(q,0) into a series with

respect to the eigenfunctions, ¢.(q), m = 1,2,3,..., of the

R o L (=il
Hamiltonian vigr) =Y ;( (1 ) Y cntm
n=0"""
oo 0 n
q tO ZCm¢m :ZCm¢mZ %( lhEm(t fo ) Zcmq)me (1= o),
m n=0"""
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Pictures of Quantum Mechanics

The Heisenberg picture: in this picture, the state vector, |
y), is time-independent, while the observables are time-

dependent. This is accomplished by defining the Heisenberg

state vector, |y, ), as
yu) = U (t,10) [y (1)),

With such a definition ly,) turns out to be time-independent

i) = 07 (6,00)|y()). = O (110) [w(0)) = eh 0 |y (1)) = [y(10)),
As a consequence, the state vector Ifo> gets frozen in time.

This leads to

dlyu)
dt =0
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Pictures of Quantum Mechanics

U represents a unitary transformation of the state vector,
physical properties of a quantum system in both the the
Schrodinger and the Heisenberg pictures should be the
same.

For instance, consider the average value of time-independent
observable, A, in the Schrodinger picture

S

As) = (w(t)|As|w(1)) = (U(t.00) wu |As| U (t.100) W)

= {(yu |(U (t,10)AsU (t,10)) | W)
The requirement of the unchanged average value of A in
both the pictures gives
An(t) = U (1,10)As(1)0 (1,10) = en "0 Ag (1) e~ 5 —10)H
L 00 2 T —
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Pictures of Quantum Mechanics (% 3 £ %7

/1919

The Heisenberg’s equation of motion for an observable is
obtained by simply differentiating it with respect to time

Therefore, the Heisenberg’s equation of motion can be
written as

dAg 1 . 4
o~ At
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Pictures of Quantum Mechanics

Interaction picture: In this picture, both the state vector,
ly:(1)), and the observables depend explicitly on time.

In the cases when the total Hamiltonian, H, can be separated
into a time-independent part, Ho, and a time-dependent
part, W(t) (interaction Hamiltonian), the state vector, |y.(t)),

is defined through

i) = 05 (1,10) [y (1)) = Uy ' (1,10) [ w (1)) = en 0oy (1)),
where |y(t)) is the state vector in the Schrodinger picture.
The equation of motion for the state vector is obtained as

follows.
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Pictures of Quantum Mechanics

Defining an observable, A,(t), in the interaction picture by
Al(t) _ e%(t—to)I:IOAe—%(t—to)I:IO,
where A is the corresponding observable in the
Schrodingers, and following the same calculations as in the
case of Heisenbergs picture, we arrive at the following
equation of motion for an observable in the interaction
picture ih% — [ o).
We see that, in this picture, the time evolution of the state
vector is governed by the time-dependent interaction
Hamiltonian Wi(t) only, while the time variation of an
observable is controlled only by the time-independent part.

21/09/2023 Jinniu Hu =



Pictures of Quantum Mechanics

Differentiating ly,) with respect to time, we obtain

J|vy) ol L(t—19)Hy 1) (t—t0) H08‘1//( )
or 1o Aol (1)) + e or

For |y(t)) in the Schrodinger’s picture, and a bit of algebra

we obtain

O 1) (1),

where

W](I) — e%(t_tO)ﬁOW( )e h(f o) Ho
is the time-dependent part of the total Hamiltonian in the
interaction picture.
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The properties of wave function

The wave function must be single-valued.

It must be continuous in the entire region of its arguments
(that is, of the independent variables).

It must be finite everywhere.

The wave function must also be square-integrable, which
requires the wave function to vanish at spatial infinity:

lim x.v.z.t) = 0.
| v(x,y,2,1)
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The time evolution of the wave function, y(r,t), representing

the state of a quantum mechanical system is governed by

the following partial differential equation:

oy (7, -
R Py +V () v ()

Solutions to the Schrodinger equation with time-
independent potentials, V(r), can be found by employing the
method of separation of variables; well known from the
theory of differential equations.
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The Schrodinger equation then leads to
1df h?

V20 (7) + V(7).

fdr~ 2me(7)
The left-hand side is a function of time, whereas the right-
hand side depends only on spatial variables, x, y and z.
Therefore, for this equality to hold, both the left-hand side
and the right-hand side must be equal to a constant (same
for both the sides).

Let us call it E. As a consequence, we get a system of two
ordinary differential equations:

Lldf d_f__i'
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Stationary Schrodinger equation

The first of these equations, can be readily integrated to

and the second one is
P G v —E = - 920 1 v@e) = Eo(?)
2m ¢ (7) B 2m B '

This differential equation satisfied by ¢(r) is called the

time-independent Schrodinger equation (TISE) and its
solution depends on the form of the potential V(r).

In view of the standard conditions (to be satisfied by the
overall wave function ¢(r,t)), a given specific form of V(r)

imposes specific boundary conditions on &(r).

21/09/2023 Jinniu Hu 25—



TISE in one dimension

WA A £ F

The TISE in one spatial dimension takes the form:

0 L y(x)o(x) = Eo ().

2m ox2
where x € (-c0,+00) is the independent variable. The nature

and the properties of the solutions to this equation depend
on the interrelationship between the total energy, E, of the
particle and the potential V (x).

Consider an arbitrary form of the potential V (x), which is
general enough to allow for the illustration of all the
desired features. Without any loss of generality, the
potential has been assumed to remain finite at spatial
infinities: lim, , .V(x) =V, lim .V (x) =V,

L 00 2 T —



TISE in one dimension

and it has a minimum Vi, at some point. The character of
the energy states of the particle is completely determined
by the energy E of the particle in comparison with the

asymptotic values of the potential.

T V(x)

. E>Viand V,
Continuum states

N<kE<V,
o m——
. i ) ' |
< Bound states | :
|
i o
! ! |
S v v ¥ ,
X; 0 Xy X3 X
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TISE in one dimension

Bound states: Bound states occur whenever the particle is

confined (or bound) at all energies to move within a finite

and limited region of space.

T V(x)

Continuum states

E> 7V and V,
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TISE in one dimension

Scattering states: If the total energy of the particle is
either greater than V,and less than V,or greater than both
V.and V., the particle’s motion is not confined to a finite
region of space and the states of the particle, corresponding
to these ranges of the total energy, are called scattering
states. T Vo

E> Vl and V2

Continuum states

X1 0 X2 X3
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TISE in one dimension

Important properties of bound state energy levels and the
wave functions in one dimension:

1. The bound state energy levels of a system in one
spatial dimension are discrete and nondegenerate.

2. In general, the nth bound state wave function, ¢.(x), in
one spatial dimension has n nodes (that is, ¢.(x)

vanishes n times), if n = O corresponds to the ground
state and (n - 1) nodes if n = 1 corresponds to the

ground state.
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The Free Particle Solution

A free particle represents a typical example of a stationary
state that corresponds to an unbounded motion (scattering
state) both along the positive and the negative x directions.
In this case, the external potential is absent, that is, V(x)
O, and the TISE reads

2 &6 (x)
2m  dx?

d*¢ (x)

:E(P(x) = dx2

+k*9(x) =0,

where -
K = %E > 0.
7

This equation has two linearly independent solutions:
0 () = €, 9y (x) =
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The Free Particle Solution

The general stationary state solution is the linear
superposition given by

l//(x,t) :A(+)ei(kx—a)t) _|_A(_)e—i(kx+a)t),

where A, and A are arbitrary, in general complex, constants.

If we use the de Broglie formula, the solution can be written
as | |
v(x,t) :A(_|_) en(PA—E1) —|—A(_) ¢ 7 (PXHED),

The first term in the above equation represents a particle
traveling to the right (positive x direction) and the second
term represents a particle traveling to the left.

21/09/2023 Jinniu Hu 25—



The Free Particle Solution

Three problems about the solution of free particle:

1. Firstly, the probability densities corresponding to either
solutions are constant that is, they depend neither on x
nor on t.

2. The second difficulty is in an apparent discrepancy
between the speed of the wave and the speed of the

o E nhk  _P_Tk

particle it is supposed to represent.v,=—=_=-".v=, =3, =2

3. The third difficulty is that the free particle wave
function cannot be normalized:

oo , , [+
/ () dx = Ay dx — oo

—O0Q
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An Infinite Potential Well

Asymmetric infinite square well potential.

VToog gVToo

V=0

' o
X

0 a

Mathematically this is given by the following expression:

0, for O0<x<a,
V(x) =
o, for x<0,x > a.
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An Infinite Potential Well

Since the motion of the particle is confined inside the well,
quantum mechanically, it corresponds to the case of a bound
state problem.

Since the particle cannot penetrate the regions x<0 and x>
a, the wave function of the particle must be zero in these
regions: $=0 for x<0 and x>a.

The time-independent Schrodinger equation

2
d ¢+§_;1(E—V)¢:O

dx?
for the given case can be written as
¢I/ B _2—m B
E — h2 (E V)’
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An Infinite Potential Well

Inside the well, V = 0, and the solution is given by the linear

combination
¢(x) = A sin(kx) + B cos(kx),
where A and B are arbitrary constants and

2mE
2
k _— ?.

According to the standard conditions, the wave function has

to be continuous across the boundaries and we must have
¢ =0 for x =0 and x = a.

The first boundary condition leads to
B=0.
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An Infinite Potential Well

The second boundary condition yields

sin(ka) =0, = ky= =, n=1,23,..

a
Therefore, we conclude that the boundary conditions can be
satisfied only for the discrete values of energy
n’h’m?

E, = , n=1,2,3,...,
2ma? "

Thus, a particle, trapped inside an infinite potential well, can
have only discrete set of energy eigenvalues. The
corresponding eigenfunctions are

ni

¢, (x) = B, sin (—x) .

a
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An Infinite Potential Well

The constant B,is determined by the normalization condition

X

B2 [ 01 0u(0)d = B, [ sin? (i) dx=1.

_ a
The result is

2
Bn: T .
a

Therefore, the normalized eigenfunctions and the
corresponding energies are

l//n(x,t):\/jsin(_xn), En:” —, n=123,...
a a 2ma
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An Infinite Potential Well 4% %z £ 4

The wave function

\/j T /'\l("‘l\ T T T T l,‘\ T

P (x)
(@)

_\/j ] ] ] ] ‘\1/' ] \ /n/ ]

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X —
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An Infinite Potential Well

We thus got an infinite sequence of discrete energy levels

corresponding to the positive integer values of the quantum
number n.

The ground state corresponds to n = 1 with energy
E| = 1*n?/(2ma?)

The states with quantum numbers n > 1 are called the

excited states. Their energies are equal to n2 times the
ground state energy.
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An Infinite Potential Well

The full stationary state solutions are

2 ] TTX _-n27r2h
W (x,1) = \/7 sin (—n) e ' oma? .
a a

Note that, in view of the linearity of the Schrodinger
equation, the most general stationary state solution for the

given case can be written as

i 2 ] TTX _-nznzht
Y(x,t) = Z cn\/j sin (—n) e ',
o a a

where c,are arbitrary constants. Let us enumerate the

important properties of the obtained solutions. These
properties are quite general and hold good for most of the

otentials encountered in quantum mechanics.
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An Infinite Potential Well

1. The eigenfunction ¢.(x) has(n-1) nodes (zero-crossing).

2. These functions are alternately symmetric and
antisymmetric with respect to the centre of the well.

3. None of the energy levels is degenerate, that is, each
energy level corresponds to a unique eigenfunction.

4. The eigenfunctions corresponding to different energy
eigenvalues are orthogonal:

/ :oo O (x) 9 () dx = /O 05 ()00 (1) = Sy,
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An Infinite Potential Well

where §.,is the Kronecker delta:

s 1 if m=n
"l 0 if m#£n.

The eigenfunctions{}.(x)},n=1,2,3,...constitute a complete set in

the sense that an arbitrary function f (x) can be expanded
as a linear combination of these functions:

flx) = ;cncpn(x) = \/g i Cy Sin (En> :

n=1 a

where the coefficients ¢, are calculated as

n= [ 93 (x)f ()
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An Infinite Potential Well

Note that, the ground state corresponds to n = 1 instead of n
= 0. The reason behind it lies in Heisenberg’s uncertainty
relation between the position and momentum

If the particle has zero total energy, it will be at rest inside
the well and we can, in principle, precisely determine its
position and momentum simultaneously at a given instant of
time.

Furthermore, since our particle is localized inside the well of
width a, according to the uncertainty relation, there is a
zero-point energy #’/8ma?
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Discontinuous Potentials

If V (x) is finite and continuous everywhere, we can expect
the solutions of the TISE to be finite, continuous and
differentiable.

It is evident from the physical interpretation of the wave
function that it has to be continuous everywhere
irrespective of the fact whether or not the potential has
discontinuity.

However, the differentiability of the wave function is not
guaranteed in advance and hence, must be examined.

21/09/2023 Jinniu Hu ==,



Discontinuous Potentials

The potential has a finite jump (discontinuity), say, at x = O:

{O for x<O

V(x) =
Vo >0 for x>0.

The wave function has to be continuous across x = 0. To
check the continuity of the first derivative, we first replace
the potential V (x) by a smoothened potential V¢(x) in the
interval x € [-¢,+¢] such that

e—0

Here ¢ « 1 is an infinitesimal positive parameter.
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Discontinuous Potentials

Integrating the time-independent Schrodinger equation in
this interval over x, we obtain

dx dx B ) ¢ he J—e

If we take the limit ¢ - O, we get

do 2mE € 2mE . TE
A(E) ——7;1_% B ¢ (x)dx+ 2 ;1_I>r(l) B V(x)o(x)dx.

The first term on the right-hand side is zero because ¢(x) is

continuous across X = O and hence, the integral goes to zero
as ¢ becomes zero.
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Discontinuous Potentials

The second term is also zero because

+€ TE
lim V(x)o(x)dx. = Vylim ¢ (x)dx=0.

e—0.J)_¢ e—0.J)_¢

As a result, we arrive at

do\ _ (d¢
(a),. = (@)
Thus, if the potential has a finite jump at a point, the wave
function and its first derivative are continuous at the point

of discontinuity. That is, the wave function is differentiable
at the points of finite discontinuity of the potential.
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Discontinuous Potentials

The potential V(x) is infinite in a region: in this case, the
particle cannot penetrate through the infinite barrier and
the probability of finding the particle inside the barrier is
zero. Therefore, the wave function must vanish everywhere in
the region of infinite potential.

The potential becomes infinite at a point ( that is, has a

singularity at a point). We can model this situation by

assuming
V(x) =—0d(x—xp)
The wave function will be continuous at x = x,.
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Discontinuous Potentials

In order to verify the continuity of the first derivative, we
once again integrate the corresponding TISE in the vicinity of
the point x=x,. We get

e 7

Thus, the first derivative of the wave function is not
continuous across the point of singularity.

Instead, it has a finite jump of

(—2ma/h*)¢(xo)
at x=x,
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Delta Potential

A particle of mass, m and total energy -E (E>0), is subject
to the potential given by

V(x) =—ad(x),
here o is a positive constant and 5(x) is the Dirac delta
function.

For x<0 and x>0, V(x)=0 and we have

d*¢ 2m|E]|
dX2 h2

Since the standard conditions require the wave function to
vanish for x—tco, we have
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Delta Potential

where
= /2m|E|/h

and A and B are real but arbitrary constants. The continuity
of ¢(x) at x = O yields

A =B.
The potential is infinite at x = 0. Therefore, as discussed
earlier, the first derivative of the wave function will be

discontinuous and we shall have

(). (5) - 5 [ o o0
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Delta Potential

If we take the limit <=0 and put A=B, we obtain

2mo 2mo (04
—2kA:—%¢(O):—%A = k=2

We thus see that there is only one bound state for the

particle in this case whose energy is

ma2

Con?
The normalization of the wave function reads

/ |l//(x)|2dx:A2/ ezkxdx—l—AZ/ e dx = = 1.
oo oo 0

The normalized wave function is thus given by

Vkek for x <O, o _ma
0 (x) = or, o) =/Tye #
Vke ™  for x>0. h
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Finite Square Well Potential

Consider the motion of a quantum particle in a finite

potential well

x| <a

0, if
V(X)_{ Vo, if |x|>a.

A V(X)

We are required to solve the TISE with this potential for the
bound states, when the total energy, E, of the particle is less
than V,and determine the eigenfunctions and the

corresponding energy eigenvalues.
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Symmetric Potential

Parity operator: Consider the operation of space inversion in
which we change the space variables from r = {x, y, z} to -r

= {-x, -y, -z}.
As a result, a function y(r) goes into y(-r). If y(-r) =y(r),
the function y(r) is said to be symmetric (even) or,
equivalently, a function with even parity. On the other hand,
if y(-r) =—y(r), the function y(r) is said to be anti-symmetric
(odd) or, equivalently, a function with odd parity. The
transformation of a function y(r) under space inversion can
be written in operator form as

y(—7) = 2y (7),
L 0012000 I —



Symmetric Potential

The bound state wave functions of a particle moving in a
one-dimensional symmetric potential have definite parity,
that is, they are either even or odd.

Consider now the TISE for the symmetric potential:
o V)| 000 =Bl

Let us now perform the spatial inversion by replacing x with

-X. Then
P (x) = ¢(—x) PV (x) = V(=x).
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Symmetric Potential

Since V(-x) = V(x), the Hamiltonian commutes with the parity
operator and we get

VW] o0 =Bo()

Thus, we see that thus stationary Schrodinger equation for
the symmetric potential is satisfied by ¢,(-x) = ¢,(x) as well

as ¢2(—X) = —¢2(X).
The former, denoted as ¢:(x), is called the symmetric wave

function and has even parity, while the latter, denoted as
@+(x), is called the anti-symmetric wave function and has

odd parity.
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Finite Square Well Potential

The entire range of x from —co to +c0 can be divided into
three regions:
—as<x<a (Region I), x<-a (Region II), x>a (Region III).
The general TISE reads
h? d*¢
2m dx?

The TISE and the corresponding solutions in these regions
can be written as:

+V(x)p =E9¢.

Region I:

2mE
O +Kig =0, k=7

@1 = A1 cos (klx) + By sin (klx) :
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Finite Square Well Potential

Region II:
) — k562 =0,

» = A> ko + B> e kX,

Region III:

03 — k33 =0,
O3 = Aj ek + B3 ek

In the aforementioned equations, the prime stands for the
ordinary derivative with respect to x, and Ajand B;( j = 1,
2, 3) are arbitrary constants to be determined by the
boundary conditions.
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Finite Square Well Potential

Boundary conditions:
1. The full solution of the TISE must be square-integrable.

( ¢2 = A ekzx, X< —a
¢(x) =< ¢ =Ajcos(kix)+ By sin(kix), —a<x<a
. (P?) = B3 e—kzx. X>a

2. the solutions belonging to different regions in x must be
continuous and differentiable at the boundaries x=+a, that
IS,
¢1(—a) = ¢2(—a),p;(—a) = ¢;(—a),¢:(a) = ¢3(a)
¢1(a) = ¢3(a)
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These conditions lead to

Aref2% = A cos (k1a) — By sin (kja),

ky Ay e K24 — ki Ay sin (k1a) 4 ki By cos (kia),

By e "% = A cos (kja) + By sin (kja),

—kyBze ¥4 = —k{ Ay sin (kia) + ky By cos (kia) .

They can be combined as

(A2+B3)e 2 =24  cos (kia), (A, —B3)e 2% = —2B, sin (kia),

ky (Ao +B3) e 29 = 2k Ay sin (kja). ko (A, — B3) e 2" = 2k By cos (kja).
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Finite Square Well Potential

If Az +B3#0 and A1#0, then
ko = kq tan(kla).

Therefore,
: k1 k% _
B sin (kja) = —k—Bl cos (kja) = — B 12 Sin (kia),
2

S0, ’

k2

B <1+k—§> =0, = B; =0
i

It yields,

Ay = Bs.
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Finite Square Well Potential

Taking all these results into account, we get that the full
solution, corresponding to the case when A: +B3#0 and A1#0,
is

(A, kX for x< —a
¢(x) =< Ajcos(kix) for —a<x<a
| Ajehox for x> a,

where A, and A, are arbitrary constants. It is not difficult to
check that the given solution is a symmetric solution, that is,
$(-x) = ¢(x), and hence has positive parity.

The boundary conditions, lead to a transcendental equation,

for the determination of the energies of the bound states.
W



Finite Square Well Potential

Since the potential is symmetric in x: V(-x) = V(x), there is

another solution to the TISE which is anti-symmetric.

If A.-B3#0 and B;#0, we get
—kq COt(kla) = k».

and
ki . k?
Aj cos (kja) = —— Ay sin(kja) = — Ay — cos (kia),
It leads to

k2
Ay <1+k—§> =0, = A;=0.
1
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Finite Square Well Potential

Therefore,
Ay = —B3

Taking all these results into account, we get that the
antisymmetric solution,

By sin(kjx) for —a<x<a
— Ay e hx for x> a,

As ef2* for x<—a
0 (x) =

It is not difficult to check that the given solution is an anti-
symmetric solution, that is, ¢(-x) =—¢(x), and hence has

negative parity.
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Finite Square Well Potential

The equations about the k; and k: are transcendental
equations and cannot be solved analytically. However, they
can be solved graphically as described here. Let us introduce
new variables

E=kja= ZZLZEa, n:kza:\/zm(vhoz_E)a.
Clearly, the following holds
E24n?=R,  R= 2m;2v0.
The transcendental equations will become
S tan(g) =,
—g cot(§) = 1.
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Finite Square Well Potential

Let £ be the ntroot of the transcendental equations. If we
introduce the notation

2ma’E,
gnz — (kl a)2 — 72
then
=R -3¢

and the transcendental equations take the form

Entan&, = \/R?> —E2. (For even parity states)
— &, coté, =\/R>—E2. (For odd parity states)
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Finite Square Well Potential

The left-hand sides contain trigonometric functions, while
the right-hand sides represent a circle of radius R. The

solutions are given by the points where the circle intersects
the functions &, tant, and -, cot,.

A
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Finite Square Well Potential

The solutions form a discrete set. Figure contains the results
of the solution of the equations for two values of the radius,
R=1 and R=2, which correspond to

Voa? = K*/2m and Vpa®? = 2h%/m,

The intersection of the small circle (R = 1) with the curve &,
tant, yields only one bound state, n = 0. The intersection of
the larger circle (R = 2) with &, tan &, yields two bound
states, n = 0,2, and its intersection with -£, cott, yields two

other bound states, n = 1,3. Hence, for R = 2, the system in
all will have four bound states.
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This analysis shows that the number of solutions depends on
the value of R, which in turn depends on the depth of the
well, V,, and the width 2a of the well.

Clearly, the deeper and wider the well, the greater the
number of points of intersection of the curves and hence,
greater will be the number of bound states of the particle
inside the well.

Thus, there is always at least one bound state ( that is, one
intersection) no matter how small V,is.
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Finite Square Well Potential 4% FIES %7

/1919

A closer look at previous figure shows that when

2%2 .
T t-h -
0<R< =, thatis, O0<Vy< , one solution n=0
2 Sma?
T _p - 21> v T2 h?
5 <R<m thatis, o 5 <W<5 5 two solutions n=0,1
37 A 2% O’ h? ,
T<R<—-, thatis, ;s <W < 5 three solutions n=0,1,2
2 ma Sma
37 . Om2h? 22h? ]
— <R<2m, thatis, > <Ww<—>-, four solutions n=0,1,2,3
2 ma ma

21/09/2023 Jinniu Hu 25—



Finite Square Well Potential

In general, for a given V,, the width, w,= 2a, of the well
that allows for n bound states is determined by

nm
R=—,
2
and equals
o,
wop — n-.
"7 2mV

In the limiting case of ma:=V,— o for a given a, the radius

of the circle becomes infinite and the intersections occur at
2n-+1
tan (kja) = o0 = kla:n%,n:O,l,Zﬁ,...

—cot(kpa) =0 = ka=nnn=1,273,..
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Finite Square Well Potential

I1f we combine the two, we obtain

' nmw N 2mE, n*m?
a—= — = .
175 12 4a?
Finally, we arrive at
2 2h2
£ — n-7m
" 8ma?

Thus, we recover the energy spectrum of the infinite
potential well.

When E < V,, the regions x < —a and x > a are classically

forbidden for the particle in the sense that it cannot
penetrate into these regions.
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Finite Square Well Potential

Consider x>a. The solution of the TISE in this region is o(x)-~
exp(-kzx). Let us define

o) = 2O — oton,
where x = 1 is the point where the wave function falls by a

factor of 1/e. Then, we have
| h

- k_2 - \/2m(V()—E)'
n is called the penetration depth, that is, the distance to

n

which the particle can penetrate into the classically
forbidden region. Hence, the probability of finding the
particle inside the forbidden regions on either side of the

finite potential well is in principle non-zero.
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Consider the one-dimensional simple harmonic oscillator

characterized by the potential energy

1
V(x) = ima)zxz,

where m is the mass and o is the angular frequency of the
oscillator, which is assumed to be constant.

The corresponding TISE is

W d? 1
IO | () = Eov).

which can be rewritten as

0" (x) + ;—Zi [E - lm(x)zle ¢(x) =0,

2
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One-dimensional Harmonic Oscillator (% il £ %7

where the prime stands for the ordinary derivative with
respect to x. Let us introduce the following abbreviations

Then the TISE becomes
0" +[A — o*x*]9 = 0.

This is a second order ordinary differential equation with

variable coefficients. Therefore, in order to have an idea

about the behavior of the solution at large values of x, let
ox > 1

so that we can neglect the term A¢ in comparison with the

term azxz¢.
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We then have

d)”_ a2x2¢ —0.
The solution of this equation is

O(x) = e /2
for large x. Therefore, we look for the solution of original
equation in the form

6(x) = “/2f ().
for large x. Therefore, we look for the solution of original
equation in the form

q)/ _ (_axf+f/)e—ax2/2,
0" = [(—af—axf + f") _|_a2x2f_axf/]e—ax2/2.
W
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One-dimensional Harmonic Oscillator (% il £ %7

we arrive at the following differential equation for the

function f(x)
f"=2axf '+ (A —a)f =0.

Introducing the dimensionless variable

& =+ax,
we get
dx = dE dx2 T dEY

As a result, the equation about TISE can be rewritten as

fr=28f + (i—1>f=0,
where prime stands for ordinary derivative with respect to E.
W
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We look for the series solution in the following form

flx) = i ax&",
k=v

where the value of v will be determined later. We have

i k(k—1)apE*? — 2karEx + (% - 1) akegk] = 0.

k=v

Writing the series on the left-hand side in the order of
increasing powers of £ , we obtain

vIv=1ayEY 2+ v(v+Day  EV T+ (v+ 1) (v+2)ay2EY

—2Vav€v—|— (g — 1) avév_l_... :O.
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For this equation to hold good, the coefficient before each

power of £ must be equal to zero. We have
viv—-1)=0 = v=0,1,
viv+1)=0 = v=0,—-1.
The value -1 of v is not acceptable because, in that case, the

above series will start with the term-£: that blows up at &
=0. Hence,v can take only two values O and 1.

Equating the coefficient of £ equal to zero, we arrive at the
recursion relation for the coefficients of the series
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2v—(§—1)

YETVIDVY)

ay.

Consequently, we shall have two possible solutions for f (t ):

f1(s) ~ao +612§2 +a4§4 +a6c§6 + ...,
and

H(E) ~aré +az&’ +asE + ...,

Let us take the first of the solutions that starts with v = 0
and see how it behaves for large values of E.
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For that, let us determine the behavior of the ratio a../a for
vy — 00, We have

. QAy42
Iim + — lim

2
Voo V—soo v2(1—|—1/v)(1+2/v) R

For comparison, consider the series

Zbaé"—1+ 2+ T+ ,6+ +§G+ fGH'
2! 3! st (§+1)!

+ ...

For this exponential series,

| O o)
— lim 2 ~ =
(0}

. b0+2 T
lim — lim 1)! Jim (%+1> !

o—o by O —roo (

S
£+ |ola
SIS
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Therefore, for large values of £ , the series from TISE

behaves as the exponential series. Consequently, for large
values of ¢, the function f (£) blows up because

fE)me T 5 ~eT.

It does not satisfy the boundary conditions and hence,
cannot be the acceptable solution.

For this to happen, the series has to be truncated at some
term, say n*term. In that case, the numerator in recursion
relation for the coefficients would be zero for v = n.
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As a consequence, we get

A A
2n———-1=0, = —=2n+1.
o o

Substituting the values of A and «, we obtain

2mE, mo
7= (2n+1).
It leads to the quantization of energy of the harmonic

oscillator:

1
E,=ho (n—l— 5) , n=20,1,2,3,...

Note that this formula for the quantized energy of the
oscillator differs from the one obtained in the old quantum

theory
E,=nhow, n=20,1,2,3,...
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Let us go back to our problem of finding the solutions to the
differential equation. Evidently, the solutions satisfying the
standard conditions can now be written as

0u(E) = Nye 5 /2 H, (),

where N,is the normalization constant and H.(£) is the
polynomial of degree n. These polynomials for different n
values are known as Hermite polynomials. The coefficient is
given by

2(n—2)—|—1—(2n—|—1)a 4 .
nn—1) T a—1)

ay, —
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Falr X

l\
©

Therefore, we have

~ nn=1  nn-1)
I v A
Similarly, we can compute
. (n=2)(n—-1) _nn—1)(n—2)(n—3)
et g " [x2x22 ™

and so on and so forth. As a result, the polynomial will be
given by

Hal) = |57 inx_zi)én 2 <n_11)><<nz_><22)2<n_3) & -
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If we put
a, =2".n=20,1,2,3, ...,

we obtain the formulae for the polynomials of the

corresponding degree. A few of these are given here for
illustration:

L, H (&) =26,
Hy(§) = 47 H;(§) = 88° — 126,
Hi(&) = 16E4 — 4852 +12, Hs(&) =328 —160&E3 + 120€.

lf\ﬂ
[\)

Rodriguez’s formula for the Hermite polynomials:
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Recurrence formula for Hermite polynomials:

Hy11(8) =28 Hy(G) = 2nH, 1 (5).

The normalization coefficients

2 o0 —&2
n Nn + 6_52 652 d”e 5

IRCGREE Y o Hh(E)de
N2 too g6’

Finally

ol/2
N = 2nplgl/2°

21/09/2023 Jinniu Hu 25—



One-dimensional Harmonic Oscillator

’

N < (% ‘% ﬁ T
i YL (x)

E-

s (

. (x)

Y, (x)

E; Y, (x)

Y, (x)

W, (x)

W, (x)

X
. p

ho ‘
SV ho2

)
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Step Potential

V(x)

A free particle of mass, m, and total energy, E, is incident

from x——co. on a potential step given by
{ 0 for x<O0

Vo >0 for x>0,
where V,> E is a positive constant.
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Step Potential

The given potential divides the entire region —o0 < X < +o0
into two halves:

X < 0, where the potential is zero

X > 0, where the potential has a constant value V..

We will call them Region 1 and Region 2, respectively.

In region 1,

d’¢  2mE
=0
dxz + h2 ¢

has the following general solution
¢ (x) = Ae1* + Be—k1¥, k? = 2mE [ h*
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Step Potential

As a result,
Y (x, 1) = Aeikx—50 4 go—itkx+51)

The first term of this solution represents the incident
particle moving along the positive x-axis, while the second
term represents the particle reflected by the potential
barrier and moving along the negative x-axis.

In region 2,

d? 2 —E
0 mo—E),
dx2 h2

Its general solution is

¢ (x) = Ce ™" 4 Db, k2 =2m(Vo—E)/h
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Step Potential

Since the wave function must tend to zero at spatial
infinities (x — +e0), we must put

D =0,
otherwise the solution will diverge. Therefore, the stationary
state solution in the second region can be written as

v (x,t) _ Ce—kzx—i(E/h)t.
Since the potential has only a finite jump at x = O, both the
wave functions (¢, and ¢,) and their first-order derivatives
must be continuous at x = 0. We thus have

A+B=C,

ik1(A— B) = —ksC.
W



Step Potential

There is a small problem here because we have only two
equations but three constants to be determined. Let us first
determine the coefficients B and C in terms of the constant

A. B _C
A A
_B_kC

A Kk A
Solving these equations for C/A, we get

2k

— A.
ki + iky

:h_%A
k1 + iky
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Step Potential

Now, without any loss of generality, we might assume that
the incident particle’s wave function (a wave packet) is
normalized in such a way that A = 1. Then the required wave
function is

pitkx—or) 4 ky —iky o—ithxton . o
ki + ik,
P(x) = 2k .
! e—(k2x+la)t) x>0
ki + ik,
where,
o =EFE/h.
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Potential Barrier and Tunneling

Barrier penetration - tunneling: a micro-particle incident on
one side of a potential barrier of height V,with a total

energy E < V,can pass through the barrier and appear on
the other side.

This phenomenon does not have any classical analogue and
represents a purely quantum mechanical effect and has been
confirmed experimentally. Consider an external potential
field given by

Vo, for 0<x<a,
Vix) = .
0, otherwise.
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Potential Barrier and Tunneling

The case with the total energy E < V,corresponds to
tunneling and we take up this case.

For the solution of the problem, we divide the entire region
—o0<x<+00 into three parts: —o0<x<0 (Region 1), O<x<a (Region

2) and a<x<+o0 (Region 3). The one-dimensional potential
barrier has width a and height V..

Vix)A
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Potential Barrier and Tunneling

Region 1:
o +kigr =0, ki= "5,

0 = Ae1x L Bemikix,

where A and B are arbitrary complex constants. Here the
first term in the solution corresponds to the incident particle
propagating along the positive x direction, while the second
term describes the particle reflected from the potential and
propagating along the negative x direction.

Region 2:

2m(Vy — E)

0y — k3¢, =0, k3 7

¢ = Cek?* + De 0¥,
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Region 1:

o Ko =0, K="7,
o) = A 4 B
Region 2:
)=k =0, k= 2m(\;(l)2—E),

Region 3:

(Pél -+ k%¢3 =0,

O3 = F ef1~,
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Potential Barrier and Tunneling

Here, F is an arbitrary complex constant and the solution
represents the transmitted particle traveling along the
positive x direction. Note that, because of the fact that the
potential vanishes beyond x = a, there is no any reflected
particle in this region and hence, we have taken only the
forward propagating plane wave as solution.

Boundary conditions: The wave functions ¢.(x), ¢.(x) and
$.(x) have to be continuous in the entire region of x, as

required by the standard conditions. The first derivatives of
the wave functions with respect to x will also be continuous

everywhere. These boundary conditions then yield
W



Potential Barrier and Tunneling i

A+B=C+D,
'k
(A—B)=--2(C-D).
ki
and

Cekza _|_De—k2a — Felkla,

Cekza _De—kza — ﬁ Feikla.
ko

If we add up above equation, we get

2C 24 = F th1a (1 + ﬁ) .
Hence

F . 1 ky B
C = — ikia 1+ 2 kza.
5 e < + b ) e
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Similarly, if we subtract them

2De Rt — F k14 (1 — ﬁ) ,
and therefore, ky

F 1k
D— — ik1a 1 — % kza‘
ehe (1250 6

Finally, the relation between A, B, and F are

B F . i1 ky _ 1 kq
1 - ikia 1 s kra 1— =% kra
—|—A 2Ae [(—I—kz)e —|—< )e ]

k>

F
= —e

A

ikla

ekza + e—kza lkl (ekza _ €_k2a)
2 ko 2

%eikl" [cosh(kza) — lkﬂ sinh(kza)] :

2
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and
B F . i ko _ 1 k>
—— = ikia R koa v kra
A 24°€ K k1+1)e +(k1+1>e ]

_F g |4k (€ —e )
A 2 ki 2

o 'k
= — ™19 | cosh(kya) + 1= sinh(kya) | .
A | ki

Therefore

F . ko k
2 = 1 ekia [2003h(k2a) +1i (k_? — k—;) sinh(kza)] .

B F . [k &k
25 = —i M (é + k—i) sinh (ko).
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The reflection coefficient is defined as

Reflected particle flux density  Jg  v1|B]*>  |B|?

KX = _ ke _ AP _ P
Incident particle flux density ~ J;  vi]A]?  |A]?

It is given by

2,72\ 2
(k}{;’fl) sinh? (k2a)
P —

2_12
1

[4cosh2(k2a) + (& )2sinh2(k2a)} |

The transmission coefficient, on the other hand, is defined as

7 Transmitted particle flux density  Jr  |F E

Incident particle flux density ~ J;  |A|*’

and
4

2 2 )
[4cosh2(k2a) + ("k 4 ) sinhz(kza)]

T —
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Further, making use of the well-known formula cosh:x -

sinhzx = 1, we can rewrite the reflection and the
transmission coefficients as

T (P+I2\°
R = Z ( 1k;|;€12> sinh? (kya),

1
[1 +! (%)2 sinhz(kza)]
Clearly, the transmission probability is finite. Therefore, we

conclude that the probability that a quantum particle could
penetrate a classically impenetrable barrier is non-zero.

T =
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This barrier penetration effect is usually called the tunneling
effect and has important physical implications. The
radioactive decay and charge transport in electronic devices

are typical examples of the quantum mechanical tunneling
effect. Iy ()

:x

0 a
E <71

Using the expressions for k,and k.in terms of the physical
parameters, we have

(k%+kg)2_< Vo )2_ V2
koky VE(Vo—E) EVo—E)
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Therefore, we can rewrite the expressions for the reflection
and transmission coefficients as

_ Vo .12 (4
%_g4E(VO—E) sinh (h\/2m(V0—E)>,
1
2

V, : 4 '
1+ %E(VOO_E) sinh? (ﬁ v/ 2m(Vo —E))

Let us consider the case when the energy of the incident
particle is much smaller than the height of the barrier E «
V.. Then, we have

a a+/2mVj E
—/2m(Vo—FE) = \J91=—>1,
h\/ m( 0 ) h Vo >
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and we can write
a\/W
sinh (%\/2M(V0—E)) 1 \/ _% a/h )/ 2m(Vy— )

Therefore, in the low energy limit, the fransmnssuon

coefficient is given by

L 16E 1 — E e—(2a/h) 2m(V0—E).
V() Vo

Also, when E ~ V,, it is not difficult to deduce the following
expressions for the reflection and transmission coefficients:

1
2n
X =1
( i ma2V0>

2V —1
T = <1+ma20> .
2h
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Potential Barrier and Tunneling

We, thus, see that even if the energy of the particle is much
smaller than the barrier height, there is a finite probability
that the particle can tunnel through the barrier and appear
on the other side of it. Classically, such a phenomenon is not
possible.

The region O < x < a is forbidden for a particle with energy
less than the barrier height V.. Quantum mechanically, such
tunneling effect is permissible and the apparent paradox
arising out of it can be resolved with the help of
Heisenberg’s uncertainty principle.
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Potential Barrier and Tunneling

Note that in the given example we considered the constant
value for the potential barrier. In a more general case, the
potential barrier is not a constant but can be a function of

x:V =V (x)
V(x)
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Potential Barrier and Tunneling

An approximate formula for the transmission coefficient can
be derived by dividing the classically forbidden region
between the turning points x,and x.into N (N large enough
to approximate the curve V (x)) small rectangular sequence
of barriers, each of width Ax.

In each of these rectangular barriers, we can assume the
potential to be constant. Then for each of them, the
transmission coefficient can be written as:

2Ax;
L J2m(V (x) —E)] ,

T ~ exp [—

21/09/2023 Jinniu Hu =



Potential Barrier and Tunneling

The transmission coefficient for the entire potential is then
given by the following limit:

2
T = exp [h lim Zf X; Axl] ,

Ax; —>O

where

=2m(V(x;)) - E).

As a result, we obtain

7~ exp [_% / :dx\/Zm(V(x) —E)] |

Note that the aforementioned approximate analysis is valid

and gives satisfactory results only if the potential is a

smooth and slowly varying function of x.
W



Potential Barrier and Tunneli
ling zn 3 £ %7
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Periodic Potentials

A typical periodic potential is shown
Ve,

Vo

V=0 V=0 V=0 V=0

\

-€
€----
€

>
X

—(a + b) -b 0 a (a+Db)

As shown, the potential is zero over a distance a, peaks at V
(x) = V,over a distance b and then repeats itself. It is
evident that

V(x+c)=V(x).
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Periodic Potentials

where ¢ = a + b is the period. Since the potential is a
periodic function of x with a period ¢, the Schroedinger
equation is invariant under space translations

xX—x+nc, n=0,£1,£2,43,...

This invariance imposes certain restriction on the form of the
allowable solution of the Schroedinger equation. To determine
this restriction, let us introduce an operator D, called the
space translation operator, which while acting on a function f
(x) shifts it horizontally along the x direction over a distance
c:
Df(x) = f(x+c).
L 00 2 T —



Periodic Potentials

For instance, acting on the potential function V(x), it shifts
the entire potential over a distance c: DV (x) = V(x + ¢).
Repeated applications this operator leads to
Df(x) = f(x+c),D*f(x) = f(x+2¢),D’ f(x) = f(x+3c),....D" f(x) = f(x+nc).
Considering now the following

n 92

(DA (x) = D(Ay) =D (_% .t V(x)) w(x)

h* 92
— (g g V0 W)
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Periodic Potentials

In obtaining the above result we have used the fact that

Jd d Ox J
d(x+c) odxd(x+c) Jx

Therefore,

This, in turn means that, if the energy spectrum is non-
degenerate, | (x + ¢) and | (x) must represent the same
state of the system. Therefore, | (x + ¢) can differ from | (x)
only by a constant factor:

y(x+c)=oay(x),
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Periodic Potentials

where o is a constant of magnitude unity.

2l
o = exp (ﬂ) 0=0.1.2.3,...

n

Defining now

2ml
K= —,
nc

we arrive at

IKC

y(x+nc) =™ ylx).

Now, any function {(x), satisfying the above condition, can be
written as
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Periodic Potentials

where u,(x) is a periodic function of x of period c: u.(x + c)
= u,(x). To ensure that it is really so, we write

y(x+c) =y (x+¢) = e u(x+c).
Therefore, if u.(x + ¢) = u (%),

l//(x—l—c) _ eiK(x+c)uK(x_|_C) _ piKC ik X uK(x> _ piKc ‘//(x)°

The above result is a fundamental result for condensed
matter physics and it is known as Bloch's theorem.

It states that any solution to the Schroedinger equation,
with a periodic potential of period ¢, must have this form.
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Periodic Potentials

Consider now the case of a particle (mass m and total
energy E < V,) subject to the above periodic potential. If we
introduce

2mE
2
k1 2
kz — 5
h

the solutions of the TISE in the relevant regions can be
written as

v(x) =A cos(kix) +Bsin(kix), (0<x<a),
v(x) = C cosh(kax) + D sinh(kyx), (—b<x<0),
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Periodic Potentials

They must be chosen such that both | (x) and | '(x) are
continuous at the boundaries, where the potential has a
finite jump, and abide by Bloch’s theorem.

At x = 0, we have
A=C,

ki B =k, D.

Furthermore, using the Bloch theorem (with n = 1), we get

y(a) = e y(-b). 27
W,(a) :eiKCl[//(—b), (a+b)
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The boundary conditions lead to

A cos(kja) + B sin(kja) = "% [C cosh(kyb) — D sinh(kyb)],
—ky A sin(kja) 4 ky B cos(kja) = *¢ [—ky C sinh(kyb) + ko D cosh(kyb)].
The algebraic equations can be written as a matrix equation:

MX =0,
where

X=(ABCD)!
is a column matrix and

( 1 0 —1 0 \
0 ki 0 —ky
M = : K Kc o
cos(kia) sin(kja)  —e'™ cosh(kpyb) €€ sinh(kyb)

\—kl sin(kja) ki cos(kja) kpe®¢ sinh(kob) —kye'®¢ cosh(kyb) )
21/09/2023 Jinniu Au e —
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Periodic Potentials WA al 7
Periodic Potentials — WH Al £ Z

For the non-trivial solutions the determinant of the matrix,
must be zero:

1 0 —1 0

0 kl 0 _k2

cos(kja) sin(kja)  —e™¢ cosh(kyb) €€ sinh(kyb)
—ky sin(kja) ki cos(kia) kye'®¢ sinh(kab) —kye'®¢ cosh(kab)

Finally,
(ki —k3) sinh(kab) sin(kia) — 2k; ka cosh(kab) cos(kia) + ki ko [¢5¢ + 7<) = 0.

It yields the following transcendental equation for the
determination of the energy eigenvalues

k2 L k2
(22k . 1) sinh(kyb) sin(kya) + cosh(kpb) cos(kja) = cos|K(a+b)].
1 k2
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Periodic Potentials

As a result of the numerical solution, one gets the values of

k,using which one can calculate the energy eigenvalues as
L
2m
Note that, for practical purposes, the above transcendental
equation can be simplified by imposing some reasonable

restrictions on the model parameters.

Assume that the width of the potential tends to zero while
the height tends to infinity such that V,b remains constant.
In such a limit

lim sinh(kyb) = kob,  limcos(kyb) = 1.
b—0 b—0
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Periodic Potentials

Here, we have gone to the leading order in the Taylor
expansions of the hyperbolic trigonometric functions on the
left-hand side, and simply let b = O on the right-hand side.

We obtain
(k3 — k)
2k
We then find it convenient to define the dimensionless

quantity,

b sin(kja) + cos(kja) = cos|Kal.

_ mVpba

which determines the effective strength of the potential.

Then we have
F(kia) = cos|Kal,
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Periodic Potentials

\& ﬁ

. ,9‘q< {% [ﬁ j\"

—
where

Energy gaps

+1

Energy bands

kla
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Exercise (% 2l £ %7
— W T T

1. Find the value of the commutator

N

A= [ﬁ?c’ (fﬁy _)l;p/\x)]a
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Exercise ‘% ‘gﬂ * %7
———————————————————— =~ T

1. Find the value of the commutator

N

A= [y, (%Dy — 9px)).

Solution: Using the properties of the commutator of
operators A

we get
[Pz, (£py — $Px)] = [pr.XDy] — (P2, 5Px]

A A AN A A

= Px|Pr-XDy| + [Prs XDy| Px — Pl Prs IPx]) — [P IPy] P

DX Prxs Py] + Pl Px- X] Py + X[ Pxs Py) Px + [ Prr X] Py P

[)?j,pAk] = ihéjk, Jj.k=1,2,3.
— P3| P> Px) — Px|Px> | Px — 1 Px> Pyl Px — [P I Py Px
— _ih(prpAy ‘|‘pAypr) = _Ziﬁxﬁyh
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Exercise

2.Consider a particle of mass m confined to move in one
spatial dimension in the region O < x < a. Let the particle be
in a state described by the wave function {,(x,t) = sin(mrx/a)
exp(-iwt), where o is a constant. Find the average values of

the position and momentum operators in this state.
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Exercise

2.Consider a particle of mass m confined to move in one
spatial dimension in the region O < x < a. Let the particle be
in a state described by the wave function {,(x,t) = sin(mrx/a)
exp(-iwt), where o is a constant. Find the average values of

the position and momentum operators in this state.

Solution: First, let us check whether the wave function of
the particle is normalized or not. We have

[ wenPax= 5
The average value of the position operator and momentum
will be given by

(%) = /()a)2|l//(x,t)|2dx —a/2 (= [ Wi (—ihdi> w(x.) dx = 0.

X
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Exercise

3.Consider a particle of mass m confined to move in a one-
dimensional infinite potential well of width a. Let, at t = O,
the particle be in a state described by the wave function
U(x,t) = sin:(nx/a). If the energy of the particle is
measured, what values will be obtained and with what

probabilities? What will be the average value of energy in
this state?
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Exercise

3.Consider a particle of mass m confined to move in a one-
dimensional infinite potential well of width a. Let, at t = O,
the particle be in a state described by the wave function
U(x,t) = sin:(nx/a). If the energy of the particle is
measured, what values will be obtained and with what
probabilities? What will be the average value of energy in
this state?
Solution: We shall show that the eigenfunctions and the
corresponding eigenvalues of the Hamiltonian, for a particle
of mass m moving in a 1D infinite potential well of width a,
are given by . o

I/In(x):\/gsin(nnx/a), E, = L n=1,2,3,..

2ma?
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Exercise

The wave function of the particle at t = O can be written as

w(x) = % sin (7 x/a ) — i sin (37w ) = i? )= Y (),

Normalization cons’ranf

[ w@Par==5 [Clo@Pdv+ 55 [*loswPax
9a

ba ca, a _>a
32 32 32 16’
As a result, the normalized wave function at t =0 is

<P1( )¢5 (x) dx =

43f() 4 \J/a 03 (x) = 3

Vsaa2 "W Jraaa W = g

7o 3 (x).

1
¢(x) = 710
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Exercise z< (%‘ il £ .1
Therefore, when energy is measured on the system, the
values that can result are

w2 h? O i?
Er= 2ma? and £ = 2ma?
Now the probability of getting E; and Es are
9 B » 1
= (1] 9)° = 0 P =|(¢3] 9)]| =10

The average value of energy in the state is

9 ®h* 1 9wt 9w’

E) = P E{ 4+ PEx — _ |
() =PE +PEs = 10X o 5410 oma? — 10md
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Exercise

4. A particle in an infinite symmetrical potential well of
width a (-a/2< x ¢ a/2) is initially (t = 0) in a state with the

wave function 2
W(X,O) :A <1 — E) 5

where A is an arbitrary real constant. Find the wave function
¢(x,t) at t > O.
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Exercise

4. A particle in an infinite symmetrical potential well of
width 2a (-a< x ¢ a) is initially ( = 0) in a state with the

wave function 2
l//(x,O) :A <1 — E) 5

where A is an arbitrary real constant. Find the wave function
¢(x,t) at t > O.

Solution: First, we normalize the wave function to find A. We

have .
+a +a X X
/ |l//(x,t)|2dx:A2/ (1—2g+—4> dx

—a —a a

da 2a 16a
A2 e el L 2__
— A (2a 3+5>—A 15—1.
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Exercise

This gives the constant A as
_ V15
hfa
The general solution at t > O is given by the linear
combination

A

w(xt) =Y cudu(x) e
where ¢.(x) are the normalized time independent solutions of
the corresponding TISE.

1 e =
bnlaiz) = 1]~ { cos45 - forn = 1,3,5

A T
a | sing - forn = 2,4,6...
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Exercise 1% f{/ﬂ /1 %7
For odd n, the coefficients c, are

\/TJ’“ niIx A /1 r 5 nIx
C1, =Ay[— Cosz—dx—— — | x
al_, a .

cos——dx=1,+1
a’\l a 2a b2

v 15 nr 1 8 nr

I, = In [ — I, =4/1 — in | —
| - sm< > > » =415 [I’lﬂ' I’l371'3] sm( >

For even n, the coefficients c, are

1 (¢ . nax A 1% , . nax
¢, =Ay/— | sIn 2—dx ——1/— | x“sin——-dx
a —d a a

a’\l a 2a

In this case, both the integrals are zero because the
integrands are odd functions of x.

21/09/2023
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Exercise 4% %z £ %7

Therefore, the expansion coefficients are given by

()

nr  n3n3 2

As a consequence, the wave function at + > O is given by the
following linear combination

l/j(x t) _ Z [ 3 3] Sln < ) ¢ (x)e_l(n ﬂZh/SmaZ)t’ n = 1’ 37 5,---
n-mw
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Exercise

5.At t=0, a particle of mass m, free to move inside an
infinite potential well with walls at x =0 and x = a, is in a
state that is a linear superposition of the ground state and
the first excited state

V(00) = 2 0100+ 0200] = - [sin (%) esin (220

a a

Find the wave function at any t > 0. Check whether the
continuity equation holds good for this state or not.
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Exercise

5.At t=0, a particle of mass m, free to move inside an
infinite potential well with walls at x =0 and x = a, is in a
state that is a linear superposition of the ground state and
the first excited state

V(00) = 2 0100+ 0200] = - [sin (%) esin (220

Find the wave function at any t > 0. Check whether the
continuity equation holds good for this state or not.

Solution: The wave function of the particle at t+ > O will be

1 | . /xN\ B, . (27x\ _;E,
l//(x,t):% sm(;)e it 4 sin )
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Exercise

The probability density is calculated to be
p(x,t) = é [sin2 (%) + sin” <?)]

+Z sin (E) sin <@> cos [(El _EZ)t] .

a a a h

The probability current density j,is therefore given by
h d dy*
Jx = [W*(X,t) a‘)/:_ all)jc l//(x,t)]

 2mi

= sin () cos (22 sin| (E 2]

ma? a a h

- (22 con () sin [ 12 .

ma? a a
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Exercise

zvﬁﬁﬂ< 4% lﬁ j\’r 21
Therefore,

dp(x,t) 3m*h

P ma’ sin <%) sin <@> sin [(El _Ez)t] .

d jx _37r2h

5 — - sin (%) sin (@) sin [(El _Ez)t] :

a

and

dp(x,1) 4 djx

21/09/2023 Jinniu Hu 25—



