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Chapter III  One dimension problem
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Quantum mechanics
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The Basic Postulates 

Postulate 1: State of a system 

The state of any physical system is specified, at each time t, 
by a state vector |!(t)⟩ in a Hilbert space H; |!(t)⟩ contains 

(and serves as the basis to extract) all the needed 
information about the system. Any superposition of state 
vectors is also a state vector. 


Postulate 2: Observables and operators 

To every physically measurable quantity A, called an 
observable or dynamical variable, there corresponds a linear 
Hermitian operator A whose eigenvectors form a complete 
basis 
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The Basic Postulates 

Postulate 3: Measurements and eigenvalues of operators 

The measurement of an observable A may be represented 
formally by the action of A on a state vector |!(t)⟩ . The only 

possible result of such a measurement is one of the 
eigenvalues an  of the operator A 

Postulate 4: Probabilistic outcome of measurements 

When measuring an observable A of a system in a state, the 
probability of obtaining one of the nondegenerate 
eigenvalues an of the corresponding operator A is given by 
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� knowing the system’s state at a time t , how to find the state at any later time t ); that is,
how to describe the time evolution of a system.

The answers to these questions are provided by the following set of five postulates.

Postulate 1: State of a system
The state of any physical system is specified, at each time t , by a state vector �O�t�O in a Hilbert
space H; �O�t�O contains (and serves as the basis to extract) all the needed information about
the system. Any superposition of state vectors is also a state vector.

Postulate 2: Observables and operators
To every physically measurable quantity A, called an observable or dynamical variable, there
corresponds a linear Hermitian operator 
A whose eigenvectors form a complete basis.
Postulate 3: Measurements and eigenvalues of operators
The measurement of an observable A may be represented formally by the action of 
A on a state
vector �O�t�O. The only possible result of such a measurement is one of the eigenvalues an
(which are real) of the operator 
A. If the result of a measurement of A on a state �O�t�O is an ,
the state of the system immediately after the measurement changes to �OnO:


A�O�t�O � an�OnO� (3.1)

where an � NOn�O�t�O. Note: an is the component of �O�t�O when projected1 onto the eigen-
vector �OnO.
Postulate 4: Probabilistic outcome of measurements

� Discrete spectra: When measuring an observable A of a system in a state �OO, the proba-
bility of obtaining one of the nondegenerate eigenvalues an of the corresponding operator

A is given by

Pn�an� �
�NOn�OO�2
NO�OO � �an�2

NO �OO � (3.2)

where �OnO is the eigenstate of 
Awith eigenvalue an . If the eigenvalue an ism-degenerate,
Pn becomes

Pn�an� �
3m
j�1 �NO

j
n �OO�2

NO �OO �
3m
j�1 �a

� j�
n �2

NO �OO � (3.3)

The act of measurement changes the state of the system from �OO to �OnO. If the sys-
tem is already in an eigenstate �OnO of 
A, a measurement of A yields with certainty the
corresponding eigenvalue an : 
A�OnO � an�OnO.

� Continuous spectra: The relation (3.2), which is valid for discrete spectra, can be ex-
tended to determine the probability density that a measurement of 
A yields a value be-
tween a and a � da on a system which is initially in a state �OO:

dP�a�
da

� �O�a��2
NO �OO �

�O�a��2
5�*
�* �O�a)��2da)

� (3.4)

for instance, the probability density for finding a particle between x and x � dx is given
by dP�x��dx � �O�x��2�NO �OO.

1To see this, we need only to expand �O�t�O in terms of the eigenvectors of 
A which form a complete basis: �O�t�O �3
n �OnONOn �O�t�O �

3
n an �OnO.
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The Basic Postulates 

Postulate 5: Time evolution of a system 

The time evolution of the state vector |!(t)⟩ of a system is 

governed by the time-dependent Schrödinger equation 
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Postulate 5: Time evolution of a system
The time evolution of the state vector �O�t�O of a system is governed by the time-dependent
Schrödinger equation

i �h
"�O�t�O
"t

� 
H �O�t�O� (3.5)

where 
H is the Hamiltonian operator corresponding to the total energy of the system.
Remark
These postulates fall into two categories:

� The first four describe the system at a given time.

� The fifth shows how this description evolves in time.

In the rest of this chapter we are going to consider the physical implications of each one of the
four postulates. Namely, we shall look at the state of a quantum system and its interpretation,
the physical observables, measurements in quantum mechanics, and finally the time evolution
of quantum systems.

3.3 The State of a System

To describe a system in quantum mechanics, we use a mathematical entity (a complex function)
belonging to a Hilbert space, the state vector �O�t�O, which contains all the information we need
to know about the system and from which all needed physical quantities can be computed. As
discussed in Chapter 2, the state vector �O�t�O may be represented in two ways:

� A wave function O�;r� t� in the position space: O�;r� t� � N;r �O�t�O.

� A momentum wave function �� ;p� t� in the momentum space: �� ;p� t� � N ;p�O�t�O.

So, for instance, to describe the state of a one-dimensional particle in quantum mechanics we
use a complex function O�x� t� instead of two real real numbers �x� p� in classical physics.
The wave functions to be used are only those that correspond to physical systems. What

are the mathematical requirements that a wave function must satisfy to represent a physical
system? Wave functions O�x� that are physically acceptable must, along with their first deriv-
atives dO�x��dx , be finite, continuous, and single-valued everywhere. As will be discussed in
Chapter 4, we will examine the underlying physics behind the continuity conditions of O�x�
and dO�x��dx (we will see that O�x� and dO�x��dx must be be continuous because the prob-
ability density and the linear momentum are continuous functions of x).

3.3.1 Probability Density

What about the physical meaning of a wave function? Only the square of its norm, �O�;r � t��2,
has meaning. According to Born’s probabilistic interpretation, the square of the norm of
O�;r� t�,

P�;r� t� � �O�;r� t��2� (3.6)

Postulate 6: The wave function of many-particle system 

The total wavefunction must be antisymmetric with respect 
to the interchange of all coordinates of one fermion with 
those of another. Electronic spin must be included in this set 
of coordinates. The Pauli exclusion principle is a direct result 
of this antisymmetry principle.
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Average value 

Average value of a dynamical variable: The average value, 
⟨A⟩, of a dynamical variable A, in a given state ! of the 

system, is defined as 
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respectively. Let us pose the question: If the the dynamical variable is measured in the
superposition state φ , what values will be obtained and with what probabilities?

Note that, had the system been a classical system, a definite value λ , intermediate
between λ1 and λ2 would have resulted. In quantum mechanics, however, measurements
will not produce a value intermediate between λ1 and λ2 but one of the values λ1 or λ2
(sometimes λ1 and sometimes λ2) and no other value except λ1 or λ2. Besides that, it is
not possible to predict which measurement will yield λ1 and which would give λ2. One or
the other result is obtained with a well-defined probability. The system, which was in the
state ψ , before the measurement, makes an abrupt transition either into the state ψ1 or into
the state ψ2.

This discussion leads to the conclusion that, at a given instant of time, it is not possible
to assign a definite value to an observable in quantum mechanics. It is, however, always
possible to assign a definite probability to the occurrence of one of the possible values.
This implies that the formalism of quantum mechanics allows us to compute only the
probabilities of occurrence of various possible values of an observable. Hence, only the
average value (or, as it is called, the expectation value) of a dynamical variable, computed
in accordance with the theory of probability, should be compared with the experimental
result.

Average value of a dynamical variable: The average value, 〈A〉, of a dynamical variable
A, in a given state ψ of the system, is defined as

〈A〉=
∫ +∞

−∞
ψ∗(!r) [Âψ(!r)]d3x

/ ∫ +∞

−∞
ψ∗(!r)ψ(!r) d3x, (2.7.8)

where the integration is over the entire region of variation of the independent variables,
x,y, and z. The asterisk stands for complex conjugation. If the wave function is normalized
to unity, the required average value is given by

〈A〉=
∫ +∞

−∞
ψ∗(!r)(Âψ(!r)) d3x. (2.7.9)

For instance, the average value of the position operator, x̂, in one spatial dimension in the
normalized state ψ ,

〈x〉=
∫ +∞

−∞
ψ∗(x)(x̂ψ) dx =

∫ +∞

−∞
ψ∗(x)xψ(x) dx. (2.7.10)

Similarly, the expectation value of the x component of momentum, 〈px〉, is given by

〈px〉=
∫ +∞

−∞
ψ∗(x)( p̂xψ(x)) dx = −ih̄

∫ +∞

−∞
ψ∗(x)dψ(x)

dx
dx. (2.7.11)

Let ψ1(!r), ψ2(!r), ψ3(!r),. . . , be the normalized eigenfunctions of a hermitian operator Â
with discrete eigenvalues λ1, λ2, λ3,. . . , respectively. Let the particle (system), on which

where the integration is over the entire region of variation 
of the independent variables, x, y, and z. The asterisk 
stands for complex conjugation. 


If the wave function is normalized to unity, the required 
average value is given by 
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Average value 

For instance, the average value of the position operator, x, 
in one spatial dimension in the normalized state !, 


Similarly, the expectation value of the x component of 
momentum, ⟨px⟩, is given by 
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Let !1(r), !2(r) !3(r),. . . , be the normalized eigenfunctions 
of a hermitian operator A with discrete eigenvalues �1, �2, �3,. 
. . , respectively. 
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the measurement of Â is done, be in a state ψ(!r), which is not an eigenstate of Â. Since
the eigenfunctions of a hermitian operator form a complete set, we can expand ψ as

ψ(!r) = ∑
k=1

ckψk(!r), (2.7.12)

where cks are arbitrary complex coefficients. Using the eigenvalue equation, Âψk(!r) =
λkψk(!r) and the orthonormality of the eigenfunctions {ψn(!r)}, the average value Ā can be
written as

〈A〉= ∑
"

∑
k

λkc∗"ck

∫ +∞

−∞
ψ∗" (!r)ψk(!r) d3x = ∑

"
∑
k

λkc∗"ck δ"k = ∑
k

λk |ck|2

= λ1|c1|2 +λ2|c2|2 +λ3|c3|2 + . . . (2.7.13)

In view of the orthonormality of the eigenfunctions of Â, we have

∑
m

∑
n

c∗mcn

∫ +∞

−∞
ψ∗mψn d3x = ∑

m
∑
n

c∗mcn δmn = ∑
n
|cn|2

= |c1|2 + |c2|2 + |c3|2 + ... = 1. (2.7.14)

If we now recall the expression for the average value of a random variable y from the
theory of probability (〈y〉= ∑ j y j w j, where w j is the probability of getting the value y j of
the random variable y and ∑ j wk = 1), then the equation (2.7.13) suggests that the number
|ck|2 represents the probability, Pk, of obtaining a value λk for A in the state ψ . Therefore,
the average value of Â takes the form

〈A〉= λ1 P1 +λ2 P2 +λ3 P3 + . . . , (2.7.15)

where, in view of (2.7.14), the sum total of all the probabilities Pk,k = 1,2,3, ... is equal
to 1:

∑
k

Pk = 1. (2.7.16)

On the basis of our discussions, we can now conclude:

1. If an observable, Â, is measured on a system in a state ψ , then it can have a definite
value if and only if ψ happens to be an eigenstate of the operator Â. In such a case,
the result will yield the corresponding eigenvalue of the operator Â in the state ψ .

2. On the other hand, if ψ is not an eigenfunction of Â, the state ψ has to be expanded
into a series with respect to the complete set of eigenfunctions of Â (see equation
(2.7.12)). The result of a measurement of Â will then be one of the eigenvalues ak of
Â with a probability |ck|2.
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Time derivative of an operator: since an observable cannot 
have a definite value at a given instant of time. Therefore, it 
is not possible to define the time derivative of an operator 
in the usual way of mathematical analysis: 
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in general, while deducing the theorem, we shall not confine ourselves to one spatial
dimension.

Time derivative of an operator: In general, an operator, representing an observable,
depends on time as a parameter. We wish to determine its time derivative. Since an
observable cannot have a definite value at a given instant of time (the measurement can
yield any one of its eigenvalues with some corresponding probability). Therefore, it is not
possible to define the time derivative of an operator in the usual way of mathematical
analysis:

dÂ(t)
dt

= lim
∆t→0

Â(t +∆t)− Â(t)
∆t

. (3.11.1)

However, the expectation (average) value of the observable A, given by 〈Â〉, can have a
definite value at a given instant t. Therefore, for defining the time derivative of an operator,
we must use its expectation value rather than the operator itself. Hence, we adopt the
following proposal:

The time derivative of the expectation value, 〈Â〉, of the observable, is equal to the
expectation value of the time derivative of the operator Â itself. That means:

d〈Â〉
dt

=

〈
dÂ
dt

〉
. (3.11.2)

In the context of quantum mechanics, this proposal should be viewed as the definition of
the dynamical variable dA/dt whose operator in quantum mechanics is given by dÂ/dt.

According to the formalism of quantum mechanics, we have

〈Â〉=
∫ +∞

−∞
ψ∗(!r, t)Âψ(!r, t)dτ , (3.11.3)

where dτ = dxdydz. Therefore,

d〈Â〉
dt

=
∫ +∞

−∞

(
∂ψ∗

∂ t
Âψ +ψ∗ ∂ Â

∂ t
ψ +ψ∗Â∂ψ

∂ t

)
dτ . (3.11.4)

Using the time-dependent Schrödinger equations, we have

∂ψ
∂ t

=
1
ih̄

Ĥψ ,
∂ψ∗

∂ t
= − 1

ih̄
ψ∗Ĥ† = − 1

ih̄
ψ∗Ĥ, (3.11.5)

where Ĥ is the Hamiltonian operator which is hermitian and we have used the general
formula (F̂Ĝ)† = Ĝ†F̂† for any two operators (matrices) F̂ and Ĝ. From (3.11.4) and
(3.11.5), we get

However, the expectation (average) value of the observable 
A, given by ⟨A⟩, can have a definite value at a given instant 
t. Therefore, for defining the time derivative of an operator, 
we must use its expectation value rather than the operator 
itself. 
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The time derivative of the expectation value, ⟨A⟩, of the 
observable, is equal to the expectation value of the time 
derivative of the operator A itself. That means: 
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Âψ +ψ∗ ∂ Â
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dÂ(t)
dt

= lim
∆t→0
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〈Â〉=
∫ +∞

−∞
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∂ t
ψ +ψ∗Â∂ψ
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d〈Â〉
dt

=
∫ +∞

−∞
ψ∗

[
∂ Â
∂ t

+
1
ih̄
(
−ĤÂ+ ÂĤ

)]
ψ dτ . (3.11.6)

Recollecting that

∂ 〈Â〉
∂ t

=

〈
∂ Â
∂ t

〉
where

〈
∂ Â
∂ t

〉
=

∫ +∞

−∞
ψ∗(!r, t)

∂ Â
∂ t

ψ(!r, t)dτ , (3.11.7)

we arrive at

d〈Â〉
dt

=
∂ 〈Â〉

∂ t
+

1
ih̄

∫ +∞

−∞
ψ∗(!r, t)

(
−ĤÂ+ ÂĤ

)
ψ(!r, t)dτ . (3.11.8)

Equation (3.11.8) can be written as

d〈Â〉
dt

=
∂ 〈A〉

∂ t
+

1
ih̄
〈
[Â, Ĥ]

〉
, (3.11.9)

where [Â, Ĥ] = ÂĤ− ĤÂ is the commutator of the operator Â with the Hamiltonian Ĥ and

〈
[Â, Ĥ]

〉
=

∫ +∞

−∞
ψ∗(!r, t)

(
ÂĤ− ĤÂ

)
ψ(!r, t)dτ , (3.11.10)

the average value of the commutator in the state ψ(!r, t) at a given instant t. In the case
when there is no explicit dependence of the operator Â on time, we have

d〈Â〉
dt

=
1
ih̄
〈
[Â, Ĥ]

〉
. (3.11.11)

A comparison of (3.11.9) and (3.11.11) with the Poisson bracket formulation of classical
mechanics leads to an important conclusion which is known as Ehrenfest’s theorem in
quantum mechanics.

Ehrenfest’s theorem: The average values of observables in quantum mechanics obey
the classical equations of motion.

This theorem, to some extent, establishes a ‘bridge’ between classical mechanics and
quantum mechanics, which is impossible to have otherwise.

Quantum mechanical version of Newton’s equations of motion: It turns out that it is
possible to write the equations of motion for the expectation values of the position
momentum operators in a manner completely analogous to the equations of motion in
classical mechanics.

Recollecting that 
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d〈Â〉
dt

=
∂ 〈Â〉
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)
ψ(!r, t)dτ . (3.11.8)

Equation (3.11.8) can be written as

d〈Â〉
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∂ t

〉
where

〈
∂ Â
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)
ψ(!r, t)dτ . (3.11.8)

Equation (3.11.8) can be written as

d〈Â〉
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In the case when there is no explicit dependence of the 
operator A on time, we have 
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Ehrenfest’s theorem: The average values of observables in 
quantum mechanics obey the classical equations of motion. 
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Making use of Ehrenfest’s theorem (3.11.11), we obtain

d〈p̂x〉
dt

= −
〈

∂V (x)
∂x

〉
. (3.11.21)

Differentiating (3.11.17) once with respect to time and making use of (3.11.21), we arrive
at

d2〈x̂〉
dt2 = −

〈
∂V (x)

∂x

〉
. (3.11.22)

Equation (3.11.22), written for the expectation values of the position operator and the force
as the gradient of the potential, is the quantum mechanical version of Newton’s equations
of motion.

3.12 Periodic Potentials, Bloch’s Theorem and Energy Bands

In this sub-section we shall discuss the solutions of the TISE for the case in which the
potential is a periodic function of x. It has some very useful applications in solid state
physics.

A typical periodic potential is shown in Fig.3.10. As shown, the potential is zero over
a distance a, peaks at V (x) = V0 over a distance b and then repeats itself. It is evident that

V (x+ c) = V (x). (3.12.1)

where c = a+ b is the period. Since the potential is a periodic function of x with a period
c, the Schrödinger equation is invariant under space translations

x→ x+ nc, n = 0,±1,±2,±3, ... (3.12.2)

This invariance imposes certain restriction on the form of the allowable solution of the
Schrödinger equation. To determine this restriction, let us introduce an operator D̂, called
the space translation operator, which while acting on a function f (x) shifts it horizontally
along the x direction over a distance c:

D̂ f (x) = f (x+ c). (3.12.3)

For instance, acting on the potential function V (x), it shifts the entire potential over a
distance c: D̂V (x) = V (x+ c). Repeated applications this operator leads to

D̂ f (x) = f (x+c), D̂2 f (x) = f (x+2c), D̂3 f (x) = f (x+3c), . . . , D̂n f (x) = f (x+nc).
(3.12.4)
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Since the position operator, x̂, and the momentum operator, p̂x, do not depend explicitly
on time, it follows from (3.11.11) that

d〈x̂〉
dt

=
1
ih̄
〈[x̂, Ĥ]〉, (3.11.12)

d〈 p̂x〉
dt

=
1
ih̄
〈[ p̂x, Ĥ]〉. (3.11.13)

Here,

Ĥ =
p̂2

x
2m

+V (x) (3.11.14)

is the Hamiltonian operator and V̂ (x̂) = V (x) is the potential energy operator for the
particle. Simplifying the commutator on the right hand-side of (3.11.12), we have

[x̂, Ĥ] =

[
x̂,

p̂2
x

2m
+V (x)

]
=

1
2m

[
x̂, p̂2

x
]
+[x̂,V (x)]. (3.11.15)

Using the distributive property [Â, B̂2] = B̂[Â, B̂] + [Â, B̂]B̂ and the fact that [x̂,V (x)] = 0,
we get

[x̂, Ĥ] =
1

2m
p̂x[x̂, p̂x]+ [x̂, p̂x] p̂x =

1
2m

(2ih̄ p̂x) = ih̄
p̂x

m
. (3.11.16)

As a result, the time evolution equation for 〈x̂〉 reads

d〈x̂〉
dt

=
〈p̂x〉

m
. (3.11.17)

We see that the relation between the time derivative of 〈x̂〉 and the expectation value of the
momentum operator in quantum mechanics is exactly the same as that between momentum
px and velocity vx = ẋ in classical mechanics.

Let us now compute the commutator [ p̂x, Ĥ]. Since

[ p̂x, p̂2
x ] = p̂x[ p̂x, p̂x]+ [ p̂x, p̂x] p̂x = 0, (3.11.18)

and

[ p̂x, f (x)] = −ih̄
∂ f (x)

∂x
, (3.11.19)

for any function f (x) of x, we obtain

[ p̂x, Ĥ] = −ih̄
∂V (x)

∂x
. (3.11.20)
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We also saw that under a unitary transformation between 
different representation, the forms of the wave function and 
that of the observables change, but the physical state of 
the system remains unaltered because the unitary operator S 
is time-independent. 


In what follows, we shall show that it is possible to describe 
the time-evolution of the state vector by a time-dependent 
unitary operator, U(t). 


U(t) is called the time-evolution operator or, simply, the 
evolution operator. Each of such descriptions is called a 
picture of quantum mechanics. 
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The Schrödinger picture: the state vector, |!(t)⟩, of a 

quantum system depends explicitly on time, while the 
observables (operators of physical characteristics) of the 
system are time-independent. 

The time evolution of the state vector is controlled by the 
Schrödinger equation 
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4.12 Time-evolution Operator and Pictures of Quantum Mechanics

We have seen that we can have various representations of the state vector and the
operators depending on the basis chosen in H . As it turns out, they are all equivalent and
related to one another by a unitary transformation. We also saw that under such a unitary
transformation, the forms of the wave function and that of the observables change, but the
physical state of the system remains unaltered because the unitary operator Ŝ is
time-independent.

We now want to know whether it is possible to do the same for the time-evolution of
the quantum system. In what follows, we shall show that it is possible to describe the time-
evolution of the state vector by a time-dependent unitary operator, Û(t). Û(t) is called the
time-evolution operator or, simply, the evolution operator. It turns out that there are more
than one ways to do it. Each of such descriptions is called a picture of quantum mechanics.

The Schrödinger picture: In this picture, the state vector, |ψ(t)〉, of a quantum system
depends explicitly on time, while the observables (operators of physical characteristics) of
the system are time-independent. The time evolution of the state vector is controlled by
the Schrödinger equation

ih̄
∂ |ψ(t)〉

∂ t
= Ĥ|ψ(t)〉, (4.12.1)

and can be represented in terms of a time evolution operator (propagator), Û(t, t0), as

|ψ(t)〉= Û(t, t0)|ψ(t0)〉. (4.12.2)

The condition of conservation of the norm of the wave function under this representation
reads

〈ψ(t)|ψ(t)〉= 〈Û(t, t0)ψ(t0)|Û(t, t0)ψ(t0)〉

= 〈ψ(t0)|Û†(t, t0)Û(t, t0)|ψ(t0)〉= 〈ψ(t0)|ψ(t0)〉. (4.12.3)

This requires the evolution operator, Û(t, t0), to be unitary:

Û†(t, t0)Û(t, t0) = Û(t, t0)Û†(t, t0) = Î. (4.12.4)

In addition, the evolution operator also satisfies the following properties

Û(t, t) = Î, (4.12.5)

Û†(t, t0) = Û−1(t, t0) = Û(t0, t), (4.12.6)
Û(tk, t j)Û(t j, ti) = Û(tk, ti), tk > t j > ti. (4.12.7)

The last of the above properties is due to the time translation invariance of the Schrödinger
equation.

and can be represented in terms of a time evolution 
operator (propagator), U(t,t0), as 
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In addition, the evolution operator also satisfies the following properties
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Û†(t, t0) = Û−1(t, t0) = Û(t0, t), (4.12.6)
Û(tk, t j)Û(t j, ti) = Û(tk, ti), tk > t j > ti. (4.12.7)

The last of the above properties is due to the time translation invariance of the Schrödinger
equation.
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4.12 Time-evolution Operator and Pictures of Quantum Mechanics

We have seen that we can have various representations of the state vector and the
operators depending on the basis chosen in H . As it turns out, they are all equivalent and
related to one another by a unitary transformation. We also saw that under such a unitary
transformation, the forms of the wave function and that of the observables change, but the
physical state of the system remains unaltered because the unitary operator Ŝ is
time-independent.

We now want to know whether it is possible to do the same for the time-evolution of
the quantum system. In what follows, we shall show that it is possible to describe the time-
evolution of the state vector by a time-dependent unitary operator, Û(t). Û(t) is called the
time-evolution operator or, simply, the evolution operator. It turns out that there are more
than one ways to do it. Each of such descriptions is called a picture of quantum mechanics.

The Schrödinger picture: In this picture, the state vector, |ψ(t)〉, of a quantum system
depends explicitly on time, while the observables (operators of physical characteristics) of
the system are time-independent. The time evolution of the state vector is controlled by
the Schrödinger equation
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This requires the evolution operator, U(t,t0), to be unitary: 
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time-evolution operator or, simply, the evolution operator. It turns out that there are more
than one ways to do it. Each of such descriptions is called a picture of quantum mechanics.

The Schrödinger picture: In this picture, the state vector, |ψ(t)〉, of a quantum system
depends explicitly on time, while the observables (operators of physical characteristics) of
the system are time-independent. The time evolution of the state vector is controlled by
the Schrödinger equation

ih̄
∂ |ψ(t)〉

∂ t
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The propagator can be determined as follows. Substitution of (4.12.2) in the
Schrödinger equation (4.12.1) yields

ih̄
∂Û(t, t0)

∂ t
= ĤÛ(t, t0). (4.12.8)

If the Hamiltonian, Ĥ, is time independent, the solution of (4.12.8) satisfying the initial
condition, Û(t0, t0) = Î, can be written as

Û(t, t0) = e−
i
h̄ (t−t0)Ĥ . (4.12.9)

Using (4.12.9), equation(4.12.2) can be rewritten as

|ψ(t)〉= e−
i
h̄ (t−t0)Ĥ |ψ(t0)〉. (4.12.10)

The meaning of equation (4.12.10) is the following. We have to expand the wave function
ψ(q,0) into a series with respect to the eigenfunctions, φm(q),m = 1,2,3, . . ., of the
Hamiltonian

ψ(q, t0) = ∑
m

cmφm(q), (4.12.11)

use the definition of the exponential operator in the form of Mclaurent series

e−
i
h̄ Ĥ(t−t0) =

∞

∑
n=0

1
n!

(
−i
h̄

Ĥ(t− t0)
)n

(4.12.12)

and act on the wave function. If we do that and take into account that φm are
eigenfunctions of the Hamiltonian (Ĥφm = E0

mφm) and sum up the resulting series, we get
the wave function at time t:

ψ(q, t) =
∞

∑
n=0

1
n!

(
−iĤ

h̄
(t− t0)

)n

∑
m

cmφm

= ∑
m

cmφm

∞

∑
n=0

1
n!

(
−iE0

m
h̄

(t− t0)
)n

= ∑
m

cmφme−
i
h̄ E0

m(t−t0). (4.12.13)

The Heisenberg picture: In this picture, the state vector, |ψ〉, is time-independent, while
the observables are time-dependent. This is accomplished by defining the Heisenberg state
vector, |ψH〉, as

|ψH〉= Û†(t, t0)|ψ(t)〉, (4.12.14)

If the Hamiltonian, H, is time independent, its solution 
satisfying the initial condition, U(t0,t0) = I, can be written as 
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Ĥ(t− t0)
)n

(4.12.12)

and act on the wave function. If we do that and take into account that φm are
eigenfunctions of the Hamiltonian (Ĥφm = E0
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The Heisenberg picture: In this picture, the state vector, |ψ〉, is time-independent, while
the observables are time-dependent. This is accomplished by defining the Heisenberg state
vector, |ψH〉, as

|ψH〉= Û†(t, t0)|ψ(t)〉, (4.12.14)

The wave function can be written as  
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The Heisenberg picture: In this picture, the state vector, |ψ〉, is time-independent, while
the observables are time-dependent. This is accomplished by defining the Heisenberg state
vector, |ψH〉, as

|ψH〉= Û†(t, t0)|ψ(t)〉, (4.12.14)

We can expand the wave function !(q,0) into a series with 
respect to the eigenfunctions, !m(q), m = 1,2,3,..., of the 
Hamiltonian 
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The Heisenberg picture: In this picture, the state vector, |ψ〉, is time-independent, while
the observables are time-dependent. This is accomplished by defining the Heisenberg state
vector, |ψH〉, as

|ψH〉= Û†(t, t0)|ψ(t)〉, (4.12.14)
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h̄ (t−t0)Ĥ . (4.12.9)

Using (4.12.9), equation(4.12.2) can be rewritten as

|ψ(t)〉= e−
i
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The Heisenberg picture: In this picture, the state vector, |ψ〉, is time-independent, while
the observables are time-dependent. This is accomplished by defining the Heisenberg state
vector, |ψH〉, as

|ψH〉= Û†(t, t0)|ψ(t)〉, (4.12.14)
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The Heisenberg picture: in this picture, the state vector, | 
!⟩, is time-independent, while the observables are time-

dependent. This is accomplished by defining the Heisenberg 
state vector, |!H ⟩, as 
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and act on the wave function. If we do that and take into account that φm are
eigenfunctions of the Hamiltonian (Ĥφm = E0

mφm) and sum up the resulting series, we get
the wave function at time t:
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The Heisenberg picture: In this picture, the state vector, |ψ〉, is time-independent, while
the observables are time-dependent. This is accomplished by defining the Heisenberg state
vector, |ψH〉, as

|ψH〉= Û†(t, t0)|ψ(t)〉, (4.12.14)

With such a definition |!H⟩ turns out to be time-independent 
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where |ψ(t)〉 is the state vector in the Schrödinger picture. With such a definition |ψH〉
turns out to be time-independent

|ψH〉= Û†(t, t0)|ψ(t)〉. = Û−1(t, t0)|ψ(t)〉= e
i
h̄ (t−t0)Ĥ |ψ(t)〉= |ψ(t0)〉, (4.12.15)

If we compare (4.12.10) and (4.12.14), we conclude that the definition (4.12.14) is
equivalent to going over to a basis (in the Hilbert space) which is translating in time in the
sense opposite to that in the Schrödinger picture. As a consequence, the state vector |ψH〉
gets frozen in time. This leads to

d|ψH〉
dt

= 0. (4.12.16)

Since (4.12.14) represents a unitary transformation of the state vector, physical properties
of a quantum system in both the the Schrödinger and the Heisenberg pictures should be the
same. For instance, consider the average value of time-independent observable, ÂS, in the
Schrödinger picture

〈ÂS〉 =
〈
ψ(t)

∣∣ÂS
∣∣ψ(t)

〉
=

〈
Û(t, t0)ψH

∣∣ÂS
∣∣Û(t, t0)ψH

〉

=
〈
ψH

∣∣(Û†(t, t0)ÂSÛ(t, t0)
)∣∣ψH

〉
(4.12.17)

The requirement of the unchanged average value of Â in both the pictures gives

ÂH(t) = Û†(t, t0)ÂS(t0)Û(t, t0) = e
i
h̄ (t−t0)Ĥ ÂS(t0)e−

i
h̄ (t−t0)Ĥ . (4.12.18)

Or,

ÂS(t0) = ÛÂH(t)Û†(t, t0)(t, t0) = e−
i
h̄ (t−t0)Ĥ ÂH(t)e

i
h̄ (t−t0)Ĥ . (4.12.19)

Equations (4.12.18) and (4.12.19) show that the observables in the Heisenberg and the
Schrödinger pictures are related through a similarity transformation.

The Heisenberg’s equation of motion for an observable is obtained from (4.12.18) by
simply differentiating it with respect to time

dÂH

dt
=

i
h̄

e
i
h̄ (t−t0)Ĥ ĤÂSe−

i
h̄ (t−t0)Ĥ − i

h̄
e

i
h̄ (t−t0)Ĥ ÂSĤe−

i
h̄ (t−t0)Ĥ

=
i
h̄

({
e

i
h̄ (t−t0)Ĥ Ĥe−

i
h̄ (t−t0)Ĥ

}{
e

i
h̄ (t−t0)Ĥ ÂSe−

i
h̄ (t−t0)Ĥ

}

−
{

e
i
h̄ (t−t0)Ĥ ÂSe−

i
h̄ (t−t0)Ĥ

}{
e

i
h̄ (t−t0)Ĥ Ĥe−

i
h̄ (t−t0)Ĥ

})

=
i
h̄
(
ĤHÂH − ÂHĤH

)
. (4.12.20)

As a consequence, the state vector |!H⟩ gets frozen in time. 

This leads to 
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turns out to be time-independent

|ψH〉= Û†(t, t0)|ψ(t)〉. = Û−1(t, t0)|ψ(t)〉= e
i
h̄ (t−t0)Ĥ |ψ(t)〉= |ψ(t0)〉, (4.12.15)

If we compare (4.12.10) and (4.12.14), we conclude that the definition (4.12.14) is
equivalent to going over to a basis (in the Hilbert space) which is translating in time in the
sense opposite to that in the Schrödinger picture. As a consequence, the state vector |ψH〉
gets frozen in time. This leads to

d|ψH〉
dt

= 0. (4.12.16)

Since (4.12.14) represents a unitary transformation of the state vector, physical properties
of a quantum system in both the the Schrödinger and the Heisenberg pictures should be the
same. For instance, consider the average value of time-independent observable, ÂS, in the
Schrödinger picture

〈ÂS〉 =
〈
ψ(t)

∣∣ÂS
∣∣ψ(t)

〉
=

〈
Û(t, t0)ψH

∣∣ÂS
∣∣Û(t, t0)ψH

〉

=
〈
ψH

∣∣(Û†(t, t0)ÂSÛ(t, t0)
)∣∣ψH

〉
(4.12.17)

The requirement of the unchanged average value of Â in both the pictures gives

ÂH(t) = Û†(t, t0)ÂS(t0)Û(t, t0) = e
i
h̄ (t−t0)Ĥ ÂS(t0)e−

i
h̄ (t−t0)Ĥ . (4.12.18)

Or,

ÂS(t0) = ÛÂH(t)Û†(t, t0)(t, t0) = e−
i
h̄ (t−t0)Ĥ ÂH(t)e

i
h̄ (t−t0)Ĥ . (4.12.19)

Equations (4.12.18) and (4.12.19) show that the observables in the Heisenberg and the
Schrödinger pictures are related through a similarity transformation.

The Heisenberg’s equation of motion for an observable is obtained from (4.12.18) by
simply differentiating it with respect to time
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}{
e

i
h̄ (t−t0)Ĥ Ĥe−
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ĤHÂH − ÂHĤH

)
. (4.12.20)
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where |ψ(t)〉 is the state vector in the Schrödinger picture. With such a definition |ψH〉
turns out to be time-independent
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i
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If we compare (4.12.10) and (4.12.14), we conclude that the definition (4.12.14) is
equivalent to going over to a basis (in the Hilbert space) which is translating in time in the
sense opposite to that in the Schrödinger picture. As a consequence, the state vector |ψH〉
gets frozen in time. This leads to

d|ψH〉
dt
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Since (4.12.14) represents a unitary transformation of the state vector, physical properties
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The requirement of the unchanged average value of Â in both the pictures gives
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i
h̄ (t−t0)Ĥ ÂS(t0)e−

i
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Or,

ÂS(t0) = ÛÂH(t)Û†(t, t0)(t, t0) = e−
i
h̄ (t−t0)Ĥ ÂH(t)e

i
h̄ (t−t0)Ĥ . (4.12.19)

Equations (4.12.18) and (4.12.19) show that the observables in the Heisenberg and the
Schrödinger pictures are related through a similarity transformation.

The Heisenberg’s equation of motion for an observable is obtained from (4.12.18) by
simply differentiating it with respect to time

dÂH

dt
=
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h̄

e
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h̄ (t−t0)Ĥ ĤÂSe−

i
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)
. (4.12.20)

The requirement of the unchanged average value of A in 
both the pictures gives 
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where |ψ(t)〉 is the state vector in the Schrödinger picture. With such a definition |ψH〉
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Schrödinger pictures are related through a similarity transformation.
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i
h̄ (t−t0)Ĥ
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where |ψ(t)〉 is the state vector in the Schrödinger picture. With such a definition |ψH〉
turns out to be time-independent

|ψH〉= Û†(t, t0)|ψ(t)〉. = Û−1(t, t0)|ψ(t)〉= e
i
h̄ (t−t0)Ĥ |ψ(t)〉= |ψ(t0)〉, (4.12.15)

If we compare (4.12.10) and (4.12.14), we conclude that the definition (4.12.14) is
equivalent to going over to a basis (in the Hilbert space) which is translating in time in the
sense opposite to that in the Schrödinger picture. As a consequence, the state vector |ψH〉
gets frozen in time. This leads to

d|ψH〉
dt

= 0. (4.12.16)

Since (4.12.14) represents a unitary transformation of the state vector, physical properties
of a quantum system in both the the Schrödinger and the Heisenberg pictures should be the
same. For instance, consider the average value of time-independent observable, ÂS, in the
Schrödinger picture

〈ÂS〉 =
〈
ψ(t)

∣∣ÂS
∣∣ψ(t)

〉
=

〈
Û(t, t0)ψH
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∣∣Û(t, t0)ψH

〉

=
〈
ψH

∣∣(Û†(t, t0)ÂSÛ(t, t0)
)∣∣ψH

〉
(4.12.17)

The requirement of the unchanged average value of Â in both the pictures gives

ÂH(t) = Û†(t, t0)ÂS(t0)Û(t, t0) = e
i
h̄ (t−t0)Ĥ ÂS(t0)e−

i
h̄ (t−t0)Ĥ . (4.12.18)

Or,

ÂS(t0) = ÛÂH(t)Û†(t, t0)(t, t0) = e−
i
h̄ (t−t0)Ĥ ÂH(t)e

i
h̄ (t−t0)Ĥ . (4.12.19)

Equations (4.12.18) and (4.12.19) show that the observables in the Heisenberg and the
Schrödinger pictures are related through a similarity transformation.

The Heisenberg’s equation of motion for an observable is obtained from (4.12.18) by
simply differentiating it with respect to time
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=
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ĤHÂH − ÂHĤH
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. (4.12.20)

Therefore, the Heisenberg’s equation of motion can be 
written as 
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Since the evolution operator, e−
i
h̄ (t−t0)Ĥ , commutes with the Hamiltonian, we have ĤH =

Ĥ. Therefore, the Heisenberg’s equation of motion can be written as

dÂH

dt
=

1
ih̄

[
ÂH , Ĥ

]
. (4.12.21)

If, in addition, ÂH depends explicitly on time, the equations of motion takes the form

dÂH

dt
=

∂ ÂH

∂ t
+

1
ih̄

[
ÂH , Ĥ

]
. (4.12.22)

It remind us of the equations of motion of a dynamical variable, A, in the Poisson bracket
formalism

dA
dt

=
∂A
∂ t

+ {A,H} , (4.12.23)

in which the Poisson bracket, {A,H} has been replaced by the commutator of the
corresponding operators divided by ih̄.

Interaction picture: The interaction picture, the same way as the Heisenberg’s picture,
is useful for the solution of the problems involving time-dependent Hamiltonians. In this
picture, both the state vector, |ψI(t)〉, and the observables depend explicitly on time. In
the cases when the total Hamiltonian, Ĥ, can be separated into a time-independent part,
Ĥ0, and a time-dependent part, Ŵ (t) (interaction Hamiltonian), the state vector, |ψI(t)〉, is
defined through

|ψI〉= Û†
0 (t, t0)|ψ(t)〉= Û−1

0 (t, t0)|ψ(t)〉 ≡ e
i
h̄ (t−t0)Ĥ0 |ψ(t)〉, (4.12.24)

where |ψ(t)〉 is the state vector in the Schrödinger picture. The equation of motion for the
state vector is obtained as follows. Differentiating |ψI〉 with respect to time, we obtain

∂ |ψI〉
∂ t

=
i
h̄

e
i
h̄ (t−t0)Ĥ0Ĥ0|ψ(t)〉+ e

i
h̄ (t−t0)Ĥ0

∂ |ψ(t)〉
∂ t

. (4.12.25)

Using the equation of motion (4.12.1), for |ψ(t)〉 in the Schrödinger’s picture, and a bit of
algebra we obtain

ih̄
∂ |ψI(t)〉

∂ t
= ŴI(t)|ψI(t)〉, (4.12.26)

where ŴI(t) = e
i
h̄ (t−t0)Ĥ0Ŵ (t)e−

i
h̄ (t−t0)Ĥ0 is the time-dependent part of the total

Hamiltonian in the interaction picture.
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Since the evolution operator, e−
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=

1
ih̄

[
ÂH , Ĥ

]
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If, in addition, ÂH depends explicitly on time, the equations of motion takes the form

dÂH

dt
=

∂ ÂH

∂ t
+

1
ih̄

[
ÂH , Ĥ

]
. (4.12.22)

It remind us of the equations of motion of a dynamical variable, A, in the Poisson bracket
formalism

dA
dt

=
∂A
∂ t

+ {A,H} , (4.12.23)

in which the Poisson bracket, {A,H} has been replaced by the commutator of the
corresponding operators divided by ih̄.

Interaction picture: The interaction picture, the same way as the Heisenberg’s picture,
is useful for the solution of the problems involving time-dependent Hamiltonians. In this
picture, both the state vector, |ψI(t)〉, and the observables depend explicitly on time. In
the cases when the total Hamiltonian, Ĥ, can be separated into a time-independent part,
Ĥ0, and a time-dependent part, Ŵ (t) (interaction Hamiltonian), the state vector, |ψI(t)〉, is
defined through

|ψI〉= Û†
0 (t, t0)|ψ(t)〉= Û−1

0 (t, t0)|ψ(t)〉 ≡ e
i
h̄ (t−t0)Ĥ0 |ψ(t)〉, (4.12.24)

where |ψ(t)〉 is the state vector in the Schrödinger picture. The equation of motion for the
state vector is obtained as follows. Differentiating |ψI〉 with respect to time, we obtain

∂ |ψI〉
∂ t

=
i
h̄

e
i
h̄ (t−t0)Ĥ0Ĥ0|ψ(t)〉+ e

i
h̄ (t−t0)Ĥ0

∂ |ψ(t)〉
∂ t

. (4.12.25)

Using the equation of motion (4.12.1), for |ψ(t)〉 in the Schrödinger’s picture, and a bit of
algebra we obtain

ih̄
∂ |ψI(t)〉

∂ t
= ŴI(t)|ψI(t)〉, (4.12.26)

where ŴI(t) = e
i
h̄ (t−t0)Ĥ0Ŵ (t)e−

i
h̄ (t−t0)Ĥ0 is the time-dependent part of the total

Hamiltonian in the interaction picture.

where |!(t)⟩ is the state vector in the Schrödinger picture. 

The equation of motion for the state vector is obtained as 
follows.
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Schrödinger’s, and following the same calculations as in the 
case of Heisenberg’s picture, we arrive at the following 
equation of motion for an observable in the interaction 
picture 
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Defining an observable, ÂI(t), in the interaction picture by

ÂI(t) = e
i
h̄ (t−t0)Ĥ0Âe−

i
h̄ (t−t0)Ĥ0 , (4.12.27)

where Â is the corresponding observable in the Schrödinger’s picture, and following the
same calculations as in the case of Heisenberg’s picture, we arrive at the following equation
of motion for an observable in the interaction picture

ih̄
dÂI

dt
=

[
ÂI , Ĥ0

]
. (4.12.28)

We see that, in this picture, the time evolution of the state vector is governed by the time-
dependent interaction Hamiltonian ŴI(t) only, while the time variation of an observable is
controlled only by the time-independent part, Ĥ0, of the total Hamiltonian, Ĥ.

We would like to note here that all the three pictures of quantum mechanics, discussed
above, are equivalent because they are related trough unitary transformations. Depending
on the problem at hand, one can choose to work with any one of them for relatively easier
and faster solution of the problem.

4.13 Algebraic Treatment of One-dimensional Harmonic Oscillator

The harmonic oscillator: We are now going to discuss the one-dimensional harmonic
oscillator that serves as one of the most important models (if not the most important model)
in quantum theory and can be solved analytically.

The Hamiltonian for the one-dimensional harmonic oscillator (a particle of mass m
attached to a spring) is given by

Ĥ =
p̂2

2m
+

1
2

mω2x̂2 = − h̄2

2m
d2

dx2 +
1
2

mω2x̂2, (4.13.1)

where x represents the displacement of the oscillator from the point of equilibrium (which
is taken to be at the origin of the coordinate system) and ω is its angular frequency. The
corresponding time-independent Schrödinger equation reads

− h̄2

2m
d2φ (x)

dx2 +
1
2

mω2x̂2φ (x) = Eφ (x). (4.13.2)

Our main aim, in this section, is to use the algebraic method for obtaining the energy
eigenvalues and the corresponding bound state wave functions.

Let us introduce the following operators

â =
1√

2mh̄ω
(ip̂+mω x̂) , (4.13.3)
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Defining an observable, ÂI(t), in the interaction picture by

ÂI(t) = e
i
h̄ (t−t0)Ĥ0Âe−

i
h̄ (t−t0)Ĥ0 , (4.12.27)

where Â is the corresponding observable in the Schrödinger’s picture, and following the
same calculations as in the case of Heisenberg’s picture, we arrive at the following equation
of motion for an observable in the interaction picture

ih̄
dÂI

dt
=

[
ÂI , Ĥ0

]
. (4.12.28)

We see that, in this picture, the time evolution of the state vector is governed by the time-
dependent interaction Hamiltonian ŴI(t) only, while the time variation of an observable is
controlled only by the time-independent part, Ĥ0, of the total Hamiltonian, Ĥ.

We would like to note here that all the three pictures of quantum mechanics, discussed
above, are equivalent because they are related trough unitary transformations. Depending
on the problem at hand, one can choose to work with any one of them for relatively easier
and faster solution of the problem.

4.13 Algebraic Treatment of One-dimensional Harmonic Oscillator

The harmonic oscillator: We are now going to discuss the one-dimensional harmonic
oscillator that serves as one of the most important models (if not the most important model)
in quantum theory and can be solved analytically.

The Hamiltonian for the one-dimensional harmonic oscillator (a particle of mass m
attached to a spring) is given by

Ĥ =
p̂2

2m
+

1
2

mω2x̂2 = − h̄2

2m
d2

dx2 +
1
2

mω2x̂2, (4.13.1)

where x represents the displacement of the oscillator from the point of equilibrium (which
is taken to be at the origin of the coordinate system) and ω is its angular frequency. The
corresponding time-independent Schrödinger equation reads

− h̄2

2m
d2φ (x)

dx2 +
1
2

mω2x̂2φ (x) = Eφ (x). (4.13.2)

Our main aim, in this section, is to use the algebraic method for obtaining the energy
eigenvalues and the corresponding bound state wave functions.

Let us introduce the following operators

â =
1√

2mh̄ω
(ip̂+mω x̂) , (4.13.3)

We see that, in this picture, the time evolution of the state 
vector is governed by the time-dependent interaction 
Hamiltonian WI(t) only, while the time variation of an 
observable is controlled only by the time-independent part.
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Differentiating |!I ⟩ with respect to time, we obtain 
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Since the evolution operator, e−
i
h̄ (t−t0)Ĥ , commutes with the Hamiltonian, we have ĤH =

Ĥ. Therefore, the Heisenberg’s equation of motion can be written as

dÂH

dt
=

1
ih̄

[
ÂH , Ĥ

]
. (4.12.21)

If, in addition, ÂH depends explicitly on time, the equations of motion takes the form

dÂH

dt
=

∂ ÂH

∂ t
+

1
ih̄

[
ÂH , Ĥ

]
. (4.12.22)

It remind us of the equations of motion of a dynamical variable, A, in the Poisson bracket
formalism

dA
dt

=
∂A
∂ t

+ {A,H} , (4.12.23)

in which the Poisson bracket, {A,H} has been replaced by the commutator of the
corresponding operators divided by ih̄.

Interaction picture: The interaction picture, the same way as the Heisenberg’s picture,
is useful for the solution of the problems involving time-dependent Hamiltonians. In this
picture, both the state vector, |ψI(t)〉, and the observables depend explicitly on time. In
the cases when the total Hamiltonian, Ĥ, can be separated into a time-independent part,
Ĥ0, and a time-dependent part, Ŵ (t) (interaction Hamiltonian), the state vector, |ψI(t)〉, is
defined through

|ψI〉= Û†
0 (t, t0)|ψ(t)〉= Û−1

0 (t, t0)|ψ(t)〉 ≡ e
i
h̄ (t−t0)Ĥ0 |ψ(t)〉, (4.12.24)

where |ψ(t)〉 is the state vector in the Schrödinger picture. The equation of motion for the
state vector is obtained as follows. Differentiating |ψI〉 with respect to time, we obtain

∂ |ψI〉
∂ t

=
i
h̄

e
i
h̄ (t−t0)Ĥ0Ĥ0|ψ(t)〉+ e

i
h̄ (t−t0)Ĥ0

∂ |ψ(t)〉
∂ t

. (4.12.25)

Using the equation of motion (4.12.1), for |ψ(t)〉 in the Schrödinger’s picture, and a bit of
algebra we obtain

ih̄
∂ |ψI(t)〉

∂ t
= ŴI(t)|ψI(t)〉, (4.12.26)

where ŴI(t) = e
i
h̄ (t−t0)Ĥ0Ŵ (t)e−

i
h̄ (t−t0)Ĥ0 is the time-dependent part of the total

Hamiltonian in the interaction picture.

For |!(t)⟩ in the Schrödinger’s picture, and a bit of algebra 

we obtain 
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i
h̄ (t−t0)Ĥ , commutes with the Hamiltonian, we have ĤH =

Ĥ. Therefore, the Heisenberg’s equation of motion can be written as

dÂH

dt
=

1
ih̄

[
ÂH , Ĥ

]
. (4.12.21)

If, in addition, ÂH depends explicitly on time, the equations of motion takes the form

dÂH

dt
=

∂ ÂH

∂ t
+

1
ih̄

[
ÂH , Ĥ

]
. (4.12.22)

It remind us of the equations of motion of a dynamical variable, A, in the Poisson bracket
formalism

dA
dt

=
∂A
∂ t

+ {A,H} , (4.12.23)

in which the Poisson bracket, {A,H} has been replaced by the commutator of the
corresponding operators divided by ih̄.

Interaction picture: The interaction picture, the same way as the Heisenberg’s picture,
is useful for the solution of the problems involving time-dependent Hamiltonians. In this
picture, both the state vector, |ψI(t)〉, and the observables depend explicitly on time. In
the cases when the total Hamiltonian, Ĥ, can be separated into a time-independent part,
Ĥ0, and a time-dependent part, Ŵ (t) (interaction Hamiltonian), the state vector, |ψI(t)〉, is
defined through

|ψI〉= Û†
0 (t, t0)|ψ(t)〉= Û−1

0 (t, t0)|ψ(t)〉 ≡ e
i
h̄ (t−t0)Ĥ0 |ψ(t)〉, (4.12.24)

where |ψ(t)〉 is the state vector in the Schrödinger picture. The equation of motion for the
state vector is obtained as follows. Differentiating |ψI〉 with respect to time, we obtain

∂ |ψI〉
∂ t

=
i
h̄

e
i
h̄ (t−t0)Ĥ0Ĥ0|ψ(t)〉+ e

i
h̄ (t−t0)Ĥ0

∂ |ψ(t)〉
∂ t

. (4.12.25)

Using the equation of motion (4.12.1), for |ψ(t)〉 in the Schrödinger’s picture, and a bit of
algebra we obtain
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where ŴI(t) = e
i
h̄ (t−t0)Ĥ0Ŵ (t)e−
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The properties of wave function

The wave function must be single-valued. 

It must be continuous in the entire region of its arguments 
(that is, of the independent variables).  

It must be finite everywhere. 

The wave function must also be square-integrable, which 
requires the wave function to vanish at spatial infinity: 

14 Fundamentals of Quantum Mechanics

2.1 Specification of State. Statistical Interpretation

Postulate 1: The state of a quantum system at a given instant of time, t, is completely
defined by a function, ψ(!r, t), of position!r = {x,y,z} and time, t.

It is called the wave function of the particle. The wave function is a complex-valued
function and contains information about the position of the particle at time t.

Statistical Interpretation: The wave function ψ(!r, t) does not have any physical meaning
of its own. However, it has been accepted to consider it as the probability amplitude in the
sense that, if a measurement of the position of the particle is carried out, the probability that
at a given instant of time, t, the particle will be found in an infinitesimal volume element,
∆V = dx dy dz, is given by |ψ(!r, t)|2 dV . This is the so-called statistical interpretation of
the wave function proposed by Max Born. It is then obvious that the quantity |ψ(!r)|2 plays
the role of the probability density for locating the particle in space at a given instant of
time.

There are two important points to be noted here. Firstly, if we multiply ψ by a complex
number eiα , where α is a real constant, its physical meaning does not change because |ψ|2
remains unchanged. Consequently, the probability, P, of locating the particle in a given
volume V ,

P =
∫

V
|ψ(!r, t)|2 dV , (2.1.1)

also remains unchanged.
Now, since the probability of finding the particle at some point in space at a given

instant of time is definitely equal to 1, if the volume of integration, V , in the above formula
is replaced by all space (i.e., the entire universe), we arrive at:

∫

all space
|ψ(!r, t)|2 dV =

∫ +∞

−∞
dx

∫ +∞

−∞
dy

∫ +∞

−∞
dz |ψ(!r, t)|2 = 1. (2.1.2)

Equation (2.1.2) is known as the normalization of the wave function. This condition of
normalizability requires the wave function to be square-integrable. As a particular case,
the square–integrability requires the wave function to vanish at spatial infinity:

lim
(x,y,z)→±∞

ψ(x,y,z, t) = 0. (2.1.3)

In general, an acceptable wave function must satisfy the following conditions:
(a) The wave function must be single-valued.
(b) It must be continuous in the entire region of its arguments (that is, of the independent

variables).
(c) It must be finite everywhere.
(d) The wave function must also be square-integrable.
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Stationary Schrödinger equation 

The time evolution of the wave function, !(r,t), representing 
the state of a quantum mechanical system is governed by 
the following partial differential equation: 
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Example 2.4.2: Find the value of the commutator

Â = [ p̂2
x , (x̂ p̂y− ŷ p̂x)],

where, !̂r = (x̂, ŷ, ẑ) and !̂p = ( p̂x, p̂y, p̂z) are the position and momentum operators of a
particle, respectively.

Solution: Using the properties of the commutator of operators

[Â, B̂+ Ĉ] = [Â, B̂]+ [Â,Ĉ], (2.4.29)

[ÂB̂,Ĉ] = Â[B̂,Ĉ]+ [Â,Ĉ]B̂, (2.4.30)

[Â, B̂Ĉ] = B̂[Â,Ĉ]+ [Â, B̂]Ĉ, (2.4.31)

we get

[ p̂2
x , (x̂ p̂y− ŷ p̂x)] = [ p̂2

x , x̂ p̂y]− [ p̂2
x , ŷ p̂x]

= p̂x[ p̂x, x̂ p̂y]+ [ p̂x, x̂ p̂y] p̂x− p̂x[ p̂x, ŷ p̂x]− [ p̂x, ŷ p̂y] p̂x

= p̂xx̂[ p̂x, p̂y]+ p̂x[ p̂x, x̂] p̂y + x̂[ p̂x, p̂y] p̂x +[ p̂x, x̂] p̂y p̂x

− p̂xŷ[ p̂x, p̂x]− p̂x[ p̂x, ŷ] p̂x− ŷ[ p̂x, p̂y] p̂x− [ p̂x, ŷ] p̂y p̂x

= −ih̄( p̂x p̂y + p̂y p̂x) = −2i p̂x p̂y, (2.4.32)

where we have used the fundamental commutators [x̂ j, p̂k] = ih̄δ jk, j,k = 1,2,3.

2.5 The Schrödinger Equation

Postulate 3: The time evolution of the wave function, ψ(!r, t), representing the state of a
quantum mechanical system is governed by the following partial differential equation:

ih̄
∂ψ(!r, t)

∂ t
= − h̄2

2m
!∇2ψ(!r, t)+V (!r)ψ(!r, t), (2.5.1)

where !∇2 = ∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 is the Laplacian or Laplace operator and V is the potential
energy function. This is the well-known time-dependent Schrödinger equation.

In one spatial dimension, equation (2.5.1) reduces to:

ih̄
∂ψ
∂ t

= − h̄2

2m
∂ 2ψ
∂x2 +V (x)ψ , ψ = ψ(x, t). (2.5.2)

Solutions to the Schrödinger equation with time-
independent potentials, V(r), can be found by employing the 
method of separation of variables; well known from the 
theory of differential equations. 
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between A1 and A2. In other words, the process of measurement induces a sudden
transition of the particle from the superposition state ψ to one of the states ψ1 and
ψ2. This phenomenon is known as the collapse of the wave function and does not
have a classical analogue. This is one of the conceptual difficulties in quantum
mechanics that is yet to be resolved.
Thus, the quantum mechanical superposition has far-reaching consequences
including the conceptual difficulties that we encounter when we try to draw a naive
parallel between a classical system and a quantum system. However, on the positive
side, the validity of the superposition principle enormously helps in solving various
quantum mechanical problems.

2.6 Time-independent Potentials and the Stationary States

Solutions to the Schrödinger equation with time-independent potentials, V (!r), can be
found by employing the method of separation of variables; well known from the theory of
differential equations. This is done by writing the wave function in the form:

ψ(!r, t) = φ (!r) f (t). (2.6.1)

The Schrödinger equation (2.5.1) then leads to

ih̄
1
f

d f
dt

= − h̄2

2m
1

φ (!r)
!∇2φ (!r)+V (!r). (2.6.2)

The left-hand side of (2.6.2) is a function of time, whereas the right-hand side depends
only on spatial variables, x,y and z. Therefore, for this equality to hold, both the left-hand
side and the right-hand side must be equal to a constant (same for both the sides). Let us
call it E. As a consequence, we get a system of two ordinary differential equations:

ih̄
1
f

d f
dt

= E ⇒ d f
dt

= − i
h̄

E f (t), (2.6.3)

and

− h̄2

2m
1

φ (!r)
!∇2φ (!r)+V (!r) = E ⇒ − h̄2

2m
!∇2φ (!r)+V (!r)φ (!r) = Eφ (!r). (2.6.4)

The first of these equations, (see (2.6.3)), can be readily integrated to yield

f (t) = e−
i
h̄ Et . (2.6.5)

The differential equation (2.6.4), satisfied by φ (!r) is called the time-independent
Schrödinger equation (TISE) and its solution depends on the form of the potential V (!r).
In view of the standard conditions (to be satisfied by the overall wave function ψ(!r, t)), a
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The Schrödinger equation then leads to 
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This differential equation satisfied by !(r) is called the 
time-independent Schrödinger equation (TISE) and its 
solution depends on the form of the potential V(r). 

In view of the standard conditions (to be satisfied by the 
overall wave function !(r,t)), a given specific form of V(r) 
imposes specific boundary conditions on !(r).
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TISE in one dimension
The TISE in one spatial dimension takes the form: 


Chapter 3

One-dimensional Problems

In this chapter, we shall first discuss the important properties of stationary state solutions
of the time-independent Schrödinger equation (TISE) in one spatial dimension and then
take up some typical problems.

The TISE in one spatial dimension takes the form:

− h̄2

2m
∂ 2φ (x)

∂x2 +V (x)φ (x) = Eφ (x), (3.0.1)

where x ∈ (−∞,+∞) is the independent variable. The nature and the properties of the
solutions to this equation depend on the interrelationship between the total energy, E, of
the particle and the potential V (x). Let us discuss some of the important concepts related
to it.

Continuum states

V x( )

V E V< <1 2

V2

V1

Bound states

E V V> and1 2

E V V< ,1 2

Vmin

x1 0 x2 x3 x

Figure 3.1 Various possibilities for the bound and scattering states of a particle, with
total energy E , moving in an arbitrary one-dimensional potential V (x).

56

where x ∈ (−∞,+∞) is the independent variable. The nature 

and the properties of the solutions to this equation depend 
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general enough to allow for the illustration of all the 
desired features. Without any loss of generality, the 
potential has been assumed to remain finite at spatial 
infinities: 
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3.1 Bound and Scattering States

Consider an arbitrary form of the potential V (x), shown in Figure 3.1, which is general
enough to allow for the illustration of all the desired features1. Without any loss of
generality, the potential has been assumed to remain finite at spatial infinities:
limx→−∞V (x) = V1 and limx→+∞V (x) = V2 and it has a minimum Vmin at some point.
The character of the energy states of the particle is completely determined by the energy
E of the particle in comparison with the asymptotic values of the potential.

In general, the stationary state solutions are categorized as bound state solutions and
scattering state solutions.

Bound states: Bound states occur whenever the particle is confined (or bound) at all
energies to move within a finite and limited region of space. In the case of the potential
shown in Figure 3.1, if the total energy E of the particle is greater than Vmin but less than
both the asymptotic values V1 and V2 of the potential, the particle’s motion is restricted
between the two classical turning points x1 and x2. The states corresponding to this energy
range are called bound states.

Scattering states: If the total energy of the particle is either greater than V1 and less than
V2 or greater than both V1 and V2, the particle’s motion is not confined to a finite region
of space and the states of the particle, corresponding to these ranges of the total energy,
are called scattering states. Note that for the bound states to exist, the potential V (x) must
have at least one minimum that is lower than V1.

Important properties of bound state energy levels and the wave functions in one
dimension:
1. The bound state energy levels of a system in one spatial dimension are discrete and
nondegenerate.
Proof: The solutions of the TISE must satisfy the boundary conditions at the classical
turning points x1 and x2. The result is that acceptable solutions exist only for a discrete set
of energy eigenvalues.

The proof of non-degeneracy goes as follows. Suppose there are two solutions φ1(x)
and φ2(x) for the same energy eigenvalue E. They both must satisfy the TISE and we get

φ ′′1 = −2m
h̄2 (E−V (x)) φ1, (3.1.1)

φ ′′2 = −2m
h̄2 (E−V (x)) φ2. (3.1.2)

Equations (3.1.1) and (3.1.2) lead to

φ ′′1
φ1

=
φ ′′2
φ2

, ⇒ d
dx

(φ ′1 φ2−φ ′2 φ1) = 0. (3.1.3)

1Landau L.D. and Lifshitz E.M., Quantum Mechanics, Ch. III, p.61, Pergamon Press, 1977

One-dimensional Problems 57

3.1 Bound and Scattering States

Consider an arbitrary form of the potential V (x), shown in Figure 3.1, which is general
enough to allow for the illustration of all the desired features1. Without any loss of
generality, the potential has been assumed to remain finite at spatial infinities:
limx→−∞V (x) = V1 and limx→+∞V (x) = V2 and it has a minimum Vmin at some point.
The character of the energy states of the particle is completely determined by the energy
E of the particle in comparison with the asymptotic values of the potential.

In general, the stationary state solutions are categorized as bound state solutions and
scattering state solutions.

Bound states: Bound states occur whenever the particle is confined (or bound) at all
energies to move within a finite and limited region of space. In the case of the potential
shown in Figure 3.1, if the total energy E of the particle is greater than Vmin but less than
both the asymptotic values V1 and V2 of the potential, the particle’s motion is restricted
between the two classical turning points x1 and x2. The states corresponding to this energy
range are called bound states.

Scattering states: If the total energy of the particle is either greater than V1 and less than
V2 or greater than both V1 and V2, the particle’s motion is not confined to a finite region
of space and the states of the particle, corresponding to these ranges of the total energy,
are called scattering states. Note that for the bound states to exist, the potential V (x) must
have at least one minimum that is lower than V1.

Important properties of bound state energy levels and the wave functions in one
dimension:
1. The bound state energy levels of a system in one spatial dimension are discrete and
nondegenerate.
Proof: The solutions of the TISE must satisfy the boundary conditions at the classical
turning points x1 and x2. The result is that acceptable solutions exist only for a discrete set
of energy eigenvalues.

The proof of non-degeneracy goes as follows. Suppose there are two solutions φ1(x)
and φ2(x) for the same energy eigenvalue E. They both must satisfy the TISE and we get

φ ′′1 = −2m
h̄2 (E−V (x)) φ1, (3.1.1)

φ ′′2 = −2m
h̄2 (E−V (x)) φ2. (3.1.2)

Equations (3.1.1) and (3.1.2) lead to

φ ′′1
φ1

=
φ ′′2
φ2

, ⇒ d
dx

(φ ′1 φ2−φ ′2 φ1) = 0. (3.1.3)

1Landau L.D. and Lifshitz E.M., Quantum Mechanics, Ch. III, p.61, Pergamon Press, 1977



21/09/2023 Jinniu Hu

TISE in one dimension

and it has a minimum Vmin at some point. The character of 
the energy states of the particle is completely determined 
by the energy E of the particle in comparison with the 
asymptotic values of the potential. 


Chapter 3

One-dimensional Problems

In this chapter, we shall first discuss the important properties of stationary state solutions
of the time-independent Schrödinger equation (TISE) in one spatial dimension and then
take up some typical problems.

The TISE in one spatial dimension takes the form:

− h̄2

2m
∂ 2φ (x)

∂x2 +V (x)φ (x) = Eφ (x), (3.0.1)

where x ∈ (−∞,+∞) is the independent variable. The nature and the properties of the
solutions to this equation depend on the interrelationship between the total energy, E, of
the particle and the potential V (x). Let us discuss some of the important concepts related
to it.

Continuum states

V x( )

V E V< <1 2

V2

V1

Bound states

E V V> and1 2

E V V< ,1 2

Vmin

x1 0 x2 x3 x

Figure 3.1 Various possibilities for the bound and scattering states of a particle, with
total energy E , moving in an arbitrary one-dimensional potential V (x).
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Important properties of bound state energy levels and the 
wave functions in one dimension: 


1. The bound state energy levels of a system in one 
spatial dimension are discrete and nondegenerate. 


2. In general, the nth bound state wave function, "n(x), in 
one spatial dimension has n nodes (that is, "n(x) 
vanishes n times), if n = 0 corresponds to the ground 
state and (n − 1) nodes if n = 1 corresponds to the 
ground state. 
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The Free Particle Solution 

A free particle represents a typical example of a stationary 
state that corresponds to an unbounded motion (scattering 
state) both along the positive and the negative x directions. 
In this case, the external potential is absent, that is, V(x) = 
0, and the TISE reads 
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Integrating 3.1.3 once over x and taking into account the fact that the wave functions and
their first derivatives must vanish at infinity, we obtain

φ ′1
φ1

=
φ ′2
φ2

. (3.1.4)

Integrating once more over x and taking into account the boundary conditions, we arrive at

φ1 =C φ2, (3.1.5)

where C is the integration constant. Since C can be absorbed in the normalization of the
wave function, we conclude that φ1 ≡ φ2. The theorem is proved.

2. The ground state wave function has no nodes, that is, it does not become zero anywhere
in the entire region −∞ < x < +∞. The next higher energy bound state is called the
first excited state and has one node, that is, it becomes zero only at one point in space.
The second excited state has two nodes and so on. In general, the nth bound state wave
function, φn(x), in one spatial dimension has n nodes (that is, φn(x) vanishes n times), if
n = 0 corresponds to the ground state and (n−1) nodes if n = 1 corresponds to the ground
state.

The aforementioned property is proved by using the so-called variational principle. We
shall not present it here. Instead, we refer the reader to the book, Methods of Mathematical
Physics, Vol. 1 by R. Courant and D. Hilbert.

Before moving on, let us try to solve the one-dimensional TISE and obtain the
stationary state solutions in a couple of simple cases, which will illustrate the
methodology and the peculiarities of quantum mechanics.

3.2 The Free Particle Solution

A free particle represents a typical example of a stationary state that corresponds to an
unbounded motion (scattering state) both along the positive and the negative x directions.
In this case, the external potential is absent, that is, V (x) = 0, and the TISE reads

− h̄2

2m
d2φ (x)

dx2 = Eφ (x) ⇒ d2φ (x)
dx2 + k2φ (x) = 0, (3.2.1)

where

k2 =
2mE
h̄2 ,E > 0. (3.2.2)

Equation (3.2.1) has two linearly independent solutions:

φ(+)(x) = eikx, φ(−)(x) = e−ikx. (3.2.3)

where
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The Free Particle Solution 

The general stationary state solution is the linear 
superposition given by 
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The general stationary state solution is the linear superposition given by

ψ(x, t) = A(+)e
i(kx−ωt) +A(−)e

−i(kx+ωt), (3.2.4)

where A(+) and A(−) are arbitrary, in general complex, constants and we have used the fact
that ω = E/h̄. If we use the de-Broglie formula

p = h̄ k, (3.2.5)

then the solution (3.2.4) can be written as

ψ(x, t) = A(+) e
i
h̄ (p x−E t) +A(−) e−

i
h̄ (p x+E t). (3.2.6)

The first term in the above equation represents a particle travelling to the right (positive x
direction) and the second term represents a particle travelling to the left with well defined
momenta p± = ± h̄k and energy E± = h̄2k2/2m. The intensities of corresponding waves
are |A+|2 and |A−|2, respectively. Since there are no boundary conditions, there are no
restrictions on the values of k and E; all values of k and E give solutions to the TISE. Thus,
a free particle has a continuous energy spectrum.

There is, however, some problems related to the free particle solution. Firstly, the
probability densities corresponding to either solutions are constant

P± =
∣∣∣A(±)

∣∣∣
2

, (3.2.7)

that is, they depend neither on x nor on t. This is due to the fact that, for a state with definite
values of momentum, p± =±h̄k, and energy E± = h̄2k2/2m, there occurs a complete loss
of information about the position of the particle and the instant of time at which it is located
at that position. This is the consequence of Heisenberg’s uncertainty principle, according
to which, since the momentum and energy of a particle are known exactly (∆p = 0, and
∆E = 0), there must be a total uncertainty about its position and time at which it is located
at that position.

The second difficulty is in an apparent discrepancy between the speed of the wave and
the speed of the particle it is supposed to represent. The speed of the right or the left moving
plane wave is given by

vp =
ω
k
=

E
h̄k

=
h̄k
2m

. (3.2.8)

The velocity of the particle, on the other hand, is given by

v =
p
m

=
h̄k
m

= 2vp. (3.2.9)

This means that the particle travels twice as fast as the wave that represents it.

where A(+) and A(−) are arbitrary, in general complex, constants. 
If we use the de Broglie formula, the solution can be written 
as 

One-dimensional Problems 59

The general stationary state solution is the linear superposition given by

ψ(x, t) = A(+)e
i(kx−ωt) +A(−)e

−i(kx+ωt), (3.2.4)

where A(+) and A(−) are arbitrary, in general complex, constants and we have used the fact
that ω = E/h̄. If we use the de-Broglie formula

p = h̄ k, (3.2.5)

then the solution (3.2.4) can be written as

ψ(x, t) = A(+) e
i
h̄ (p x−E t) +A(−) e−

i
h̄ (p x+E t). (3.2.6)

The first term in the above equation represents a particle travelling to the right (positive x
direction) and the second term represents a particle travelling to the left with well defined
momenta p± = ± h̄k and energy E± = h̄2k2/2m. The intensities of corresponding waves
are |A+|2 and |A−|2, respectively. Since there are no boundary conditions, there are no
restrictions on the values of k and E; all values of k and E give solutions to the TISE. Thus,
a free particle has a continuous energy spectrum.

There is, however, some problems related to the free particle solution. Firstly, the
probability densities corresponding to either solutions are constant

P± =
∣∣∣A(±)

∣∣∣
2

, (3.2.7)

that is, they depend neither on x nor on t. This is due to the fact that, for a state with definite
values of momentum, p± =±h̄k, and energy E± = h̄2k2/2m, there occurs a complete loss
of information about the position of the particle and the instant of time at which it is located
at that position. This is the consequence of Heisenberg’s uncertainty principle, according
to which, since the momentum and energy of a particle are known exactly (∆p = 0, and
∆E = 0), there must be a total uncertainty about its position and time at which it is located
at that position.

The second difficulty is in an apparent discrepancy between the speed of the wave and
the speed of the particle it is supposed to represent. The speed of the right or the left moving
plane wave is given by

vp =
ω
k
=

E
h̄k

=
h̄k
2m

. (3.2.8)

The velocity of the particle, on the other hand, is given by

v =
p
m

=
h̄k
m

= 2vp. (3.2.9)

This means that the particle travels twice as fast as the wave that represents it.

The first term in the above equation represents a particle 
traveling to the right (positive x direction) and the second 
term represents a particle traveling to the left. 
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The Free Particle Solution 

Three problems about the solution of free particle:


1. Firstly, the probability densities corresponding to either 
solutions are constant that is, they depend neither on x 
nor on t. 


     2. The second difficulty is in an apparent discrepancy 

        between the speed of the wave and the speed of the        


particle it is supposed to represent. 

3. The third difficulty is that the free particle wave 

   function cannot be normalized: 
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The third difficulty is that the free particle wave function cannot be normalized:
∫ +∞

−∞
|ψ(x, t)|2 dx = |A±|2

∫ +∞

−∞
dx → ∞. (3.2.10)

Hence, as we have discussed earlier, these plane wave solutions of the free Schrödinger
equation cannot be taken as quantum mechanical wave functions representing free
particles. The natural question arises: Is there anyway out of this problem?

The answer is yes! What saves us is the fact that the Schrödinger equation is linear
and superposition principle holds. Therefore, we can superpose a large number of plane
wave solutions and the resulting function will be a solution of the Schrödinger equation.
Such a solution turns out to be localized and is called a wave packet. Mathematically it is
written as

ψ(x, t) =
1√
2π

∫ +∞

−∞
ψ̃(k) ei(k(ω)x−ωt) dk, (3.2.11)

where the amplitude of the wave packet ψ̃(k) is given by the Fourier transform of ψ(x,0):

ψ̃(k) =
1√
2π

∫ +∞

−∞
ψ(x,0) e−ik(ω)x dx. (3.2.12)

The wave packet represented by the equation (3.2.11) is localized in space, namely at x = 0
(Figure 3.2). This is because of the fact that ψ(x, t) is a superposition of an infinite number
of plane waves that are, as we know, coherent and will interfere with each other. They add
up constructively at x = 0, while their constructive interference diminishes as we move
away from the point x = 0. The rapid oscillations of the exponential factor eikx ensures
that the waves interfere destructively for x→±∞. Similarly, the function ψ̃(k) represents
a wave packet in k-space (momentum space). It is localized at k = 0 and vanishes at large
values of k.

As a measure of the size of the packet in x-space, it is customary to define a half-width
∆x corresponding to the half-maximum of |ψ(x, t)|2. It is defined such that when x varies
from 0 to ±∆x, the function |ψ(x)|2 drops down to e−1/2 times its initial value:

|ψ(±∆x)|2

|ψ(0,0)|2
=

1
e1/2 . (3.2.13)

Similarly, one defines a half-width ∆k corresponding to the half-maximum of |ψ̃(k)|2. In
this case it is defined such that when k varies from k0 to k0±∆k, the function |ψ̃(k)|2 drops
down to e−1/2 times its initial value:

|ψ̃(±∆k)|2

|ψ̃(0)|2
=

1
e1/2 (3.2.14)

One-dimensional Problems 59

The general stationary state solution is the linear superposition given by

ψ(x, t) = A(+)e
i(kx−ωt) +A(−)e

−i(kx+ωt), (3.2.4)

where A(+) and A(−) are arbitrary, in general complex, constants and we have used the fact
that ω = E/h̄. If we use the de-Broglie formula

p = h̄ k, (3.2.5)

then the solution (3.2.4) can be written as

ψ(x, t) = A(+) e
i
h̄ (p x−E t) +A(−) e−

i
h̄ (p x+E t). (3.2.6)

The first term in the above equation represents a particle travelling to the right (positive x
direction) and the second term represents a particle travelling to the left with well defined
momenta p± = ± h̄k and energy E± = h̄2k2/2m. The intensities of corresponding waves
are |A+|2 and |A−|2, respectively. Since there are no boundary conditions, there are no
restrictions on the values of k and E; all values of k and E give solutions to the TISE. Thus,
a free particle has a continuous energy spectrum.

There is, however, some problems related to the free particle solution. Firstly, the
probability densities corresponding to either solutions are constant

P± =
∣∣∣A(±)

∣∣∣
2

, (3.2.7)

that is, they depend neither on x nor on t. This is due to the fact that, for a state with definite
values of momentum, p± =±h̄k, and energy E± = h̄2k2/2m, there occurs a complete loss
of information about the position of the particle and the instant of time at which it is located
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to which, since the momentum and energy of a particle are known exactly (∆p = 0, and
∆E = 0), there must be a total uncertainty about its position and time at which it is located
at that position.

The second difficulty is in an apparent discrepancy between the speed of the wave and
the speed of the particle it is supposed to represent. The speed of the right or the left moving
plane wave is given by
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The velocity of the particle, on the other hand, is given by
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This means that the particle travels twice as fast as the wave that represents it.
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An Infinite Potential Well 

Asymmetric infinite square well potential. 
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restricting the motion of a free particle to a small region of width a by putting walls of
infinite potential at x = 0 and x = a (see Figure 3.3). This is known as asymmetric infinite
square well potential.

E

V !"# V !"#

V = 0

0 a x

Figure 3.3 The representative shape of an infinite potential well V (x) of width a. E is
the total energy of the particle trapped in the potential.

Mathematically this is given by the following expression:

V (x) =

{
0, for 0 < x < a,

∞, for x≤ 0,x≥ a.
(3.3.1)

We want to solve the Schrödinger equation for the stationary states of a particle of mass
m moving inside such a potential well. Clearly, due to the infinite walls, the particle is
trapped and cannot leave the region 0 < x < a. If we look at it from the classical point of
view, the particle moves inside the well with a constant speed, p/m = ±

√
2mE/m, back

and forth getting reflected from the walls at x = 0 and x = a. Since the motion of the
particle is confined inside the well, quantum mechanically, it corresponds to the case of a
bound state problem. In order to find the bound state energies and wave functions, we must
solve the TISE with appropriate boundary conditions. Since the particle cannot penetrate
the regions x < 0 and x > a, the wave function of the particle must be zero in these regions:
ψ = 0 for x < 0 and x > a.

The TISE

d2φ
dx2 +

2m
h̄2 (E−V )φ = 0 (3.3.2)
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where the prime stands for ordinary derivative with respect to x. Inside the well, V = 0,
and the solution is given by the linear combination

φ (x) = A sin(kx)+B cos(kx), (3.3.4)

where A and B are arbitrary constants and

k2 =
2mE
h̄2 . (3.3.5)
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Figure 3.4 Spatial parts of the wave functions for the first three stationary states of a
particle in the infinite square well potential with a = 1.

According to the standard conditions, the wave function has to be continuous across the
boundaries and we must have φ ≡ 0 for x = 0 and x = a. The first boundary condition
φ (x = 0) = 0 leads to B = 0. So, we are left with φ (x) = A sin(kx). The second boundary
condition yields

sin(ka) = 0, ⇒ kn =
nπ
a

, n = 1,2,3, ... (3.3.6)

Taking into account (3.3.6), we conclude that the boundary conditions can be satisfied only
for the discrete values of energy
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En =
n2h̄2π2

2ma2 , n = 1,2,3, . . . , (3.3.7)

where we have omitted n = 0 because it leads to an uninteresting result: φ0(x) = 0 and
E0 = 0. Thus, a particle, trapped inside an infinite potential well, can have only discrete
set of energy eigenvalues given by (3.3.7). The corresponding eigenfunctions are

φn(x) = Bn sin
(nπ

a
x
)

. (3.3.8)

The constant Bn is determined by the normalization condition

|Bn|2
∫ +∞

−∞
φ ∗n (x)φn(x)dx = |Bn|2

∫ a

0
sin2

(πx
a

n
)

dx = 1. (3.3.9)

The result is

Bn =

√
2
a

. (3.3.10)

Therefore, the normalized eigenfunctions and the corresponding energies are

ψn(x, t) =
√

2
a

sin
(πx

a
n
)

, En =
n2h̄2π2

2ma2 , n = 1,2,3, ... . (3.3.11)

We thus got an infinite sequence of discrete energy levels corresponding to the positive
integer values of the quantum number n. The ground state corresponds to n= 1 with energy
E1 = h̄2π2/(2ma2). The states with quantum numbers n > 1 are called the excited states.
Their energies are equal to n2 times the ground state energy.

The full stationary state solutions are

ψn(x, t) =
√

2
a

sin
(πx

a
n
)

e−i n2π2h̄
2ma2 t . (3.3.12)

Note that, in view of the linearity of the Schrödinger equation, the most general stationary
state solution for the given case can be written as

ψ(x, t) =
∞

∑
n=1

cn

√
2
a

sin
(πx

a
n
)

e−i n2π2h̄
2ma2 t , (3.3.13)

where cn are arbitrary constants. The spatial parts of the wave functions, for the first three
stationary states of a particle in the infinite square well potential with a = 1, are depicted
in Fig.3.4.
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where the prime stands for ordinary derivative with respect to x. Inside the well, V = 0,
and the solution is given by the linear combination

φ (x) = A sin(kx)+B cos(kx), (3.3.4)

where A and B are arbitrary constants and
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Figure 3.4 Spatial parts of the wave functions for the first three stationary states of a
particle in the infinite square well potential with a = 1.

According to the standard conditions, the wave function has to be continuous across the
boundaries and we must have φ ≡ 0 for x = 0 and x = a. The first boundary condition
φ (x = 0) = 0 leads to B = 0. So, we are left with φ (x) = A sin(kx). The second boundary
condition yields

sin(ka) = 0, ⇒ kn =
nπ
a

, n = 1,2,3, ... (3.3.6)

Taking into account (3.3.6), we conclude that the boundary conditions can be satisfied only
for the discrete values of energy
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We thus got an infinite sequence of discrete energy levels 
corresponding to the positive integer values of the quantum 
number n. 

The ground state corresponds to n = 1 with energy 
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Note that, in view of the linearity of the Schrödinger equation, the most general stationary
state solution for the given case can be written as
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where cn are arbitrary constants. The spatial parts of the wave functions, for the first three
stationary states of a particle in the infinite square well potential with a = 1, are depicted
in Fig.3.4.

The states with quantum numbers n > 1 are called the 
excited states. Their energies are equal to n2 times the 
ground state energy. 
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E0 = 0. Thus, a particle, trapped inside an infinite potential well, can have only discrete
set of energy eigenvalues given by (3.3.7). The corresponding eigenfunctions are

φn(x) = Bn sin
(nπ

a
x
)

. (3.3.8)

The constant Bn is determined by the normalization condition

|Bn|2
∫ +∞

−∞
φ ∗n (x)φn(x)dx = |Bn|2

∫ a

0
sin2

(πx
a

n
)

dx = 1. (3.3.9)

The result is

Bn =

√
2
a

. (3.3.10)

Therefore, the normalized eigenfunctions and the corresponding energies are

ψn(x, t) =
√

2
a

sin
(πx

a
n
)

, En =
n2h̄2π2

2ma2 , n = 1,2,3, ... . (3.3.11)

We thus got an infinite sequence of discrete energy levels corresponding to the positive
integer values of the quantum number n. The ground state corresponds to n= 1 with energy
E1 = h̄2π2/(2ma2). The states with quantum numbers n > 1 are called the excited states.
Their energies are equal to n2 times the ground state energy.

The full stationary state solutions are

ψn(x, t) =
√

2
a

sin
(πx

a
n
)

e−i n2π2h̄
2ma2 t . (3.3.12)

Note that, in view of the linearity of the Schrödinger equation, the most general stationary
state solution for the given case can be written as

ψ(x, t) =
∞

∑
n=1

cn

√
2
a

sin
(πx

a
n
)

e−i n2π2h̄
2ma2 t , (3.3.13)

where cn are arbitrary constants. The spatial parts of the wave functions, for the first three
stationary states of a particle in the infinite square well potential with a = 1, are depicted
in Fig.3.4.
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where cn are arbitrary constants. Let us enumerate the 
important properties of the obtained solutions. These 
properties are quite general and hold good for most of the 
potentials encountered in quantum mechanics. 
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1. The eigenfunction !n(x) has(n−1) nodes (zero-crossing). 

2. These functions are alternately symmetric and 
antisymmetric with respect to the centre of the well. 

3. None of the energy levels is degenerate, that is, each 
energy level corresponds to a unique eigenfunction. 

4. The eigenfunctions corresponding to different energy 
eigenvalues are orthogonal: 
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Properties of the eigenfunctions: Let us enumerate the important properties of the
obtained solutions. These properties are quite general and hold good for most of the
potentials encountered in quantum mechanics.

1. The eigenfunction φn(x) has (n−1) nodes (zero-crossing).
2. These functions are alternately symmetric and antisymmetric with respect to the

centre of the well. For instance, as shown in Figure 3.4, the functions φ1 and φ3 are
symmetric whereas the function φ2 is antisymmetric. In general, the eigenfunctions
φn with odd n are symmetric while those with even n are antisymmetric.

3. None of the energy levels is degenerate, that is, each energy level corresponds to a
unique eigenfunction.

4. The eigenfunctions corresponding to different energy eigenvalues are orthogonal:
∫ +∞

−∞
φ ∗m(x)φn(x)dx =

∫ a

0
φ ∗m(x)φn(x)dx = δmn, (3.3.14)

where δmn is the Kronecker delta:

δmn =

{
1 if m = n
0 if m #= n. (3.3.15)

5. The eigenfunctions {φn(x)},n = 1,2,3, . . . constitute a complete set in the sense that
an arbitrary function f (x) can be expanded as a linear combination of these functions:

f (x) =
∞

∑
n=1

cnφn(x) =

√
2
a

∞

∑
n=1

cn sin
(πx

a
n
)

, (3.3.16)

where the coefficients cn are calculated as

cn =
∫ a

0
φ ∗n (x) f (x)dx. (3.3.17)

Note that, the ground state corresponds to n = 1 instead of n = 0. The reason behind it
lies in Heisenberg’s uncertainty relation between the position and momentum (see
Eq. (3.10.12)) of the particle. If the particle has zero total energy, it will be at rest inside
the well and we can, in principle, precisely determine its position and momentum
simultaneously at a given instant of time. This is not permitted by the uncertainty relation.

Furthermore, since our particle is localized inside the well of width a, according to the
uncertainty relation, the minimum uncertainty in the momentum of the particle is of the
order of h̄/2a, that is, ∆p = h̄/2a. This leads to a minimum possible value of the kinetic
energy of the particle equal to h̄2/8ma2, which is of the order of the ground state energy
E1 = π2h̄2/2ma2. This unavoidable minimum energy enforced by the uncertainty
principle is known as the zero-point energy. The zero-point energy therefore reflects the
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Note that, the ground state corresponds to n = 1 instead of n 
= 0. The reason behind it lies in Heisenberg’s uncertainty 
relation between the position and momentum 


If the particle has zero total energy, it will be at rest inside 
the well and we can, in principle, precisely determine its 
position and momentum simultaneously at a given instant of 
time. 


Furthermore, since our particle is localized inside the well of 
width a, according to the uncertainty relation, there is a 
zero-point energy  
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If V (x) is finite and continuous everywhere, we can expect 
the solutions of the TISE to be finite, continuous and 
differentiable. 


It is evident from the physical interpretation of the wave 
function that it has to be continuous everywhere 
irrespective of the fact whether or not the potential has 
discontinuity.


However, the differentiability of the wave function is not 
guaranteed in advance and hence, must be examined. 
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The potential has a finite jump (discontinuity), say, at x = 0: 
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has discontinuity. However, the differentiability of the wave function is not guaranteed
in advance and hence, must be examined. This is also important because of the fact that
the general solution of TISE contains two integration constants to be determined by the
boundary conditions and one of the boundary conditions involves the first-order derivative
of the wave function.

(a) The potential has a finite jump (discontinuity), say, at x = 0:

V (x) =
{

0 for x < 0
V0 > 0 for x≥ 0.

(3.4.1)

The wave function has to be continuous across x = 0. To check the continuity of the
first derivative, we first replace the potential V (x) by a smoothened potential Vε(x)
in the interval x ∈ [−ε ,+ε ] such that

lim
ε→0

Vε(x) = V0. (3.4.2)

Here ε % 1 is an infinitesimal positive parameter. Integrating the time-independent
Schrödinger equation in this interval over x, we obtain
(

dφ
dx

)

+ε
−
(

dφ
dx

)

−ε
= −2mE

h̄2

∫ +ε

−ε
φ (x)dx+

2mE
h̄2

∫ +ε

−ε
V (x)φ (x)dx. (3.4.3)

If we take the limit ε → 0 in (3.4.3), we get

∆
(

dφ
dx

)
= −2mE

h̄2 lim
ε→0

∫ +ε

−ε
φ (x)dx+

2mE
h̄2 lim

ε→0

∫ +ε

−ε
V (x)φ (x)dx. (3.4.4)

The first term on the right-hand side of (3.4.4) is zero because φ (x) is continuous
across x = 0 and hence, the integral goes to zero as ε becomes zero. The second term
is also zero because

lim
ε→0

∫ +ε

−ε
V (x)φ (x)dx. = V0 lim

ε→0

∫ +ε

−ε
φ (x)dx = 0. (3.4.5)

As a result, we arrive at
(

dφ
dx

)

+ε
=

(
dφ
dx

)

−ε
. (3.4.6)

Thus, if the potential has a finite jump at a point, the wave function and its first
derivative are continuous at the point of discontinuity. That is, the wave function is
differentiable at the points of finite discontinuity of the potential.

The wave function has to be continuous across x = 0. To 
check the continuity of the first derivative, we first replace 
the potential V (x) by a smoothened potential V�(x) in the 
interval x ∈ [−�,+�] such that 
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Thus, if the potential has a finite jump at a point, the wave function and its first
derivative are continuous at the point of discontinuity. That is, the wave function is
differentiable at the points of finite discontinuity of the potential.

Here � ≪ 1 is an infinitesimal positive parameter. 
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Integrating the time-independent Schrödinger equation in 
this interval over x, we obtain 
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As a result, we arrive at
(
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−ε
. (3.4.6)

Thus, if the potential has a finite jump at a point, the wave function and its first
derivative are continuous at the point of discontinuity. That is, the wave function is
differentiable at the points of finite discontinuity of the potential.

The first term on the right-hand side is zero because !(x) is 
continuous across x = 0 and hence, the integral goes to zero 
as � becomes zero. 
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has discontinuity. However, the differentiability of the wave function is not guaranteed
in advance and hence, must be examined. This is also important because of the fact that
the general solution of TISE contains two integration constants to be determined by the
boundary conditions and one of the boundary conditions involves the first-order derivative
of the wave function.

(a) The potential has a finite jump (discontinuity), say, at x = 0:

V (x) =
{

0 for x < 0
V0 > 0 for x≥ 0.

(3.4.1)

The wave function has to be continuous across x = 0. To check the continuity of the
first derivative, we first replace the potential V (x) by a smoothened potential Vε(x)
in the interval x ∈ [−ε ,+ε ] such that

lim
ε→0

Vε(x) = V0. (3.4.2)
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Thus, if the potential has a finite jump at a point, the wave function and its first
derivative are continuous at the point of discontinuity. That is, the wave function is
differentiable at the points of finite discontinuity of the potential.

Thus, if the potential has a finite jump at a point, the wave 
function and its first derivative are continuous at the point 
of discontinuity. That is, the wave function is differentiable 
at the points of finite discontinuity of the potential. 
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Discontinuous Potentials 

The potential V(x) is infinite in a region: in this case, the 
particle cannot penetrate through the infinite barrier and 
the probability of finding the particle inside the barrier is 
zero. Therefore, the wave function must vanish everywhere in 
the region of infinite potential. 

The potential becomes infinite at a point ( that is, has a 
singularity at a point). We can model this situation by 
assuming 
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(b) The potential V (x) is infinite in a region: In this case, the particle cannot penetrate
through the infinite barrier and the probability of finding the particle inside the barrier
is zero. Therefore, the wave function must vanish everywhere in the region of infinite
potential.

(c) The potential becomes infinite at a point ( that is, has a singularity at a point): We
can model this situation by assuming V (x) = −α δ (x− x0), where α is a positive
constant. The wave function will be continuous at x = x0. In order to verify the
continuity of the first derivative, we once again integrate the corresponding TISE in
the vicinity of the point x = x0. We get
(

dφ
dx

)

+ε
−
(

dφ
dx

)

−ε
= −2mα

h̄2

∫ +ε

−ε
δ (x− x0)φ (x)dx = −2mα

h̄2 φ (x0). (3.4.7)

Thus, the first derivative of the wave function is not continuous across the point of
singularity. Instead, it has a finite jump of (−2mα/h̄2)φ (x0) at x = x0.

Example 3.4.1: A free particle of mass, m, and total energy, E, is incident from x→−∞ on
a potential step given by

V (x) =
{

0 for x < 0
V0 > 0 for x≥ 0,

(3.4.8)

where V0 > E is a positive constant. Solve the corresponding TISE, apply the appropriate
boundary conditions and determine the wave function.

Solution: The given potential divides the entire region −∞ < x < +∞ into two halves:
x < 0, where the potential is zero and x > 0, where the potential has a constant value
V0. We will call them Region 1 and Region 2, respectively. The corresponding stationary
state wave functions in these regions are denoted as ψ1(x, t) = φ1(x)e−iEt/h̄ and ψ2(x, t) =
φ2(x)e−iEt/h̄, respectively. In Region 1, the TISE

d2φ
dx2 +

2mE
h̄2 φ = 0 (3.4.9)

has the following general solution

φ (x) = Aeik1x +Be−ik1x, (3.4.10)

where k2
1 = 2mE/h̄2 and A and B are arbitrary constants. As a result,

ψ1(x, t) = Aei(kx−i E
h̄ t) +Be−i(kx+i E

h̄ t). (3.4.11)

The wave function will be continuous at x = x0.
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In order to verify the continuity of the first derivative, we 
once again integrate the corresponding TISE in the vicinity of 
the point x=x0. We get 
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at x=x0 
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Delta Potential

A particle of mass, m and total energy −E (E>0), is subject

to the potential given by


here � is a positive constant and �(x) is the Dirac delta 
function. 
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Now, without any loss of generality, we might assume that the incident particle’s wave
function (a wave packet) is normalized in such a way that A = 1. Then the required wave
function is

φ (x) =






ei(k1x−iωt) + k1−ik2
k1+ik2

e−i(kx+iωt) x < 0,

2k1
k1+ik2

e−(k2x+iωt) x > 0,
(3.4.21)

where ω = E/h̄.

Example 3.4.2: A particle of mass m and total energy,−E (E > 0), is subject to the potential
given by

V (x) = −αδ (x),

here α is a positive constant and δ (x) is the Dirac delta function. Solve the Schrödinger
equation for the bound states and find the energy levels and the corresponding normalized
wave functions. How many bound states can the particle have in such a potential?

Solution: Let us first solve the time-independent Schrödinger equation

− h̄2

2m
d2φ
dx2 +V (x)φ = Eφ (3.4.22)

for the wave function φ (x). For x < 0 and x > 0, V (x) = 0 and we have

d2φ
dx2 −

2m|E|
h̄2 φ = 0. (3.4.23)

Since the standard conditions require the wave function to vanish for x→±∞, we have

φ (x) =

{
Aekx for x < 0

Be−kx for x > 0,
(3.4.24)

where k =
√

2m|E|
/

h̄ and A and B are real but arbitrary constants. The continuity of φ (x)
at x = 0 yields

A = B. (3.4.25)

The potential is infinite at x = 0. Therefore, as discussed earlier, the first derivative of the
wave function will be discontinuous and we shall have

(
dφ
dx

)

+ε
−
(

dφ
dx

)

−ε
= −2mα

h̄2

∫ +ε

−ε
δ (x)φ (x)dx = −2mα

h̄2 φ (0). (3.4.26)

For x<0 and x>0, V(x)=0 and we have 
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Since the standard conditions require the wave function to 
vanish for x�±∞, we have 




21/09/2023 Jinniu Hu

Delta Potential

where 
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and A and B are real but arbitrary constants. The continuity 
of !(x) at x = 0 yields 
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The potential is infinite at x = 0. Therefore, as discussed 
earlier, the first derivative of the wave function will be 
discontinuous and we shall have
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If we take the limit ��0 and put A=B, we obtain 


72 Fundamentals of Quantum Mechanics

If we take the limit ε → 0 and put A = B, we obtain

−2kA = −2mα
h̄2 φ (0) = −2mα

h̄2 A ⇒ k =
mα
h̄2 . (3.4.27)

We thus see that there is only one bound state for the particle in this case whose energy is

E = −mα
2h̄2 . (3.4.28)

The normalization of the wave function reads
∫ +∞

−∞
|ψ(x)|2 dx = A2

∫ 0

−∞
e2kx dx+A2

∫ +∞

0
e−2kx dx =

A2

k
= 1. (3.4.29)

Hence, A =
√

k. The normalized wave function is thus given by

φ (x) =

{ √
kekx for x < 0,

√
ke−kx for x > 0.

or, φ (x) =
√

mα
h̄2 e−

mα
h̄2 |x|. (3.4.30)

3.5 Conservation of Probability and the Continuity Equation

Continuity equation in quantum mechanics
In Chapter 2, we talked about the statistical interpretation of the wave function in which
the quantity |ψ(x, t)|2 represents the probability density at a given instant of time. The
argument that at any t, the particle is definitely somewhere in the universe led to the
normalization condition for the wave function. Later, we also postulated the
time-evolution of the wave function to be governed by the time-dependent Schrödinger
equation. Therefore, it is natural to check whether the statistical interpretation of the wave
function is consistent with its time-evolution. In other words, we want to answer the
following question: If the wave function is normalized at t = 0, does it remain normalized
at any t > 0? It turns out that it does. This is what we are going to show.

Consider, for simplicity, one-dimensional Schrödinger equations both for the wave
function, ψ , and its complex conjugate function ψ∗. We have

ih̄
∂ψ
∂ t

= − h̄2

2m
∂ 2ψ
∂x2 +V (x)ψ , (3.5.1)

− ih̄
∂ψ∗

∂ t
= − h̄2

2m
∂ 2ψ∗

∂x2 +V (x)ψ∗. (3.5.2)

If we multiply the equation (3.5.1) by ψ∗, the equation (3.5.2) by ψ and subtract the second
from the first, the result can be written in the form of a continuity equation:

We thus see that there is only one bound state for the 
particle in this case whose energy is 

The normalization of the wave function reads 
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Finite Square Well Potential 

Consider the motion of a quantum particle in a finite 
potential well 
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3.7 Particle in a Finite Square Well Potential

Consider the motion of a quantum particle in a finite potential well (Figure 3.6):

V (x) =
{

0, if |x|≤ a
V0, if |x|> a . (3.7.1)

We are required to solve the TISE with this potential for the bound states, when the total
energy, E, of the particle is less than V0 and determine the eigenfunctions and the
corresponding energy eigenvalues. This type of potential is considered as an approximate
model for the solution of several problems in atomic and nuclear physics.

V x( )

V0 V0

E

–a a0 x

Figure 3.6 The representative shape of a finite potential well V (x) of depth V0.

Solution: The entire range of x from−∞ to +∞ can be divided into three regions: −a≤ x≤
a (Region I), x <−a (Region II) and x > a (Region III). The general TISE reads

− h̄2

2m
d2φ
dx2 +V (x)φ = Eφ . (3.7.2)

The TISE and the corresponding solutions in these regions can be written as:

Region I:

φ ′′1 + k2
1φ1 = 0, k2

1 =
2mE
h̄2 ,

φ1 = A1 cos (k1x)+B1 sin (k1x) . (3.7.3)
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We are required to solve the TISE with this potential for the 
bound states, when the total energy, E, of the particle is less 
than V0 and determine the eigenfunctions and the 
corresponding energy eigenvalues. 
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Symmetric Potential 

Parity operator: Consider the operation of space inversion in 
which we change the space variables from r = {x, y, z} to -r 
= {−x, −y, −z}. 

As a result, a function !(r) goes into !(-r). If !(-r) =!(r), 
the function !(r) is said to be symmetric (even) or, 
equivalently, a function with even parity. On the other hand, 
if !(-r) =−!(r), the function !(r) is said to be anti-symmetric 
(odd) or, equivalently, a function with odd parity. The 
transformation of a function !(r) under space inversion can 
be written in operator form as 

30 Fundamentals of Quantum Mechanics

Function of an operator: A function, f (Â), of an operator, Â, is defined through the
corresponding Taylor expansion of the function f (x). That is, if

f (x) = ∑
n

1
n!

cn xn, cn =
∂ f
∂xn

∣∣∣∣
x=0

, (2.4.20)

exists, then

f (Â) = ∑
n

1
n!

cn Ân, cn =
∂ f
∂ Ân

∣∣∣∣
Â=0

. (2.4.21)

In the above expression, the matrix raised to the power n is defined recursively in terms of
the products Ân = Â

(
Ân−1) (see Eq.(2.4.5)).

For instance, consider f (Â) = exp
[
a Â

]
, where a is a constant. Using the above

definition, we obtain

f (Â) = ∑
n

1
n!

(a Â)n = Î + a Â+
1
2!

a2 Â2 +
1
3!

a3 Â3 + . . . . (2.4.22)

Parity operator: Consider the operation of space inversion in which we change the space
variables from!r = {x,y,z} to −!r = {−x,−y,−z}. As a result, a function ψ(!r) goes into
ψ(−!r). If ψ(−!r) =ψ(!r), the function ψ(!r) is said to be symmetric (even) or, equivalently,
a function with even parity. On the other hand, if ψ(−!r) = −ψ(!r), the function ψ(!r) is
said to be anti-symmetric (odd) or, equivalently, a function with odd parity.

The transformation of a function ψ(!r) under space inversion can be written in operator
form as

ψ(−!r) = P̂ψ(!r), (2.4.23)

where P̂ is the parity operator or space inversion operator.

Theorem 2.4.1: The parity operator is hermitian, that is P̂† = P̂ .

Proof:

∫ +∞

−∞
φ ∗(!r)

[
P̂ψ(!r)

]
d3x =

∫ +∞

−∞
φ ∗(!r)ψ(−!r)d3x

= −
∫ +∞

∞
φ ∗(−!r)ψ(!r)d3x =

∫ +∞

−∞

[
P̂φ (!r)

]∗ψ(!r)d3x. (2.4.24)

From here we get that P̂† = P̂ . The theorem is proved.
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Symmetric Potential 

The bound state wave functions of a particle moving in a 
one-dimensional symmetric potential have definite parity, 
that is, they are either even or odd. 

Consider now the TISE for the symmetric potential: 


One-dimensional Problems 79

way on the basis of the TISE and its solutions. It will, hopefully, make the point and the
content of the theorem more lucid.

Consider now the TISE for the symmetric potential:
[
− h̄2

2m
d2

dx2 +V (x)
]

φ (x) = Eφ (x). (3.6.2)

Let us now perform the spatial inversion by replacing x with −x. Then, P̂φ (x)→ φ (−x)
and P̂V (x)→ V (−x). Since V (−x) = V (x), the Hamiltonian commutes with the parity
operator and we get

[
− h̄2

2m
d2

dx2 +V (x)
]

φ (−x) = Eφ (−x). (3.6.3)

Thus, we see that the stationary Schrödinger equation (3.6.3) for the symmetric potential is
satisfied by φ1(−x) = φ1(x) as well as φ2(−x) =−φ2(x). The former, denoted as φ s(x), is
called the symmetric wave function and has even parity, while the latter, denoted as φ a(x),
is called the anti-symmetric wave function and has odd parity.

Let us now recollect our earlier result that, in one spatial dimension, the bound state
energy spectrum is discrete and non-degenerate. In view of this result, we conclude that
the wave functions of a particle, moving in a one-dimensional symmetric potential, have a
definite parity (either even or odd) . The theorem is proved.

Note that, if the spectrum of the Hamiltonian corresponding to a symmetric potential is
degenerate, the energy eigenstates do not have definite parity.

Example 3.6.1 Solve the TISE for the potential

V (x) =
{

0, for −a < x < a,
∞, for x≤−a,x≥ a. (3.6.4)

Find the energy eigenfunctions and the corresponding energy eigenvalues.

Solution: The given problem is once again the problem of a particle trapped inside an infinite
square well potential. However, unlike the earlier one, the given well is symmetric with
respect to the center at x = 0: V (−x) = V (x). Therefore, according to Theorem 3.6.1,
the solutions of the corresponding TISE are either symmetric, φ (−x) = φ (x), or anti-
symmetric, φ (−x) = −φ (x). In the former case the solutions are said to have even parity,
while in the latter they are said to have odd parity.

As discussed earlier, the solutions in the regions on both sides of the well, that is, for x<
−a and x > a, must be identically equal to zero. Inside the well, the TISE has two linearly
independent solutions φ s(x) = A cos(kx), which is symmetric, and φ a(x) = B sin(kx),
which is anti-symmetric, where A and B are arbitrary constants and k2 = 2mE/h̄2. In view
of the above mentioned properties of the solutions, we treat the two cases separately.

Let us now perform the spatial inversion by replacing x with 
-x. Then
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Symmetric Potential 

Since V(−x) = V(x), the Hamiltonian commutes with the parity 
operator and we get 


ˆ 
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as "2(−x) = −"2(x).

The former, denoted as "s(x), is called the symmetric wave 
function and has even parity, while the latter, denoted as 
"a(x), is called the anti-symmetric wave function and has 
odd parity. 
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Finite Square Well Potential 

The entire range of x from −∞ to +∞ can be divided into 
three regions: 

−a≤x≤a (Region I), x<−a (Region II),  x>a (Region III). 

The general TISE reads 


One-dimensional Problems 81

3.7 Particle in a Finite Square Well Potential

Consider the motion of a quantum particle in a finite potential well (Figure 3.6):

V (x) =
{

0, if |x|≤ a
V0, if |x|> a . (3.7.1)

We are required to solve the TISE with this potential for the bound states, when the total
energy, E, of the particle is less than V0 and determine the eigenfunctions and the
corresponding energy eigenvalues. This type of potential is considered as an approximate
model for the solution of several problems in atomic and nuclear physics.

V x( )

V0 V0

E

–a a0 x

Figure 3.6 The representative shape of a finite potential well V (x) of depth V0.

Solution: The entire range of x from−∞ to +∞ can be divided into three regions: −a≤ x≤
a (Region I), x <−a (Region II) and x > a (Region III). The general TISE reads

− h̄2

2m
d2φ
dx2 +V (x)φ = Eφ . (3.7.2)

The TISE and the corresponding solutions in these regions can be written as:

Region I:

φ ′′1 + k2
1φ1 = 0, k2

1 =
2mE
h̄2 ,

φ1 = A1 cos (k1x)+B1 sin (k1x) . (3.7.3)

The TISE and the corresponding solutions in these regions 
can be written as: 

Region I:
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Finite Square Well Potential 

Region II: 

Region III:
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Region II:

φ ′′2 − k2
2φ2 = 0, k2

2 =
2m(V0−E)

h̄2 ,

φ2 = A2 ek2x +B2 e−k2x. (3.7.4)

Region III:

φ ′′3 − k2
2φ3 = 0,

φ3 = A3 ek2x +B3 e−k2x. (3.7.5)

In the aforementioned equations, the prime stands for the ordinary derivative with respect
to x, and A j and B j ( j = 1,2,3) are arbitrary constants to be determined by the boundary
conditions.

Boundary conditions:

1. The full solution of the TISE must be square-integrable. That means that the solution
must tend to zero at spatial infinities (|x|→ ∞). Therefore, the second term in φ2, which
tends to infinity as x→−∞, must be zero. Similarly, the first term in φ3, which tends to
infinity as x→ +∞, must be zero. Hence, B2 = A3 = 0. As a result, the total solution of
the TISE can be written as

φ (x) =






φ2 = A2 ek2x, x <−a
φ1 = A1 cos (k1x)+B1 sin (k1x) , −a≤ x≤ a
φ3 = B3 e−k2x. x > a

(3.7.6)

2. Since the TISE is second order in its spatial derivative with respect to x, the solutions
belonging to different regions in x must be continuous and differentiable at the boundaries
x = ±a, that is, φ1(−a) = φ2(−a),φ ′1(−a) = φ ′2(−a),φ1(a) = φ3(a) and φ ′1(a) = φ ′3(a).
These conditions lead to

A2 e−k2a = A1 cos (k1a)−B1 sin (k1a) , (3.7.7)

k2 A2 e−k2a = k1 A1 sin (k1a)+ k1 B1 cos (k1a) , (3.7.8)

B3 e−k2a = A1 cos (k1a)+B1 sin (k1a) , (3.7.9)

− k2 B3 e−k2a = −k1 A1 sin (k1a)+ k1 B1 cos (k1a) . (3.7.10)

If we add (3.7.7) and (3.7.9) and subtract (3.7.10) from (3.7.8), we get

(A2 +B3) e−k2a = 2A1 cos (k1a) , (3.7.11)
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In the aforementioned equations, the prime stands for the ordinary derivative with respect
to x, and A j and B j ( j = 1,2,3) are arbitrary constants to be determined by the boundary
conditions.
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1. The full solution of the TISE must be square-integrable. That means that the solution
must tend to zero at spatial infinities (|x|→ ∞). Therefore, the second term in φ2, which
tends to infinity as x→−∞, must be zero. Similarly, the first term in φ3, which tends to
infinity as x→ +∞, must be zero. Hence, B2 = A3 = 0. As a result, the total solution of
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

φ2 = A2 ek2x, x <−a
φ1 = A1 cos (k1x)+B1 sin (k1x) , −a≤ x≤ a
φ3 = B3 e−k2x. x > a

(3.7.6)

2. Since the TISE is second order in its spatial derivative with respect to x, the solutions
belonging to different regions in x must be continuous and differentiable at the boundaries
x = ±a, that is, φ1(−a) = φ2(−a),φ ′1(−a) = φ ′2(−a),φ1(a) = φ3(a) and φ ′1(a) = φ ′3(a).
These conditions lead to

A2 e−k2a = A1 cos (k1a)−B1 sin (k1a) , (3.7.7)

k2 A2 e−k2a = k1 A1 sin (k1a)+ k1 B1 cos (k1a) , (3.7.8)

B3 e−k2a = A1 cos (k1a)+B1 sin (k1a) , (3.7.9)

− k2 B3 e−k2a = −k1 A1 sin (k1a)+ k1 B1 cos (k1a) . (3.7.10)

If we add (3.7.7) and (3.7.9) and subtract (3.7.10) from (3.7.8), we get

(A2 +B3) e−k2a = 2A1 cos (k1a) , (3.7.11)

In the aforementioned equations, the prime stands for the 
ordinary derivative with respect to x, and Aj and Bj ( j = 1, 
2, 3) are arbitrary constants to be determined by the 
boundary conditions. 
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Boundary conditions: 

1. The full solution of the TISE must be square-integrable. 
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In the aforementioned equations, the prime stands for the ordinary derivative with respect
to x, and A j and B j ( j = 1,2,3) are arbitrary constants to be determined by the boundary
conditions.

Boundary conditions:

1. The full solution of the TISE must be square-integrable. That means that the solution
must tend to zero at spatial infinities (|x|→ ∞). Therefore, the second term in φ2, which
tends to infinity as x→−∞, must be zero. Similarly, the first term in φ3, which tends to
infinity as x→ +∞, must be zero. Hence, B2 = A3 = 0. As a result, the total solution of
the TISE can be written as

φ (x) =






φ2 = A2 ek2x, x <−a
φ1 = A1 cos (k1x)+B1 sin (k1x) , −a≤ x≤ a
φ3 = B3 e−k2x. x > a

(3.7.6)

2. Since the TISE is second order in its spatial derivative with respect to x, the solutions
belonging to different regions in x must be continuous and differentiable at the boundaries
x = ±a, that is, φ1(−a) = φ2(−a),φ ′1(−a) = φ ′2(−a),φ1(a) = φ3(a) and φ ′1(a) = φ ′3(a).
These conditions lead to
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(A2 +B3) e−k2a = 2A1 cos (k1a) , (3.7.11)

2. the solutions belonging to different regions in x must be 
continuous and differentiable at the boundaries x=±a, that 
is, 
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In the aforementioned equations, the prime stands for the ordinary derivative with respect
to x, and A j and B j ( j = 1,2,3) are arbitrary constants to be determined by the boundary
conditions.

Boundary conditions:
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− k2 B3 e−k2a = −k1 A1 sin (k1a)+ k1 B1 cos (k1a) . (3.7.10)

If we add (3.7.7) and (3.7.9) and subtract (3.7.10) from (3.7.8), we get

(A2 +B3) e−k2a = 2A1 cos (k1a) , (3.7.11)
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In the aforementioned equations, the prime stands for the ordinary derivative with respect
to x, and A j and B j ( j = 1,2,3) are arbitrary constants to be determined by the boundary
conditions.

Boundary conditions:

1. The full solution of the TISE must be square-integrable. That means that the solution
must tend to zero at spatial infinities (|x|→ ∞). Therefore, the second term in φ2, which
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(3.7.6)

2. Since the TISE is second order in its spatial derivative with respect to x, the solutions
belonging to different regions in x must be continuous and differentiable at the boundaries
x = ±a, that is, φ1(−a) = φ2(−a),φ ′1(−a) = φ ′2(−a),φ1(a) = φ3(a) and φ ′1(a) = φ ′3(a).
These conditions lead to

A2 e−k2a = A1 cos (k1a)−B1 sin (k1a) , (3.7.7)

k2 A2 e−k2a = k1 A1 sin (k1a)+ k1 B1 cos (k1a) , (3.7.8)

B3 e−k2a = A1 cos (k1a)+B1 sin (k1a) , (3.7.9)

− k2 B3 e−k2a = −k1 A1 sin (k1a)+ k1 B1 cos (k1a) . (3.7.10)

If we add (3.7.7) and (3.7.9) and subtract (3.7.10) from (3.7.8), we get

(A2 +B3) e−k2a = 2A1 cos (k1a) , (3.7.11)
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In the aforementioned equations, the prime stands for the ordinary derivative with respect
to x, and A j and B j ( j = 1,2,3) are arbitrary constants to be determined by the boundary
conditions.

Boundary conditions:

1. The full solution of the TISE must be square-integrable. That means that the solution
must tend to zero at spatial infinities (|x|→ ∞). Therefore, the second term in φ2, which
tends to infinity as x→−∞, must be zero. Similarly, the first term in φ3, which tends to
infinity as x→ +∞, must be zero. Hence, B2 = A3 = 0. As a result, the total solution of
the TISE can be written as

φ (x) =






φ2 = A2 ek2x, x <−a
φ1 = A1 cos (k1x)+B1 sin (k1x) , −a≤ x≤ a
φ3 = B3 e−k2x. x > a

(3.7.6)

2. Since the TISE is second order in its spatial derivative with respect to x, the solutions
belonging to different regions in x must be continuous and differentiable at the boundaries
x = ±a, that is, φ1(−a) = φ2(−a),φ ′1(−a) = φ ′2(−a),φ1(a) = φ3(a) and φ ′1(a) = φ ′3(a).
These conditions lead to

A2 e−k2a = A1 cos (k1a)−B1 sin (k1a) , (3.7.7)

k2 A2 e−k2a = k1 A1 sin (k1a)+ k1 B1 cos (k1a) , (3.7.8)

B3 e−k2a = A1 cos (k1a)+B1 sin (k1a) , (3.7.9)

− k2 B3 e−k2a = −k1 A1 sin (k1a)+ k1 B1 cos (k1a) . (3.7.10)

If we add (3.7.7) and (3.7.9) and subtract (3.7.10) from (3.7.8), we get

(A2 +B3) e−k2a = 2A1 cos (k1a) , (3.7.11)

They can be combined as 
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In the aforementioned equations, the prime stands for the ordinary derivative with respect
to x, and A j and B j ( j = 1,2,3) are arbitrary constants to be determined by the boundary
conditions.

Boundary conditions:

1. The full solution of the TISE must be square-integrable. That means that the solution
must tend to zero at spatial infinities (|x|→ ∞). Therefore, the second term in φ2, which
tends to infinity as x→−∞, must be zero. Similarly, the first term in φ3, which tends to
infinity as x→ +∞, must be zero. Hence, B2 = A3 = 0. As a result, the total solution of
the TISE can be written as

φ (x) =






φ2 = A2 ek2x, x <−a
φ1 = A1 cos (k1x)+B1 sin (k1x) , −a≤ x≤ a
φ3 = B3 e−k2x. x > a

(3.7.6)

2. Since the TISE is second order in its spatial derivative with respect to x, the solutions
belonging to different regions in x must be continuous and differentiable at the boundaries
x = ±a, that is, φ1(−a) = φ2(−a),φ ′1(−a) = φ ′2(−a),φ1(a) = φ3(a) and φ ′1(a) = φ ′3(a).
These conditions lead to

A2 e−k2a = A1 cos (k1a)−B1 sin (k1a) , (3.7.7)

k2 A2 e−k2a = k1 A1 sin (k1a)+ k1 B1 cos (k1a) , (3.7.8)

B3 e−k2a = A1 cos (k1a)+B1 sin (k1a) , (3.7.9)

− k2 B3 e−k2a = −k1 A1 sin (k1a)+ k1 B1 cos (k1a) . (3.7.10)

If we add (3.7.7) and (3.7.9) and subtract (3.7.10) from (3.7.8), we get

(A2 +B3) e−k2a = 2A1 cos (k1a) , (3.7.11)
One-dimensional Problems 83

k2 (A2 +B3) e−k2a = 2k1 A1 sin (k1a) . (3.7.12)

Similarly if subtract (3.7.9) from (3.7.7) and add (3.7.8) and (3.7.10), we get

(A2−B3) e−k2a = −2B1 sin (k1a) , (3.7.13)

k2 (A2−B3) e−k2a = 2k1 B1 cos (k1a) . (3.7.14)

If A2 +B3 "= 0 and A1 "= 0, then the equations (3.7.11) and (3.7.12) yield

k2 = k1 tan(k1a). (3.7.15)

Now, from (3.7.13) and (3.7.14), we have

B1 sin (k1a) = −k1

k2
B1 cos (k1a) = −B1

k2
1

k2
2

sin (k1a) , (3.7.16)

where we have made use of (3.7.15). We thus get

B1

(
1+

k2
2

k2
1

)
= 0, ⇒ B1 = 0. (3.7.17)

Equation (3.7.13) or (3.7.14) then yields A2 = B3. Taking all these results into account, we
get that the full solution, corresponding to the case when A2 +B3 "= 0 and A1 "= 0, is

φ (x) =






A2 ek2x for x <−a
A1 cos (k1x) for −a≤ x≤ a

A2 e−k2x for x > a,

(3.7.18)

where A1 and A2 are arbitrary constants. It is not difficult to check that the given solution is
a symmetric solution, that is, φ (−x) = φ (x), and hence has positive parity. The boundary
conditions, as shown earlier, lead to a transcendental equation, given by (3.7.15), for the
determination of the energies of the bound states.

Since the potential is symmetric in x: V (−x) = V (x), there is another solution to the
TISE which is anti-symmetric. Let us determine that solution and the corresponding
transcendental equation for the determination of the energy eigenvalues.

For this purpose, we make use of the equations (3.7.13) and (3.7.14). If A2−B3 "= 0
and B1 "= 0, we get

−k1 cot(k1a) = k2. (3.7.19)

One-dimensional Problems 83

k2 (A2 +B3) e−k2a = 2k1 A1 sin (k1a) . (3.7.12)

Similarly if subtract (3.7.9) from (3.7.7) and add (3.7.8) and (3.7.10), we get
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where we have made use of (3.7.15). We thus get

B1

(
1+

k2
2

k2
1

)
= 0, ⇒ B1 = 0. (3.7.17)

Equation (3.7.13) or (3.7.14) then yields A2 = B3. Taking all these results into account, we
get that the full solution, corresponding to the case when A2 +B3 "= 0 and A1 "= 0, is

φ (x) =






A2 ek2x for x <−a
A1 cos (k1x) for −a≤ x≤ a

A2 e−k2x for x > a,

(3.7.18)

where A1 and A2 are arbitrary constants. It is not difficult to check that the given solution is
a symmetric solution, that is, φ (−x) = φ (x), and hence has positive parity. The boundary
conditions, as shown earlier, lead to a transcendental equation, given by (3.7.15), for the
determination of the energies of the bound states.

Since the potential is symmetric in x: V (−x) = V (x), there is another solution to the
TISE which is anti-symmetric. Let us determine that solution and the corresponding
transcendental equation for the determination of the energy eigenvalues.

For this purpose, we make use of the equations (3.7.13) and (3.7.14). If A2−B3 "= 0
and B1 "= 0, we get

−k1 cot(k1a) = k2. (3.7.19)
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If A2 +B3≠0 and A1≠0, then 


Therefore,
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k2 (A2 +B3) e−k2a = 2k1 A1 sin (k1a) . (3.7.12)

Similarly if subtract (3.7.9) from (3.7.7) and add (3.7.8) and (3.7.10), we get

(A2−B3) e−k2a = −2B1 sin (k1a) , (3.7.13)

k2 (A2−B3) e−k2a = 2k1 B1 cos (k1a) . (3.7.14)

If A2 +B3 "= 0 and A1 "= 0, then the equations (3.7.11) and (3.7.12) yield

k2 = k1 tan(k1a). (3.7.15)

Now, from (3.7.13) and (3.7.14), we have

B1 sin (k1a) = −k1

k2
B1 cos (k1a) = −B1
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1

k2
2

sin (k1a) , (3.7.16)

where we have made use of (3.7.15). We thus get
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1

)
= 0, ⇒ B1 = 0. (3.7.17)

Equation (3.7.13) or (3.7.14) then yields A2 = B3. Taking all these results into account, we
get that the full solution, corresponding to the case when A2 +B3 "= 0 and A1 "= 0, is

φ (x) =






A2 ek2x for x <−a
A1 cos (k1x) for −a≤ x≤ a

A2 e−k2x for x > a,

(3.7.18)

where A1 and A2 are arbitrary constants. It is not difficult to check that the given solution is
a symmetric solution, that is, φ (−x) = φ (x), and hence has positive parity. The boundary
conditions, as shown earlier, lead to a transcendental equation, given by (3.7.15), for the
determination of the energies of the bound states.

Since the potential is symmetric in x: V (−x) = V (x), there is another solution to the
TISE which is anti-symmetric. Let us determine that solution and the corresponding
transcendental equation for the determination of the energy eigenvalues.

For this purpose, we make use of the equations (3.7.13) and (3.7.14). If A2−B3 "= 0
and B1 "= 0, we get

−k1 cot(k1a) = k2. (3.7.19)
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k2 (A2 +B3) e−k2a = 2k1 A1 sin (k1a) . (3.7.12)

Similarly if subtract (3.7.9) from (3.7.7) and add (3.7.8) and (3.7.10), we get

(A2−B3) e−k2a = −2B1 sin (k1a) , (3.7.13)

k2 (A2−B3) e−k2a = 2k1 B1 cos (k1a) . (3.7.14)

If A2 +B3 "= 0 and A1 "= 0, then the equations (3.7.11) and (3.7.12) yield

k2 = k1 tan(k1a). (3.7.15)

Now, from (3.7.13) and (3.7.14), we have

B1 sin (k1a) = −k1

k2
B1 cos (k1a) = −B1

k2
1
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2

sin (k1a) , (3.7.16)

where we have made use of (3.7.15). We thus get

B1

(
1+
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2
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1

)
= 0, ⇒ B1 = 0. (3.7.17)

Equation (3.7.13) or (3.7.14) then yields A2 = B3. Taking all these results into account, we
get that the full solution, corresponding to the case when A2 +B3 "= 0 and A1 "= 0, is

φ (x) =






A2 ek2x for x <−a
A1 cos (k1x) for −a≤ x≤ a

A2 e−k2x for x > a,

(3.7.18)

where A1 and A2 are arbitrary constants. It is not difficult to check that the given solution is
a symmetric solution, that is, φ (−x) = φ (x), and hence has positive parity. The boundary
conditions, as shown earlier, lead to a transcendental equation, given by (3.7.15), for the
determination of the energies of the bound states.

Since the potential is symmetric in x: V (−x) = V (x), there is another solution to the
TISE which is anti-symmetric. Let us determine that solution and the corresponding
transcendental equation for the determination of the energy eigenvalues.

For this purpose, we make use of the equations (3.7.13) and (3.7.14). If A2−B3 "= 0
and B1 "= 0, we get

−k1 cot(k1a) = k2. (3.7.19)

so,
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where we have made use of (3.7.15). We thus get

B1

(
1+

k2
2

k2
1
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= 0, ⇒ B1 = 0. (3.7.17)
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φ (x) =






A2 ek2x for x <−a
A1 cos (k1x) for −a≤ x≤ a

A2 e−k2x for x > a,

(3.7.18)

where A1 and A2 are arbitrary constants. It is not difficult to check that the given solution is
a symmetric solution, that is, φ (−x) = φ (x), and hence has positive parity. The boundary
conditions, as shown earlier, lead to a transcendental equation, given by (3.7.15), for the
determination of the energies of the bound states.

Since the potential is symmetric in x: V (−x) = V (x), there is another solution to the
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transcendental equation for the determination of the energy eigenvalues.
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where A1 and A2 are arbitrary constants. It is not difficult to 
check that the given solution is a symmetric solution, that is, 
!(−x) = !(x), and hence has positive parity. 


The boundary conditions, lead to a transcendental equation, 
for the determination of the energies of the bound states. 
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Figure 3.7 The graphical solutions for the finite square well potential: They are given by
the points of intersection of the curves

√
R2−α2

n with αn tan(αn) (solid
lines) and−αn cot(αn) (dotted lines).

From (3.7.11) and (3.7.12), we derive

A1 cos (k1a) =
k1

k2
A1 sin (k1a) = −A1

k2
1

k2
2

cos (k1a) , (3.7.20)

where we have made use of (3.7.19). Equations (3.7.20) leads to

A1

(
1+

k2
2

k2
1

)
= 0, ⇒ A1 = 0. (3.7.21)

Equation (3.7.11) or Equation (3.7.12) then yields A2 = −B3. Taking all these results into
account, we get that the antisymmetric solution, corresponding to the case when A2−B3 #=
0 and B1 #= 0, is given by

φ (x) =






A2 ek2x for x <−a
B1 sin (k1x) for −a≤ x≤ a
−A2 e−k2x for x > a,

(3.7.22)

where A2 and B1 are arbitrary constants. It is not difficult to check that the given solution
is an anti-symmetric solution, that is, φ (−x) =−φ (x), and hence has negative parity. The
boundary conditions, as shown earlier, lead to a transcendental equation (3.7.19) for the
determination of the energy eigenvalues for the corresponding bound states.

It leads to 
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where A2 and B1 are arbitrary constants. It is not difficult to check that the given solution
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Taking all these results into account, we get that the 
antisymmetric solution, 
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It is not difficult to check that the given solution is an anti-
symmetric solution, that is, !(−x) =−!(x), and hence has 
negative parity. 
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The equations about the k1 and k2 are transcendental 
equations and cannot be solved analytically. However, they 
can be solved graphically as described here. Let us introduce 
new variables 
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Clearly, for the given values of V0 and a, (3.7.15) and (3.7.19), can be satisfied not for
all values of E but for a selected set of values. This means that a particle, confined inside a
potential well with finite height of the walls (which is the same as a potential well of finite
depth), has a discrete energy spectrum.

Equations (3.7.15) and (3.7.19) are transcendental equations and cannot be solved
analytically. However, they can be solved graphically as described here. Let us introduce
new variables

ξ = k1 a =

√
2mE
h̄2 a, η = k2 a =

√
2m(V0−E)

h̄2 a. (3.7.23)

Clearly, the following holds

ξ 2 +η2 = R2, R2 =
2ma2V0

h̄2 . (3.7.24)

If we multiply (3.7.15) and (3.7.19) by a, they take the form

ξ tan(ξ ) = η , (3.7.25)

−ξ cot(ξ ) = η . (3.7.26)

Let ξn be the nth root of the transcendental equations (3.7.15) and (3.7.19). If we introduce
the notation

ξ 2
n = (k1 a)2 =

2ma2En

h̄2 , (3.7.27)

then η =
√

R2−ξ 2
n and the equations (3.7.25) and (3.7.26) take the form

ξn tanξn =
√

R2−ξ 2
n . (For even parity states) (3.7.28)

−ξn cotξn =
√

R2−ξ 2
n . (For odd parity states) (3.7.29)

The left-hand sides of (3.7.28) and (3.7.29) contain trigonometric functions, while the
right-hand sides represent a circle of radius R. The solutions are given by the points where
the circle

√
R2−ξ 2

n intersects the functions ξn tanξn and −ξn cotξn. The solutions form
a discrete set. Figure 3.7 contains the results of the solution of the equations (3.7.15) and
(3.7.19) for two values of the radius, R = 1 and R = 2, which correspond to
V0a2 = h̄2/2m and V0a2 = 2h̄2/m, respectively. As depicted in Figure 3.7, the
intersection of the small circle (R = 1) with the curve ξn tanξn yields only one bound
state, n = 0. The intersection of the larger circle (R = 2) with ξn tanξn yields two bound
states, n = 0,2, and its intersection with −ξn cotξn yields two other bound states, n = 1,3.

Clearly, the following holds 
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The transcendental equations will become
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Let 	n be the nth root of the transcendental equations. If we 
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The left-hand sides contain trigonometric functions, while 
the right-hand sides represent a circle of radius R. The 
solutions are given by the points where the circle intersects 
the functions 	n tan	n and −	n cot	n. 
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Figure 3.7 The graphical solutions for the finite square well potential: They are given by
the points of intersection of the curves

√
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n with αn tan(αn) (solid
lines) and−αn cot(αn) (dotted lines).

From (3.7.11) and (3.7.12), we derive

A1 cos (k1a) =
k1

k2
A1 sin (k1a) = −A1

k2
1

k2
2

cos (k1a) , (3.7.20)

where we have made use of (3.7.19). Equations (3.7.20) leads to

A1

(
1+

k2
2

k2
1

)
= 0, ⇒ A1 = 0. (3.7.21)

Equation (3.7.11) or Equation (3.7.12) then yields A2 = −B3. Taking all these results into
account, we get that the antisymmetric solution, corresponding to the case when A2−B3 #=
0 and B1 #= 0, is given by

φ (x) =






A2 ek2x for x <−a
B1 sin (k1x) for −a≤ x≤ a
−A2 e−k2x for x > a,

(3.7.22)

where A2 and B1 are arbitrary constants. It is not difficult to check that the given solution
is an anti-symmetric solution, that is, φ (−x) =−φ (x), and hence has negative parity. The
boundary conditions, as shown earlier, lead to a transcendental equation (3.7.19) for the
determination of the energy eigenvalues for the corresponding bound states.
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a discrete set. Figure 3.7 contains the results of the solution of the equations (3.7.15) and
(3.7.19) for two values of the radius, R = 1 and R = 2, which correspond to
V0a2 = h̄2/2m and V0a2 = 2h̄2/m, respectively. As depicted in Figure 3.7, the
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state, n = 0. The intersection of the larger circle (R = 2) with ξn tanξn yields two bound
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The intersection of the small circle (R = 1) with the curve 	n 
tan	n yields only one bound state, n = 0. The intersection of 
the larger circle (R = 2) with 	n tan 	n yields two bound 
states, n = 0,2, and its intersection with −	n cot	n yields two 
other bound states, n = 1,3. Hence, for R = 2, the system in 
all will have four bound states. 




21/09/2023 Jinniu Hu

Finite Square Well Potential 

This analysis shows that the number of solutions depends on 
the value of R, which in turn depends on the depth of the 
well, V0, and the width 2a of the well. 


Clearly, the deeper and wider the well, the greater the 
number of points of intersection of the curves and hence, 
greater will be the number of bound states of the particle 
inside the well. 


Thus, there is always at least one bound state ( that is, one 
intersection) no matter how small V0 is. 
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Hence, for R = 2, the system in all will have four bound states. This analysis shows that
the number of solutions depends on the value of R, which in turn depends on the depth of
the well, V0, and the width 2a of the well. Clearly, the deeper and wider the well, the
greater the number of points of intersection of the curves and hence, greater will be the
number of bound states of the particle inside the well. Thus, there is always at least one
bound state ( that is, one intersection) no matter how small V0 is. A closer look at Figure
3.7 shows that when

0 < R <
π
2

, that is, 0 <V0 <
π2h̄2

8ma2 , (3.7.30)

there is only one point of intersection of the circle with the function ξn tanξn and there is
only one bound state that we call n = 0 state. This is the ground state of the particle and
happens to be an even parity state. When

π
2
< R < π , that is,

π2h̄2

8ma2 <V0 <
π2h̄2

2ma2 , (3.7.31)

there are two bound states: an even state (the ground state) corresponding to n = 0 and the
first odd parity state corresponding to n = 1. Now, if

π < R <
3π
2

, that is,
π2h̄2

2ma2 <V0 <
9π2h̄2

8ma2 , (3.7.32)

there exist three bound states: the ground state (even state), n = 0, the first excited state
(odd state), corresponding to n = 1, and the second excited state (even state), which
corresponds to n = 2. Similarly for

3π
2

< R < 2π , that is,
9π2h̄2

8ma2 <V0 <
2π2h̄2

ma2 , (3.7.33)

there will be four bound states (two even and two odd) and so on and so forth. In general,
for a given V0, the width, w0 = 2a, of the well that allows for n bound states is determined
by

R =
nπ
2

, (3.7.34)

and equals

w0 =
π2h̄2

2mV0
n2. (3.7.35)

In the limiting case of ma2V0 → ∞ for a given a, the radius of the circle becomes infinite
and the intersections occur at

 one solution n=0 
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tan (k1a) = ∞ ⇒ k1a =
2n+ 1

2
,n = 0,1,2,3, ... (3.7.36)

− cot (k2a) = ∞ ⇒ k2a = nπ ,n = 1,2,3, ... (3.7.37)

If we combine the two, we obtain

k1a =
nπ
2

⇒ 2mEn

h̄2 =
n2π2

4a2 . (3.7.38)

Finally, we arrive at

En =
n2π2h̄2

8ma2 . (3.7.39)

Thus, we recover the energy spectrum of the infinite potential well.
Before we wind up, let us talk a little about the so-called penetration depth in the

classically forbidden region. When E < V0, the regions x < −a and x > a are classically
forbidden for the particle in the sense that it cannot penetrate into these regions. Consider
x > a. The solution of the TISE in this region is φ (x) ∼ e−k2x. Let us define

φ (x) = φ (0)
e

= e−k2η , (3.7.40)

where x = η is the point where the wave function falls by a factor of 1/e. Then, we have

η =
1
k2

=
h̄√

2m(V0−E)
. (3.7.41)

η is called the penetration depth, that is, the distance to which the particle can penetrate
into the classically forbidden region. Hence, the probability of finding the particle inside
the forbidden regions on either side of the finite potential well is in principle non-zero.

Example 3.7.2 Find the number of bound states and the corresponding energies for the finite
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When E < V0, the regions x < −a and x > a are classically 
forbidden for the particle in the sense that it cannot 
penetrate into these regions. 
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characterized by the potential energy 
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rectangular barriers, we can assume the potential to be constant. Then for each of them,
the transmission coefficient can be written as:

Ti ∼ exp
[
−2∆xi

h̄

√
2m(V (xi)−E)

]
, (3.8.32)

where ∆xi is the width of the ith rectangular barrier with a constant height V (xi).
The transmission coefficient for the entire potential is then given by the following limit:

T ≈ exp

[
−2

h̄
lim

∆xi→0
∑
i=1

f (xi)∆xi

]
, (3.8.33)

where f (xi) =
√

2m(V (xi)−E). As a result, we obtain

T ≈ exp
[
−2

h̄

∫ x2

x1
dx
√

2m(V (x)−E)
]

. (3.8.34)

Note that the aforementioned approximate analysis is valid and gives satisfactory results
only if the potential is a smooth and slowly varying function of x.

3.9 One-dimensional Harmonic Oscillator

Consider the one-dimensional simple harmonic oscillator characterized by the potential
energy

V (x) =
1
2

mω2x2, (3.9.1)

where m is the mass and ω is the angular frequency of the oscillator, which is assumed to
be constant. We want to solve the time-independent Schrödinger equation for this
potential and determine the bound state energies and the corresponding eigenfunctions of
the oscillator. We have

− h̄2

2m
d2φ (x)

dx2 +
1
2

mω2x2φ (x) = Eφ (x), (3.9.2)

which can be rewritten as

φ ′′(x)+ 2m
h̄2

[
E− 1

2
mω2x2

]
φ (x) = 0, (3.9.3)

where the prime stands for the ordinary derivative with respect to x. Let us introduce the
following abbreviations

where m is the mass and � is the angular frequency of the 
oscillator, which is assumed to be constant. 
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where the prime stands for the ordinary derivative with 
respect to x. Let us introduce the following abbreviations 
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λ =
2mE
h̄2 , α =

mω
h̄

. (3.9.4)

Then (3.9.1) takes the form

φ ′′+[λ −α2x2]φ = 0. (3.9.5)

This is a second order ordinary differential equation with variable coefficients. Therefore,
in order to have an idea about the behaviour of the solution at large values of x, let αx# 1
so that we can neglect the term λφ in comparison with the term α2x2φ . We then have

φ ′′ −α2x2φ = 0. (3.9.6)

For φ = exp (−γx2), (3.9.6) yields

[−2γ + 4γ2x2−α2x2]exp (−γx2) = 0. (3.9.7)

Note that, for large x, we can neglect 2γ in comparison with the other two terms in (3.9.7).
Consequently, we obtain

γ =
α
2

. (3.9.8)

Therefore, we look for the solution of the equation (3.9.5) in the form

φ (x) = e−αx2/2 f (x), (3.9.9)

where f (x) is an arbitrary function of x to be determined. We have

φ ′ = (−αx f + f ′)e−αx2/2, (3.9.10)

φ ′′ = [(−α f −αx f ′+ f ′′)+α2x2 f −αx f ′]e−αx2/2. (3.9.11)

From (3.9.5) and (3.9.9)-(3.9.11), we arrive at the following differential equation for the
function f (x)

f ′′ −2αx f ′+(λ −α) f = 0. (3.9.12)

Introducing the dimensionless variable

ξ =
√

αx, (3.9.13)

we get

d
dx

=
√

α d
dξ

,
d2

dx2 = α d2

dξ 2 . (3.9.14)

Then the TISE becomes
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so that we can neglect the term �" in comparison with the 
term �2x2". 
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As a result (3.9.12) can be rewritten as

f ′′ −2ξ f ′+
(

λ
α
−1

)
f = 0, (3.9.15)

where prime stands for ordinary derivative with respect to ξ . We look for the series
solution of (3.9.15) in the following form

f (x) =
∞

∑
k=ν

akξ k, (3.9.16)

where the value of ν will be determined later. From (3.9.15) and (3.9.16), we get

∞

∑
k=ν

[
k(k−1)akξ k−2−2kakξ k +

(
λ
α
−1

)
akξ k

]
= 0. (3.9.17)

Writing the series on the left-hand side in the order of increasing powers of ξ , we obtain

ν(ν−1)aνξ ν−2 +ν(ν + 1)aν+1ξ ν−1 +(ν + 1)(ν + 2)aν+2ξ ν

−2νaνξ ν +

(
λ
α
−1

)
aνξ ν + ... = 0. (3.9.18)

For this equation to hold good, the coefficient before each power of ξ must be equal to
zero. We have

ν(ν−1) = 0 ⇒ ν = 0,1, (3.9.19)

ν(ν + 1) = 0 ⇒ ν = 0,−1. (3.9.20)

The value −1 of ν is not acceptable because, in that case, the series (3.9.16) will start with
the term ∼ ξ−1 that blows up at ξ = 0. Hence, ν can take only two values 0 and 1.

Equating the coefficient of ξ ν equal to zero, we arrive at the recursion relation for the
coefficients of the series

aν+2 =
2ν−

(
λ
α −1

)

(ν + 1)(ν + 2)
aν . (3.9.21)

Consequently, we shall have two possible solutions for f (ξ ):

f1(ξ ) ∼ a0 + a2ξ 2 + a4ξ 4 + a6ξ 6 + ..., (3.9.22)

and

f2(ξ ) ∼ a1ξ + a3ξ 3 + a5ξ 5 + ..., (3.9.23)

where prime stands for ordinary derivative with respect to 	. 
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Let us take the first of the solutions that starts with � = 0 
and see how it behaves for large values of 	. 
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lim
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aν
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ν
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2− ( λ
α−1)

ν

)

ν2(1+ 1/ν)(1+ 2/ν)
=

2
ν

. (3.9.24)

For comparison, consider the series

eξ 2
=

∞

∑
σ=0

bσ ξ σ = 1+
ξ 2

1!
+

ξ 4

2!
+

ξ 6

3!
+ ...+

ξ σ

σ
2 !

+
ξ σ+2

(σ
2 + 1

)
!
+ ... (3.9.25)

For this exponential series,

lim
σ→∞

bσ+2

bσ
= lim

σ→∞

σ
2 !(σ

2 + 1
)
!
= lim

ξ→∞

σ
2 !(σ

2 + 1
) σ

2 !
≈ 2

σ
. (3.9.26)

Therefore, for large values of ξ , the series (3.9.22) behaves as the exponential series given
by (3.9.25). The same applies to the series (3.9.23). Consequently, for large values of ξ ,
the function f (ξ ) blows up because

f (ξ ) ≈ e−
ξ 2
2 · eξ 2 ∼ e

ξ 2
2 . (3.9.27)

Thus, the infinite series solution (3.9.16), whose coefficients are determined by the
recursion relation (3.9.21), does not satisfy the boundary conditions and hence, cannot be
the acceptable solution. However, the situation can be retrieved if the infinite series can be

converted into a polynomial so that the exponential factor e−
ξ 2
2 , standing before f (ξ ) (see

Eq.(3.9.9)), could force the wave function φ (ξ ) to tend to zero for ξ → ±∞. For this to
happen, the series has to be truncated at some term, say nth term. In that case, the
numerator in (3.9.21) would be zero for ν = n. As a consequence, we get

2n− λ
α
−1 = 0, ⇒ λ

α
= 2n+ 1. (3.9.28)

Substituting the values of λ and α , we obtain

2mEn

h̄2 =
mω
h̄

(2n+ 1). (3.9.29)

Equation (3.9.29) leads to the quantization of energy of the harmonic oscillator:

En = h̄ω
(

n+
1
2

)
, n = 0,1,2,3, ... (3.9.30)
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It does not satisfy the boundary conditions and hence, 
cannot be the acceptable solution. 


For this to happen, the series has to be truncated at some 
term, say nth term. In that case, the numerator in recursion 
relation for the coefficients would be zero for � = n.
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the acceptable solution. However, the situation can be retrieved if the infinite series can be
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Eq.(3.9.9)), could force the wave function φ (ξ ) to tend to zero for ξ → ±∞. For this to
happen, the series has to be truncated at some term, say nth term. In that case, the
numerator in (3.9.21) would be zero for ν = n. As a consequence, we get
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−1 = 0, ⇒ λ
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2mEn
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Substituting the values of � and �, we obtain 
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It leads to the quantization of energy of the harmonic 
oscillator: 
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α
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2mEn
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Equation (3.9.29) leads to the quantization of energy of the harmonic oscillator:

En = h̄ω
(

n+
1
2

)
, n = 0,1,2,3, ... (3.9.30)

Note that this formula for the quantized energy of the 
oscillator differs from the one obtained in the old quantum 
theory 
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Note that this formula for the quantized energy of the oscillator differs from the one
obtained in the old quantum theory

En = nh̄ω , n = 0,1,2,3, ... (3.9.31)

by the fact that it possesses a non-zero energy in the lowest quantum state with n = 0.
This energy is called the zero-point energy, E0, whose value is given by

E0 =
1
2

h̄ω . (3.9.32)

Let us go back to our problem of finding the solutions to the differential equation (3.9.15).
Evidently, the solutions satisfying the standard conditions can now be written as

φn(ξ ) = Nn e−ξ 2/2 Hn(ξ ), (3.9.33)

where Nn is the normalization constant and Hn(ξ ) is the polynomial of degree n whose
coefficients are given by (3.9.21) under the condition λ /α = 2n+ 1. These polynomials
for different n values are known as Hermite polynomials. The coefficient before the term
in the polynomial containing ξ n is obtained by taking ν = n−2 in (3.9.21). It is given by

an =
2(n−2)+ 1− (2n+ 1)

n(n−1)
an−2 = −

4
n(n−1)

an−2. (3.9.34)

Therefore, we have

an−2 = −
n(n−1

4
an ≡−

n(n−1)
1×22 an. (3.9.35)

Similarly, we can compute

an−4 = −
(n−2)(n−1)

8
an−2 =

n(n−1)(n−2)(n−3)
1×2×22 an, (3.9.36)

and so on and so forth. As a result, the polynomial will be given by

Hn(ξ ) = an

[
ξ n− n(n−1)

1×22 ξ n−2 +
n(n−1)(n−2)(n−3)

1×2×22 ξ n−4− ...
]

. (3.9.37)

If we put an = 2n,n = 0,1,2,3, ..., we obtain the formulae for the polynomials of the
corresponding degree. A few of these are given here for illustration:

H0(ξ ) = 1, H1(ξ ) = 2ξ ,

H2(ξ ) = 4ξ 2−2, H3(ξ ) = 8ξ 3−12ξ ,

H4(ξ ) = 16ξ 4−48ξ 2 + 12, H5(ξ ) = 32ξ 5−160ξ 3 + 120ξ .

(3.9.38)
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1×2×22 ξ n−4− ...
]

. (3.9.37)

If we put an = 2n,n = 0,1,2,3, ..., we obtain the formulae for the polynomials of the
corresponding degree. A few of these are given here for illustration:

H0(ξ ) = 1, H1(ξ ) = 2ξ ,

H2(ξ ) = 4ξ 2−2, H3(ξ ) = 8ξ 3−12ξ ,

H4(ξ ) = 16ξ 4−48ξ 2 + 12, H5(ξ ) = 32ξ 5−160ξ 3 + 120ξ .

(3.9.38)
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Rodriguez’s formula for the Hermite polynomials: 
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Rodriguez’s formula for the Hermite polynomials: The following compact formula for
computing the Hermite polynomials is known as Rodriguez’s formula:

Hn(ξ ) = (−1)n eξ 2 dn
(

e−ξ 2
)

dξ n . (3.9.39)

It allows us to generate the required polynomial of any degree by simply plugging in the
value of n and simplifying the expression. For instance,

n = 1 : H1(ξ ) = −eξ 2 d
(

e−ξ 2
)

dξ
= (2ξ ) eξ 2

.e−ξ 2
= 2ξ , (3.9.40)

n = 2 : H2(ξ ) = (−1)2eξ 2 d2
(

e−ξ 2
)

dξ 2 = −2eξ 2 d
dξ

(
ξ e−ξ 2

)
= 4ξ 2−2. (3.9.41)

Recurrence formula for Hermite polynomials: Let us, for the convenience in calculations,
derive a recurrence formula for the polynomials themselves. Using Rodriguez’s formula,
can write

Hn+1(ξ ) = (−1)(n+1) eξ 2 d(n+1)
(

e−ξ 2
)

dξ (n+1) . (3.9.42)

Using the following formulae

d(n+1)
(

e−ξ 2
)

dξ (n+1) = −2
dn

dξ n

(
ξ e−ξ 2

)
, (3.9.43)

dn

dξ n [ f (ξ )g(ξ )] = f
dng
dξ n + n

d f
dξ

dn−1g
dξ n−1 +

n(n−1)
2

d2 f
dξ 2

dn−2g
dξ n−2 + ..., (3.9.44)

we get

dn

dξ n

(
ξ e−ξ 2

)
= ξ dn

dξ n

(
e−ξ 2

)
+ n

dn−1
(

e−ξ 2
)

dξ n−1 . (3.9.45)

As a result, we have

Hn+1(ξ ) = (−1)n 2ξ eξ 2 dn

dξ n

(
e−ξ 2

)
+(−1)n 2n eξ 2 dn−1

dξ n−1

(
e−ξ 2

)
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= (−1)n 2ξ eξ 2 dn

dξ n

(
e−ξ 2

)
− (−1)n−1 2n eξ 2 dn−1

dξ n−1

(
e−ξ 2

)
. (3.9.46)

Using the Rodriguez’s formula once again, we arrive at the desired recurrence relation

Hn+1(ξ ) = 2ξ Hn(ξ )−2n Hn−1(ξ ). (3.9.47)

Being the eigenfunctions of a hermitian operator, the eigenfunctions of the harmonic
oscillator corresponding to different eigenvalues are orthogonal. Using this, we can
calculate the normalization constant Nn as

∫ +∞

−∞
|φn(ξ )|2 dξ = (−1)n N2

n√
α

∫ +∞

−∞
e−ξ 2

eξ 2 dne−ξ 2

dξ n Hn(ξ )dξ

= (−1)n N2
n√
α

∫ +∞

−∞

dne−ξ 2

dξ n Hn(ξ )dξ . (3.9.48)

Integrating by parts, we obtain

∫ +∞

−∞
|φn(ξ )|2 dξ = (−1)n N2

n√
α

∫ +∞

−∞

dne−ξ 2

dξ n Hn(ξ )dξ = (−1)n N2
n√
α

dn−1e−ξ 2

dξ n−1 Hn(ξ )

∣∣∣∣∣

+∞

−∞

+ (−1)n−1 N2
n√
α

∫ +∞

−∞

dn−1e−ξ 2

dξ n−1
dHn(ξ )

dξ
dξ . (3.9.49)

Hn(ξ ), according to Rodriguez’s formula, contains e−ξ 2 and its derivatives. Since the
function e−ξ 2 and all its derivatives tend to zero at |ξ | = ±∞, the first term on the right-
hand side in (3.9.49) vanishes. As a result

∫ +∞

−∞
|φn(ξ )|2 dξ = (−1)n−1 N2

n√
α

∫ +∞

−∞

dn−1e−ξ 2

dξ n−1
dHn(ξ )

dξ
dξ . (3.9.50)

Therefore, if we integrate (3.9.50) by parts another (n−1) number of times, we finally get
that

∫ +∞

−∞
|φn(ξ )|2 dξ =

N2
n√
α

∫ +∞

−∞
e−ξ 2 dnHn(ξ )

dξ n dξ . (3.9.51)

Since Hn(ξ ) = 2nξ n + ..... is a polynomial of degree n,

dHn(ξ )
dξ n = 2nn!, (3.9.52)

 The normalization coefficients
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and we obtain
∫ +∞

−∞
|φn(ξ )|2 dξ = 2nn!

N2
n√
α

∫ +∞

−∞
e−ξ 2

dξ = 2nn!
N2

n√
α
√

π . (3.9.53)

The normalization condition then yields

Nn =

√
α1/2

2nn!π1/2 . (3.9.54)

Hence, the full stationary state solutions to the Schrödinger equation for the harmonic
oscillator potential are

ψ(ξ , t) =

√
α1/2

2nn!π1/2 e−ξ 2/2Hn(ξ ) e−
i
h̄ Ent , (3.9.55)

where

En = h̄ω
(

n+
1
2

)
, n = 0,1,2,3, ... (3.9.56)

are the corresponding stationary state energies.

3.10 Heisenberg’s Uncertainty Relation

We have proved earlier that two operators which have the same set of eigenfunctions
commute. If we combine this with the fact that a dynamical variable can have a definite
value in its eigenstates only, we come to the conclusion that for two or more dynamical
variables to have definite values simultaneously their corresponding operators must
commute. On the other hand, we have seen that many of the operators of interest in
quantum mechanics do not commute. Therefore, it is quite natural to ask the following
question: What if we measure two non-compatible observables A and B, one after the
other in a given state, how will the inaccuracy in their measurements be related? The
answer to this fundamental question is provided by Heisenberg’s uncertainty principle
which we are now going to derive.

In this regard, we must first decide the way we are going to characterize the accuracy
of measurement. Assume that we have conducted a large number of measurements of
some physical quantity a and obtained a series of its numerical values a1,a2,a3, ... whose
average value we denote by 〈a〉. In probability theory, the deviation of a value ak of a
random variable from its average value, 〈a〉, is usually characterized by the root-mean-
square deviation defined as

∆a =
√
〈(ak−〈a〉)2〉=

√
〈a2

k〉−〈a〉2. (3.10.1)
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(b) The potential V (x) is infinite in a region: In this case, the particle cannot penetrate
through the infinite barrier and the probability of finding the particle inside the barrier
is zero. Therefore, the wave function must vanish everywhere in the region of infinite
potential.

(c) The potential becomes infinite at a point ( that is, has a singularity at a point): We
can model this situation by assuming V (x) = −α δ (x− x0), where α is a positive
constant. The wave function will be continuous at x = x0. In order to verify the
continuity of the first derivative, we once again integrate the corresponding TISE in
the vicinity of the point x = x0. We get
(

dφ
dx

)

+ε
−
(

dφ
dx

)

−ε
= −2mα

h̄2

∫ +ε

−ε
δ (x− x0)φ (x)dx = −2mα

h̄2 φ (x0). (3.4.7)

Thus, the first derivative of the wave function is not continuous across the point of
singularity. Instead, it has a finite jump of (−2mα/h̄2)φ (x0) at x = x0.

Example 3.4.1: A free particle of mass, m, and total energy, E, is incident from x→−∞ on
a potential step given by

V (x) =
{

0 for x < 0
V0 > 0 for x≥ 0,

(3.4.8)

where V0 > E is a positive constant. Solve the corresponding TISE, apply the appropriate
boundary conditions and determine the wave function.

Solution: The given potential divides the entire region −∞ < x < +∞ into two halves:
x < 0, where the potential is zero and x > 0, where the potential has a constant value
V0. We will call them Region 1 and Region 2, respectively. The corresponding stationary
state wave functions in these regions are denoted as ψ1(x, t) = φ1(x)e−iEt/h̄ and ψ2(x, t) =
φ2(x)e−iEt/h̄, respectively. In Region 1, the TISE

d2φ
dx2 +

2mE
h̄2 φ = 0 (3.4.9)

has the following general solution

φ (x) = Aeik1x +Be−ik1x, (3.4.10)

where k2
1 = 2mE/h̄2 and A and B are arbitrary constants. As a result,

ψ1(x, t) = Aei(kx−i E
h̄ t) +Be−i(kx+i E

h̄ t). (3.4.11)

A free particle of mass, m, and total energy, E, is incident

from x��∞
 on a potential step given by 


where V0 > E is a positive constant. 
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1 = 2mE/h̄2 and A and B are arbitrary constants. As a result,

ψ1(x, t) = Aei(kx−i E
h̄ t) +Be−i(kx+i E

h̄ t). (3.4.11)
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As a result, 

In region 2,

The first term of this solution represents the incident 
particle moving along the positive x-axis, while the second 
term represents the particle reflected by the potential 
barrier and moving along the negative x-axis. 
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The first term of this solution represents the incident particle moving along the positive
x-axis, while the second term represents the particle reflected by the potential barrier and
moving along the negative x-axis.

In Region 2, the TISE reads

d2φ
dx2 −

2m(V0−E)
h̄2 φ = 0. (3.4.12)

Its general solution is

φ (x) =Ce−k2x +Dek2x, (3.4.13)

where k2
2 = 2m(V0−E)/h̄2 and C and D are arbitrary constants. Since the wave function

must tend to zero at spatial infinities (x→±∞), we must put D = 0, otherwise the solution
will diverge. Therefore, the stationary state solution in the second region can be written as

ψ2(x, t) =Ce−k2x−i(E/h̄)t . (3.4.14)

Since the potential has only a finite jump at x = 0, both the wave functions (φ1 and φ2) and
their first-order derivatives must be continuous at x = 0. We thus have

A+B =C, (3.4.15)

ik1(A−B) = −k2C. (3.4.16)

There is a small problem here because we have only two equations but three constants to
be determined. Let us first determine the coefficients B and C in terms of the constant A
and then see what we can do about A. From the equations (3.4.15) and (3.4.16), we have

1+
B
A
=

C
A

, (3.4.17)

1− B
A
=

ik2

k1

C
A

. (3.4.18)

Solving these equations for C/A, we get

C =
2k1

k1 + ik2
A. (3.4.19)

If we subtract (3.4.18) from (3.4.17) and use (3.4.19), we obtain

B =
k1− ik2

k1 + ik2
A. (3.4.20)

Its general solution is 
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ψ1(x, t) = Aei(kx− E
ℏ t) + Be−i(kx+ E

ℏ t)
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Since the wave function must tend to zero at spatial 
infinities (x � ±∞), we must put 


70 Fundamentals of Quantum Mechanics

The first term of this solution represents the incident particle moving along the positive
x-axis, while the second term represents the particle reflected by the potential barrier and
moving along the negative x-axis.
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Its general solution is
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where k2
2 = 2m(V0−E)/h̄2 and C and D are arbitrary constants. Since the wave function

must tend to zero at spatial infinities (x→±∞), we must put D = 0, otherwise the solution
will diverge. Therefore, the stationary state solution in the second region can be written as

ψ2(x, t) =Ce−k2x−i(E/h̄)t . (3.4.14)

Since the potential has only a finite jump at x = 0, both the wave functions (φ1 and φ2) and
their first-order derivatives must be continuous at x = 0. We thus have

A+B =C, (3.4.15)

ik1(A−B) = −k2C. (3.4.16)

There is a small problem here because we have only two equations but three constants to
be determined. Let us first determine the coefficients B and C in terms of the constant A
and then see what we can do about A. From the equations (3.4.15) and (3.4.16), we have

1+
B
A
=

C
A

, (3.4.17)

1− B
A
=

ik2

k1

C
A

. (3.4.18)

Solving these equations for C/A, we get

C =
2k1

k1 + ik2
A. (3.4.19)

If we subtract (3.4.18) from (3.4.17) and use (3.4.19), we obtain

B =
k1− ik2

k1 + ik2
A. (3.4.20)

otherwise the solution will diverge. Therefore, the stationary 
state solution in the second region can be written as 
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Since the potential has only a finite jump at x = 0, both the 
wave functions (%1 and %2) and their first-order derivatives 
must be continuous at x = 0. We thus have 
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There is a small problem here because we have only two 
equations but three constants to be determined. Let us first 
determine the coefficients B and C in terms of the constant 
A. 
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Now, without any loss of generality, we might assume that 
the incident particle’s wave function (a wave packet) is 
normalized in such a way that A = 1. Then the required wave 
function is 


 


where,
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Now, without any loss of generality, we might assume that the incident particle’s wave
function (a wave packet) is normalized in such a way that A = 1. Then the required wave
function is

φ (x) =






ei(k1x−iωt) + k1−ik2
k1+ik2

e−i(kx+iωt) x < 0,

2k1
k1+ik2

e−(k2x+iωt) x > 0,
(3.4.21)

where ω = E/h̄.

Example 3.4.2: A particle of mass m and total energy,−E (E > 0), is subject to the potential
given by

V (x) = −αδ (x),

here α is a positive constant and δ (x) is the Dirac delta function. Solve the Schrödinger
equation for the bound states and find the energy levels and the corresponding normalized
wave functions. How many bound states can the particle have in such a potential?

Solution: Let us first solve the time-independent Schrödinger equation

− h̄2

2m
d2φ
dx2 +V (x)φ = Eφ (3.4.22)

for the wave function φ (x). For x < 0 and x > 0, V (x) = 0 and we have

d2φ
dx2 −

2m|E|
h̄2 φ = 0. (3.4.23)

Since the standard conditions require the wave function to vanish for x→±∞, we have

φ (x) =

{
Aekx for x < 0

Be−kx for x > 0,
(3.4.24)

where k =
√

2m|E|
/

h̄ and A and B are real but arbitrary constants. The continuity of φ (x)
at x = 0 yields

A = B. (3.4.25)

The potential is infinite at x = 0. Therefore, as discussed earlier, the first derivative of the
wave function will be discontinuous and we shall have

(
dφ
dx

)

+ε
−
(

dφ
dx

)

−ε
= −2mα

h̄2

∫ +ε

−ε
δ (x)φ (x)dx = −2mα

h̄2 φ (0). (3.4.26)

ϕ(x) =
ei(k1x−ωt) + k1 − ik2

k1 + ik2
e−i(k1x+ωt) x < 0

2k1
k1 + ik2

e−(k2x+iωt) x > 0
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Potential Barrier and Tunneling 

Barrier penetration – tunneling: a micro-particle incident on 
one side of a potential barrier of height V0 with a total 
energy E < V0 can pass through the barrier and appear on 
the other side. 


This phenomenon does not have any classical analogue and 
represents a purely quantum mechanical effect and has been 
confirmed experimentally. Consider an external potential 
field given by 
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in the expression k2a =
√

1−ξ0. We have

ξ 2
0
(
1+ tan2 ξ0

)
= 1 ⇒ cos2(ξ0) = ξ 2

0 . (3.7.43)

The numerical solution of the equation (3.7.43) yields ξ0 = 0.73909. Therefore,
2mE0a2/h̄2 = (0.73909)2 = 0.54625, and the energy of the bound state n = 0 is given by

E0 ≈
0.54625

2ma2 h̄2 =
0.273125

ma2 h̄2. (3.7.44)

3.8 Potential Barrier and Tunneling

What we are going to discuss now is a very important phenomenon of barrier penetration
– tunneling. Due to this effect, a micro-particle incident on one side of a potential barrier
of height V0 with a total energy E < V0 can pass through the barrier and appear on the
other side. This phenomenon does not have any classical analogue and represents a purely
quantum mechanical effect and has been confirmed experimentally.

Consider an external potential field given by

V (x) =
{

V0, for 0≤ x≤ a,
0, otherwise.

(3.8.1)

Assume that a particle of mass m, moving freely with a velocity!v = vî, is incident on this
barrier from the left, that is, from x →−∞. We are required to solve the corresponding
time-independent Schrödinger equation and determine the reflection and transmission
coefficients.

In general, both the cases with E > V0 and E < V0 are possible. However, as stated
earlier, the case with the total energy E <V0 corresponds to tunnelling and we take up this
case.

For the solution of the problem, we divide the entire region −∞ < x < +∞ into three
parts: −∞ < x < 0 (Region 1), 0 < x < a (Region 2) and a < x < +∞ (Region 3). The
one-dimensional potential barrier of width a and height V0 is shown in Figure 3.8. The
TISE and the corresponding solutions in these regions can be written as:

Region 1:

φ ′′1 + k2
1φ1 = 0, k2

1 =
2mE
h̄2 ,

φ1 = A eik1x +B e−ik1x, (3.8.2)

where A and B are arbitrary complex constants. Here the first term in the solution
corresponds to the incident particle propagating along the positive x direction, while the
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second term describes the particle reflected from the potential and propagating along the
negative x direction.
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Figure 3.8 One-dimensional potential barrier of width a and height V0.

Region 2:

φ ′′2 − k2
2φ2 = 0, k2

2 =
2m(V0−E)

h̄2 ,

φ2 =C ek2x +D e−k2x, (3.8.3)

where C and D are arbitrary complex constants.

Region 3:

φ ′′3 + k2
1φ3 = 0,

φ3 = F eik1x. (3.8.4)

The prime in the aforementioned equations stands for the ordinary derivative with respect
to x. Here, F is an arbitrary complex constant and the solution represents the transmitted
particle travelling along the positive x direction. Note that, because of the fact that the
potential vanishes beyond x = a, there cannot be any reflected particle in this region and
hence, we have taken only the forward propagating plane wave as solution.

Boundary conditions: The wave functions φ1(x),φ2(x) and φ3(x) have to be continuous
in the entire region of x, as required by the standard conditions. Since the potential has a
finite jump at x = 0 and x = a, the first derivatives of the wave functions with respect to x
will also be continuous everywhere. These boundary conditions then yield

A+B =C+D, (3.8.5)

(A−B) = − i k2

k1
(C−D), (3.8.6)
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where A and B are arbitrary complex constants. Here the 
first term in the solution corresponds to the incident particle 
propagating along the positive x direction, while the second 
term describes the particle reflected from the potential and 
propagating along the negative x direction. 
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The numerical solution of the equation (3.7.43) yields ξ0 = 0.73909. Therefore,
2mE0a2/h̄2 = (0.73909)2 = 0.54625, and the energy of the bound state n = 0 is given by
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of height V0 with a total energy E < V0 can pass through the barrier and appear on the
other side. This phenomenon does not have any classical analogue and represents a purely
quantum mechanical effect and has been confirmed experimentally.
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0, otherwise.
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Assume that a particle of mass m, moving freely with a velocity!v = vî, is incident on this
barrier from the left, that is, from x →−∞. We are required to solve the corresponding
time-independent Schrödinger equation and determine the reflection and transmission
coefficients.

In general, both the cases with E > V0 and E < V0 are possible. However, as stated
earlier, the case with the total energy E <V0 corresponds to tunnelling and we take up this
case.

For the solution of the problem, we divide the entire region −∞ < x < +∞ into three
parts: −∞ < x < 0 (Region 1), 0 < x < a (Region 2) and a < x < +∞ (Region 3). The
one-dimensional potential barrier of width a and height V0 is shown in Figure 3.8. The
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φ3 = F eik1x. (3.8.4)

The prime in the aforementioned equations stands for the ordinary derivative with respect
to x. Here, F is an arbitrary complex constant and the solution represents the transmitted
particle travelling along the positive x direction. Note that, because of the fact that the
potential vanishes beyond x = a, there cannot be any reflected particle in this region and
hence, we have taken only the forward propagating plane wave as solution.

Boundary conditions: The wave functions φ1(x),φ2(x) and φ3(x) have to be continuous
in the entire region of x, as required by the standard conditions. Since the potential has a
finite jump at x = 0 and x = a, the first derivatives of the wave functions with respect to x
will also be continuous everywhere. These boundary conditions then yield

A+B =C+D, (3.8.5)

(A−B) = − i k2

k1
(C−D), (3.8.6)
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What we are going to discuss now is a very important phenomenon of barrier penetration
– tunneling. Due to this effect, a micro-particle incident on one side of a potential barrier
of height V0 with a total energy E < V0 can pass through the barrier and appear on the
other side. This phenomenon does not have any classical analogue and represents a purely
quantum mechanical effect and has been confirmed experimentally.

Consider an external potential field given by

V (x) =
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V0, for 0≤ x≤ a,
0, otherwise.

(3.8.1)

Assume that a particle of mass m, moving freely with a velocity!v = vî, is incident on this
barrier from the left, that is, from x →−∞. We are required to solve the corresponding
time-independent Schrödinger equation and determine the reflection and transmission
coefficients.

In general, both the cases with E > V0 and E < V0 are possible. However, as stated
earlier, the case with the total energy E <V0 corresponds to tunnelling and we take up this
case.

For the solution of the problem, we divide the entire region −∞ < x < +∞ into three
parts: −∞ < x < 0 (Region 1), 0 < x < a (Region 2) and a < x < +∞ (Region 3). The
one-dimensional potential barrier of width a and height V0 is shown in Figure 3.8. The
TISE and the corresponding solutions in these regions can be written as:
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φ ′′1 + k2
1φ1 = 0, k2

1 =
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h̄2 ,

φ1 = A eik1x +B e−ik1x, (3.8.2)

where A and B are arbitrary complex constants. Here the first term in the solution
corresponds to the incident particle propagating along the positive x direction, while the
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second term describes the particle reflected from the potential and propagating along the
negative x direction.
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Figure 3.8 One-dimensional potential barrier of width a and height V0.
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φ2 =C ek2x +D e−k2x, (3.8.3)

where C and D are arbitrary complex constants.

Region 3:

φ ′′3 + k2
1φ3 = 0,

φ3 = F eik1x. (3.8.4)

The prime in the aforementioned equations stands for the ordinary derivative with respect
to x. Here, F is an arbitrary complex constant and the solution represents the transmitted
particle travelling along the positive x direction. Note that, because of the fact that the
potential vanishes beyond x = a, there cannot be any reflected particle in this region and
hence, we have taken only the forward propagating plane wave as solution.

Boundary conditions: The wave functions φ1(x),φ2(x) and φ3(x) have to be continuous
in the entire region of x, as required by the standard conditions. Since the potential has a
finite jump at x = 0 and x = a, the first derivatives of the wave functions with respect to x
will also be continuous everywhere. These boundary conditions then yield

A+B =C+D, (3.8.5)

(A−B) = − i k2

k1
(C−D), (3.8.6)
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where C and D are arbitrary complex constants.
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The prime in the aforementioned equations stands for the ordinary derivative with respect
to x. Here, F is an arbitrary complex constant and the solution represents the transmitted
particle travelling along the positive x direction. Note that, because of the fact that the
potential vanishes beyond x = a, there cannot be any reflected particle in this region and
hence, we have taken only the forward propagating plane wave as solution.

Boundary conditions: The wave functions φ1(x),φ2(x) and φ3(x) have to be continuous
in the entire region of x, as required by the standard conditions. Since the potential has a
finite jump at x = 0 and x = a, the first derivatives of the wave functions with respect to x
will also be continuous everywhere. These boundary conditions then yield

A+B =C+D, (3.8.5)

(A−B) = − i k2
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(C−D), (3.8.6)
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Here, F is an arbitrary complex constant and the solution 
represents the transmitted particle traveling along the 
positive x direction. Note that, because of the fact that the 
potential vanishes beyond x = a, there is no any reflected 
particle in this region and hence, we have taken only the 
forward propagating plane wave as solution.


Boundary conditions: The wave functions "1(x), "2(x) and 

!3(x) have to be continuous in the entire region of x, as 
required by the standard conditions. The first derivatives of 
the wave functions with respect to x will also be continuous 
everywhere. These boundary conditions then yield 
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second term describes the particle reflected from the potential and propagating along the
negative x direction.
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Figure 3.8 One-dimensional potential barrier of width a and height V0.
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φ2 =C ek2x +D e−k2x, (3.8.3)

where C and D are arbitrary complex constants.

Region 3:

φ ′′3 + k2
1φ3 = 0,

φ3 = F eik1x. (3.8.4)

The prime in the aforementioned equations stands for the ordinary derivative with respect
to x. Here, F is an arbitrary complex constant and the solution represents the transmitted
particle travelling along the positive x direction. Note that, because of the fact that the
potential vanishes beyond x = a, there cannot be any reflected particle in this region and
hence, we have taken only the forward propagating plane wave as solution.

Boundary conditions: The wave functions φ1(x),φ2(x) and φ3(x) have to be continuous
in the entire region of x, as required by the standard conditions. Since the potential has a
finite jump at x = 0 and x = a, the first derivatives of the wave functions with respect to x
will also be continuous everywhere. These boundary conditions then yield

A+B =C+D, (3.8.5)

(A−B) = − i k2

k1
(C−D), (3.8.6)
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C ek2a +D e−k2a = F eik1a, (3.8.7)

C ek2a−D e−k2a =
i k1

k2
F eik1a. (3.8.8)

If we add up (3.8.7) and (3.8.8), we get

2C ek2a = F eik1a
(

1+
i k1

k2

)
. (3.8.9)

Hence,

C =
F
2

eik1a
(

1+
i k1

k2

)
e−k2a. (3.8.10)

Now subtracting (3.8.8) from (3.8.7), we obtain

2D e−k2a = F eik1a
(

1− i k1

k2

)
, (3.8.11)

and therefore

D =
F
2

eik1a
(

1− i k1

k2

)
ek2a. (3.8.12)

Substitution of C and D into the equation (3.8.5) yields

1+
B
A
=

F
2A

eik1a
[(

1+
i k1

k2

)
e−k2a +

(
1− i k1

k2

)
ek2a

]

=
F
A

eik1a

[
ek2a + e−k2a

2
− i k1

k2

(
ek2a− e−k2a)

2

]

=
F
A

eik1a
[

cosh(k2a)− i k1

k2
sinh(k2a)

]
. (3.8.13)

Similarly from (3.8.6), we get

1− B
A
=

F
2A

eik1a
[(
− i k2

k1
+ 1

)
e−k2a +

(
i k2

k1
+ 1

)
ek2a

]

If we add up above equation, we get 
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reflection and the transmission coefficients as
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1+ 1
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)2
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Clearly, the transmission probability is finite. Therefore, we conclude that the probability
that a quantum particle could penetrate a classically impenetrable barrier is non-zero.
This is a purely quantum mechanical effect and is due to the wave aspect of microscopic
objects. This barrier penetration effect is usually called the tunneling effect and has
important physical implications. The radioactive decay and charge transport in electronic
devices are typical examples of the quantum mechanical tunneling effect.

Using the expressions for k1 and k2 in terms of the physical parameters, we have

(
k2

1 + k2
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k2k1

)2

=

(
V0√
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V 2
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Therefore, we can rewrite the expressions for the reflection and transmission coefficients
as
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) . (3.8.26)

Let us consider the case when the energy of the incident particle is much smaller than the
height of the barrier E "V0. Then, we have

a
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√
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√
1− E

V0
$ 1, (3.8.27)

and we can write
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These equations yield

A � B � C � D� ik1�A� B� � ik2�C � D�� (4.39)

Ceik2a � De�ik2a � Eeik1a� ik2
r
Ceik2a � De�ik2a

s
� ik1Eeik1a� (4.40)
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The transmission coefficient is thus given by
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Therefore, we can rewrite the expressions for the reflection 
and transmission coefficients as

Let us consider the case when the energy of the incident 
particle is much smaller than the height of the barrier E ≪ 
V0. Then, we have 
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Further, making use of the well-known formula cosh2 x− sinh2 x = 1, we can rewrite the
reflection and the transmission coefficients as

R =
T

4

(
k2

1 + k2
2

k2k1

)2

sinh2(k2a), (3.8.22)

T =
1[

1+ 1
4

(
k2

1+k2
2

k2k1

)2
sinh2(k2a)

] (3.8.23)

Clearly, the transmission probability is finite. Therefore, we conclude that the probability
that a quantum particle could penetrate a classically impenetrable barrier is non-zero.
This is a purely quantum mechanical effect and is due to the wave aspect of microscopic
objects. This barrier penetration effect is usually called the tunneling effect and has
important physical implications. The radioactive decay and charge transport in electronic
devices are typical examples of the quantum mechanical tunneling effect.

Using the expressions for k1 and k2 in terms of the physical parameters, we have

(
k2

1 + k2
2

k2k1

)2

=

(
V0√

E(V0−E)

)2

=
V 2

0
E(V0−E)

. (3.8.24)

Therefore, we can rewrite the expressions for the reflection and transmission coefficients
as

R = T
V 2

0
4E(V0−E)

sinh2
(

a
h̄

√
2m(V0−E)

)
, (3.8.25)

T =
1

1+ 1
4

V 2
0

E(V0−E) sinh2
(

a
h̄

√
2m(V0−E)

) . (3.8.26)

Let us consider the case when the energy of the incident particle is much smaller than the
height of the barrier E "V0. Then, we have

a
h̄

√
2m(V0−E) =

a
√

2mV0

h̄

√
1− E

V0
$ 1, (3.8.27)

and we can write

sinh
(

a
h̄

√
2m(V0−E)

)
∼ 1

2
e

a
√

2mV0
h̄

√
1− E

V0 =
1
2

e(a/h̄)
√

2m(V0−E). (3.8.28)
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Therefore, in the low energy limit, the transmission coefficient T is given by

T =
16E
V0

(
1− E

V0

)
e−(2a/h̄)

√
2m(V0−E). (3.8.29)

Also, when E ∼V0, it is not difficult to deduce the following expressions for the reflection
and transmission coefficients:

R =

(
1+

2h̄2

ma2V0

)−1

, (3.8.30)

T =

(
1+

ma2V0

2h̄2

)−1

. (3.8.31)

We, thus, see that even if the energy of the particle is much smaller than the barrier height,
there is a finite probability that the particle can tunnel through the barrier and appear on
the other side of it. Classically, such a phenomenon is not possible. The region 0 <
x < a is forbidden for a particle with energy less than the barrier height V0. Quantum
mechanically, such tunneling effect is permissible and the apparent paradox arising out of
it can be resolved with the help of Heisenberg’s uncertainty principle (see Section 3.10).

V x( )

E

0 x1 x2!x x

Figure 3.9 A general one-dimensional potential barrier V = V (x).

Note that in the given example we considered the constant value for the potential barrier.
In a more general case, the potential barrier is not a constant but can be a function of x: V =
V (x) (Figure 3.9). Unlike the constant potential barrier, in this case, the analytical solution
is not possible for potentials with an arbitrary dependence on x. However, an approximate
formula for the transmission coefficient can be derived by dividing the classically forbidden
region between the turning points x1 and x2 into N (N large enough to approximate the
curve V (x)) small rectangular sequence of barriers, each of width ∆x. In each of these
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We, thus, see that even if the energy of the particle is much 
smaller than the barrier height, there is a finite probability 
that the particle can tunnel through the barrier and appear 
on the other side of it. Classically, such a phenomenon is not 
possible. 


The region 0 < x < a is forbidden for a particle with energy 
less than the barrier height V0. Quantum mechanically, such 
tunneling effect is permissible and the apparent paradox 
arising out of it can be resolved with the help of 
Heisenberg’s uncertainty principle. 
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An approximate formula for the transmission coefficient can 
be derived by dividing the classically forbidden region 
between the turning points x1 and x2 into N (N large enough 
to approximate the curve V (x)) small rectangular sequence 
of barriers, each of width �x. 


In each of these rectangular barriers, we can assume the 
potential to be constant. Then for each of them, the 
transmission coefficient can be written as: 
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rectangular barriers, we can assume the potential to be constant. Then for each of them,
the transmission coefficient can be written as:

Ti ∼ exp
[
−2∆xi

h̄

√
2m(V (xi)−E)

]
, (3.8.32)

where ∆xi is the width of the ith rectangular barrier with a constant height V (xi).
The transmission coefficient for the entire potential is then given by the following limit:

T ≈ exp

[
−2

h̄
lim

∆xi→0
∑
i=1

f (xi)∆xi

]
, (3.8.33)

where f (xi) =
√

2m(V (xi)−E). As a result, we obtain

T ≈ exp
[
−2

h̄

∫ x2

x1
dx
√

2m(V (x)−E)
]

. (3.8.34)

Note that the aforementioned approximate analysis is valid and gives satisfactory results
only if the potential is a smooth and slowly varying function of x.

3.9 One-dimensional Harmonic Oscillator

Consider the one-dimensional simple harmonic oscillator characterized by the potential
energy

V (x) =
1
2

mω2x2, (3.9.1)

where m is the mass and ω is the angular frequency of the oscillator, which is assumed to
be constant. We want to solve the time-independent Schrödinger equation for this
potential and determine the bound state energies and the corresponding eigenfunctions of
the oscillator. We have

− h̄2

2m
d2φ (x)

dx2 +
1
2

mω2x2φ (x) = Eφ (x), (3.9.2)

which can be rewritten as

φ ′′(x)+ 2m
h̄2

[
E− 1

2
mω2x2

]
φ (x) = 0, (3.9.3)

where the prime stands for the ordinary derivative with respect to x. Let us introduce the
following abbreviations
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V x( )

V = 0 V = 0 V = 0 V = 0

V0

–( + )a b –b a ( + )a b0 x

Figure 3.10 This is the sketch of a representative periodic potential with a separation
of a between the peaks of width b.

Consider now the following

(D̂Ĥ)ψ(x) = D̂(Ĥψ) = D̂
(
− h̄2

2m
∂ 2

∂x2 +V (x)
)

ψ(x)

=

(
− h̄2

2m
∂ 2

∂x2 +V (x+ c)
)

ψ(x+ c)

=

(
− h̄2

2m
∂ 2

∂x2 +V (x)
)

ψ(x+ c)

= Ĥ
(
D̂ψ(x)

)
=

(
ĤD̂

)
ψ(x). (3.12.5)

In obtaining the above result we have used the fact that

∂
∂ (x+ c)

=
∂
∂x

∂x
∂ (x+ c)

=
∂
∂x

. (3.12.6)

Thus, the Hamiltonian and the translation operator commute: [D̂, Ĥ] = 0. It means that, if
ψ(x) is an eigenfunction of the Hamiltonian with energy E (i.e., Ĥψ(x) = Eψ(x)), then
D̂ψ(x) is also an eigenfunction of the Hamiltonian with the same energy E:

Ĥ
(
D̂ψ(x)

)
=

(
ĤD̂

)
ψ(x) =

(
D̂Ĥ

)
ψ(x) = E

(
D̂ψ(x)

)
, (3.12.7)

This, in turn means that, if the energy spectrum is non-degenerate, ψ(x+c) and ψ(x) must
represent the same state of the system. Therefore, ψ(x+ c) can differ from ψ(x) only by
a constant factor:

ψ(x+ c) = α ψ(x), (3.12.8)

As shown, the potential is zero over a distance a, peaks at V 
(x) = V0 over a distance b and then repeats itself. It is 
evident that 
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Making use of Ehrenfest’s theorem (3.11.11), we obtain

d〈p̂x〉
dt

= −
〈

∂V (x)
∂x

〉
. (3.11.21)

Differentiating (3.11.17) once with respect to time and making use of (3.11.21), we arrive
at

d2〈x̂〉
dt2 = −

〈
∂V (x)

∂x

〉
. (3.11.22)

Equation (3.11.22), written for the expectation values of the position operator and the force
as the gradient of the potential, is the quantum mechanical version of Newton’s equations
of motion.

3.12 Periodic Potentials, Bloch’s Theorem and Energy Bands

In this sub-section we shall discuss the solutions of the TISE for the case in which the
potential is a periodic function of x. It has some very useful applications in solid state
physics.

A typical periodic potential is shown in Fig.3.10. As shown, the potential is zero over
a distance a, peaks at V (x) = V0 over a distance b and then repeats itself. It is evident that

V (x+ c) = V (x). (3.12.1)

where c = a+ b is the period. Since the potential is a periodic function of x with a period
c, the Schrödinger equation is invariant under space translations

x→ x+ nc, n = 0,±1,±2,±3, ... (3.12.2)

This invariance imposes certain restriction on the form of the allowable solution of the
Schrödinger equation. To determine this restriction, let us introduce an operator D̂, called
the space translation operator, which while acting on a function f (x) shifts it horizontally
along the x direction over a distance c:

D̂ f (x) = f (x+ c). (3.12.3)

For instance, acting on the potential function V (x), it shifts the entire potential over a
distance c: D̂V (x) = V (x+ c). Repeated applications this operator leads to

D̂ f (x) = f (x+c), D̂2 f (x) = f (x+2c), D̂3 f (x) = f (x+3c), . . . , D̂n f (x) = f (x+nc).
(3.12.4)
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Making use of Ehrenfest’s theorem (3.11.11), we obtain

d〈p̂x〉
dt

= −
〈

∂V (x)
∂x

〉
. (3.11.21)

Differentiating (3.11.17) once with respect to time and making use of (3.11.21), we arrive
at

d2〈x̂〉
dt2 = −

〈
∂V (x)

∂x

〉
. (3.11.22)

Equation (3.11.22), written for the expectation values of the position operator and the force
as the gradient of the potential, is the quantum mechanical version of Newton’s equations
of motion.

3.12 Periodic Potentials, Bloch’s Theorem and Energy Bands

In this sub-section we shall discuss the solutions of the TISE for the case in which the
potential is a periodic function of x. It has some very useful applications in solid state
physics.

A typical periodic potential is shown in Fig.3.10. As shown, the potential is zero over
a distance a, peaks at V (x) = V0 over a distance b and then repeats itself. It is evident that

V (x+ c) = V (x). (3.12.1)

where c = a+ b is the period. Since the potential is a periodic function of x with a period
c, the Schrödinger equation is invariant under space translations

x→ x+ nc, n = 0,±1,±2,±3, ... (3.12.2)

This invariance imposes certain restriction on the form of the allowable solution of the
Schrödinger equation. To determine this restriction, let us introduce an operator D̂, called
the space translation operator, which while acting on a function f (x) shifts it horizontally
along the x direction over a distance c:

D̂ f (x) = f (x+ c). (3.12.3)

For instance, acting on the potential function V (x), it shifts the entire potential over a
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Figure 3.10 This is the sketch of a representative periodic potential with a separation
of a between the peaks of width b.

Consider now the following

(D̂Ĥ)ψ(x) = D̂(Ĥψ) = D̂
(
− h̄2

2m
∂ 2

∂x2 +V (x)
)

ψ(x)

=

(
− h̄2

2m
∂ 2

∂x2 +V (x+ c)
)

ψ(x+ c)

=

(
− h̄2

2m
∂ 2

∂x2 +V (x)
)

ψ(x+ c)

= Ĥ
(
D̂ψ(x)

)
=

(
ĤD̂

)
ψ(x). (3.12.5)

In obtaining the above result we have used the fact that

∂
∂ (x+ c)

=
∂
∂x

∂x
∂ (x+ c)

=
∂
∂x

. (3.12.6)

Thus, the Hamiltonian and the translation operator commute: [D̂, Ĥ] = 0. It means that, if
ψ(x) is an eigenfunction of the Hamiltonian with energy E (i.e., Ĥψ(x) = Eψ(x)), then
D̂ψ(x) is also an eigenfunction of the Hamiltonian with the same energy E:

Ĥ
(
D̂ψ(x)

)
=

(
ĤD̂

)
ψ(x) =

(
D̂Ĥ

)
ψ(x) = E

(
D̂ψ(x)

)
, (3.12.7)

This, in turn means that, if the energy spectrum is non-degenerate, ψ(x+c) and ψ(x) must
represent the same state of the system. Therefore, ψ(x+ c) can differ from ψ(x) only by
a constant factor:

ψ(x+ c) = α ψ(x), (3.12.8)
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)
ψ(x) = E

(
D̂ψ(x)

)
, (3.12.7)

This, in turn means that, if the energy spectrum is non-degenerate, ψ(x+c) and ψ(x) must
represent the same state of the system. Therefore, ψ(x+ c) can differ from ψ(x) only by
a constant factor:

ψ(x+ c) = α ψ(x), (3.12.8)

Therefore, 


114 Fundamentals of Quantum Mechanics

V x( )

V = 0 V = 0 V = 0 V = 0

V0

–( + )a b –b a ( + )a b0 x

Figure 3.10 This is the sketch of a representative periodic potential with a separation
of a between the peaks of width b.

Consider now the following
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where � is a constant of magnitude unity. 
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where α is a constant of magnitude unity.

α = exp
(

2πi!
n

)
, != 0,1,2,3, . . . (3.12.9)

Defining now

κ =
2π!
n c

, (3.12.10)

we arrive at

ψ(x+ nc) = eiκ cψ(x). (3.12.11)

Now, any function ψ(x), satisfying the above condition, can be written as

ψ(x) = eiκ x uκ(x), (3.12.12)

where uκ(x) is a periodic function of x of period c: uκ(x+ c) = uκ(x). To ensure that it is
really so, we write

ψ(x+ c) = eiκ (x+c)uκ(x+ c) = eiκ c eiκ x uκ(x+ c). (3.12.13)

Therefore, if uκ(x+ c) = uκ(x),

ψ(x+ c) = eiκ(x+c)uκ(x+ c) = eiκ c eiκ x uκ(x) = eiκ c ψ(x). (3.12.14)

The above result is a fundamental result for condensed matter physics and it is known as
Bloch’s theorem. It states that any solution to the Schrödinger equation, with a periodic
potential of period c, must have the form given by equation (3.12.14).

Consider now the case of a particle (mass m and total energy E < V0) subject to the
above periodic potential. If we introduce

k2
1 =

2mE
h̄2 , (3.12.15)

k2
2 =

2m(V0−E)
h̄2 , (3.12.16)

the solutions of the time-independent Schrödinger equations in the relevant regions can be
written as

ψ(x) = A cos(k1x)+B sin(k1x), (0 < x < a), (3.12.17)

ψ(x) =C cosh(k2x)+D sinh(k2x), (−b < x < 0), (3.12.18)

Defining now 
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It states that any solution to the Schroedinger equation, 
with a periodic potential of period c, must have this form.
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where A, B, C and D are arbitrary constants. They must be chosen such that both ψ(x) and
ψ ′(x) are continuous at the boundaries, where the potential has a finite jump, and abide by
Bloch’s theorem.

At x = 0, we have

A =C, (3.12.19)

k1 B = k2 D. (3.12.20)

Furthermore, using the Bloch theorem (with n = 1), we get

ψ(a) = eiK c ψ(−b), (3.12.21)

ψ ′(a) = eiK c ψ ′(−b), (3.12.22)

where

K =
2π!

(a+ b)
. (3.12.23)

The boundary conditions (3.12.21) and (3.12.22) lead to

A cos(k1a)+B sin(k1a) = eiKc [C cosh(k2b)−D sinh(k2b)] , (3.12.24)

−k1 A sin(k1a)+ k1 B cos(k1a) = eiKc [−k2 C sinh(k2b)+ k2 D cosh(k2b)] . (3.12.25)

The algebraic equations (3.12.19), (3.12.20), (3.12.24), and (3.12.25), can be written as a
matrix equation: M X = 0, where X = (A B C D)T is a column matrix and

M =





1 0 −1 0
0 k1 0 −k2

cos(k1a) sin(k1a) −eiKc cosh(k2b) eiKc sinh(k2b)

−k1 sin(k1a) k1 cos(k1a) k2 eiKc sinh(k2b) −k2 eiKc cosh(k2b)




.

(3.12.26)

For the non-trivial solutions the determinant of the matrix, |M |, must be zero:

|M |=

∣∣∣∣∣∣∣∣∣∣

1 0 −1 0
0 k1 0 −k2

cos(k1a) sin(k1a) −eiKc cosh(k2b) eiKc sinh(k2b)

−k1 sin(k1a) k1 cos(k1a) k2 eiKc sinh(k2b) −k2 eiKc cosh(k2b)

∣∣∣∣∣∣∣∣∣∣

= 0.

(3.12.27)

Furthermore, using the Bloch theorem (with n = 1), we get 
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Finally,
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One-dimensional Problems 117

Using the Gaussian decomposition rule for the determinants, we have

|M |=

∣∣∣∣∣∣∣∣

k1 0 −k2

sin(k1a) −eiKc cosh(k2b) eiKc sinh(k2b)

k1 cos(k1a) k2 eiKc sinh(k2b) −k2 eiKc cosh(k2b)

∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣

0 k1 −k2

cos(k1a) sin(k1a) eiKc sinh(k2b)

−k1 sin(k1a) k1 cos(k1a) −k2 eiKc cosh(k2b)

∣∣∣∣∣∣∣∣
= 0. (3.12.28)

Further simplification of the determinants leads to

k1
[
k2 e2iKc cosh2(k2b)− k2 e2iKc sinh2(k2b)

]
− k2

[
k2 eiKc sinh(k2b) sin(k1a)

+k1 eiKc cosh(k2b) cos(k1a)
]
+ k1

[
−k2 eiKc cosh(k2b) cos(k1a)

+k1 eiKc sinh(k2b) sin(k1a)
]
+ k2

[
k1 cos2(k1a)+ k1 sin2(k1a)

]
= 0. (3.12.29)

Opening up the brackets, we get

k1 k2 e2iKc− k2
2 eiKc sinh(k2b) sin(k1a)− k1 k2 eiKc cosh(k2b) cos(k1a)

− k1 k2 eiKc cosh(k2b) cos(k1a)+ k2
1 eiKc sinh(k2b) sin(k1a)+ k1 k2 = 0 (3.12.30)

From here, collecting similar terms, we obtain

(k2
1− k2

2) sinh(k2b) sin(k1a)−2k1 k2 cosh(k2b) cos(k1a)+ k1 k2
[
eiKc + e−iKc]= 0.

(3.12.31)

Equation (3.12.31) yields the following transcendental equation for the determination of
the energy eigenvalues

(k2
2− k2

1)
2k1 k2

sinh(k2b) sin(k1a)+ cosh(k2b) cos(k1a) = cos[K(a+ b)]. (3.12.32)

In general, the equation (3.12.32) cannot be solved analytically. For given values of the
model parameters a, b and V0, it can be solved numerically. It is usually done by using one
of the standard root finding algorithms for a given value of K. As a result of the numerical
solution, one gets the values of k1 using which one can calculate the energy eigenvalues as
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It yields the following transcendental equation for the 
determination of the energy eigenvalues
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Note that, for practical purposes, the above transcendental 
equation can be simplified by imposing some reasonable 
restrictions on the model parameters. 


Assume that the width of the potential tends to zero while 
the height tends to infinity such that V0b remains constant. 
In such a limit 


118 Fundamentals of Quantum Mechanics

Energy Bands: Note that, for practical purposes, the above transcendental equation can be
simplified by imposing some reasonable restrictions on the model parameters.

Assume that the width of the potential tends to zero while the height tends to infinity
such that V0b remains constant. In such a limit

lim
b→0

sinh(k2b) = k2b, lim
b→0

cos(k2b) = 1.

Here, we have gone to the leading order in the Taylor expansions of the hyperbolic
trigonometric functions on the left-hand side, and simply let b = 0 on the right-hand side.
We obtain

(k2
2− k2

1)
2k1

b sin(k1a)+ cos(k1a) = cos[Ka]. (3.12.34)

We then find it convenient to define the dimensionless quantity, P = mV0ba
2 , which

determines the effective strength of the potential. Then we have

F(k1a) = cos[Ka], (3.12.35)

where

F(k1a) = P
sin(k1a)

k1
+ cos(k1a). (3.12.36)

Energy gaps

Energy bands

F k a P k a( ) = + cos( )
sin( )k a1

k1
11

+1

–1

0 k a1

Figure 3.11 A schematic representation of the allowed and forbidden energy bands.
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Example 2.4.2: Find the value of the commutator

Â = [ p̂2
x , (x̂ p̂y− ŷ p̂x)],

where, !̂r = (x̂, ŷ, ẑ) and !̂p = ( p̂x, p̂y, p̂z) are the position and momentum operators of a
particle, respectively.

Solution: Using the properties of the commutator of operators

[Â, B̂+ Ĉ] = [Â, B̂]+ [Â,Ĉ], (2.4.29)

[ÂB̂,Ĉ] = Â[B̂,Ĉ]+ [Â,Ĉ]B̂, (2.4.30)

[Â, B̂Ĉ] = B̂[Â,Ĉ]+ [Â, B̂]Ĉ, (2.4.31)

we get

[ p̂2
x , (x̂ p̂y− ŷ p̂x)] = [ p̂2

x , x̂ p̂y]− [ p̂2
x , ŷ p̂x]

= p̂x[ p̂x, x̂ p̂y]+ [ p̂x, x̂ p̂y] p̂x− p̂x[ p̂x, ŷ p̂x]− [ p̂x, ŷ p̂y] p̂x

= p̂xx̂[ p̂x, p̂y]+ p̂x[ p̂x, x̂] p̂y + x̂[ p̂x, p̂y] p̂x +[ p̂x, x̂] p̂y p̂x

− p̂xŷ[ p̂x, p̂x]− p̂x[ p̂x, ŷ] p̂x− ŷ[ p̂x, p̂y] p̂x− [ p̂x, ŷ] p̂y p̂x

= −ih̄( p̂x p̂y + p̂y p̂x) = −2i p̂x p̂y, (2.4.32)

where we have used the fundamental commutators [x̂ j, p̂k] = ih̄δ jk, j,k = 1,2,3.

2.5 The Schrödinger Equation

Postulate 3: The time evolution of the wave function, ψ(!r, t), representing the state of a
quantum mechanical system is governed by the following partial differential equation:

ih̄
∂ψ(!r, t)

∂ t
= − h̄2

2m
!∇2ψ(!r, t)+V (!r)ψ(!r, t), (2.5.1)

where !∇2 = ∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 is the Laplacian or Laplace operator and V is the potential
energy function. This is the well-known time-dependent Schrödinger equation.

In one spatial dimension, equation (2.5.1) reduces to:

ih̄
∂ψ
∂ t

= − h̄2

2m
∂ 2ψ
∂x2 +V (x)ψ , ψ = ψ(x, t). (2.5.2)
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= p̂x[ p̂x, x̂ p̂y]+ [ p̂x, x̂ p̂y] p̂x− p̂x[ p̂x, ŷ p̂x]− [ p̂x, ŷ p̂y] p̂x

= p̂xx̂[ p̂x, p̂y]+ p̂x[ p̂x, x̂] p̂y + x̂[ p̂x, p̂y] p̂x +[ p̂x, x̂] p̂y p̂x
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2.5 The Schrödinger Equation

Postulate 3: The time evolution of the wave function, ψ(!r, t), representing the state of a
quantum mechanical system is governed by the following partial differential equation:

ih̄
∂ψ(!r, t)

∂ t
= − h̄2

2m
!∇2ψ(!r, t)+V (!r)ψ(!r, t), (2.5.1)

where !∇2 = ∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 is the Laplacian or Laplace operator and V is the potential
energy function. This is the well-known time-dependent Schrödinger equation.

In one spatial dimension, equation (2.5.1) reduces to:

ih̄
∂ψ
∂ t

= − h̄2

2m
∂ 2ψ
∂x2 +V (x)ψ , ψ = ψ(x, t). (2.5.2)

ℏ
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Exercise

2.Consider a particle of mass m confined to move in one 
spatial dimension in the region 0 < x < a. Let the particle be 
in a state described by the wave function �1(x,t) = sin(πx/a) 
exp(−i�t), where � is a constant. Find the average values of 
the position and momentum operators in this state. 
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The momentum operator p̂x = −ih̄(∂ /∂x), and we have

〈p̂x〉=
∫ +∞

−∞
ψ∗(x) ( p̂xψ(x))dx = −ih̄|A|2

∫ +∞

−∞
ψ∗(x) dψ

dx
dx

= 2iα h̄|A|2
∫ +∞

−∞
(x−b) e−2α(x−b)2

dx = 2iα h̄|A|2
∫ +∞

−∞
y e−2α y2

dy = 0, (2.7.23)

where we have changed the variable of integration from (x−b) to y = x−b and taken into
account the fact that the integrand is an odd function of y and hence, the integral is zero.
As a result, the expectation value of p̂x is equal to zero: 〈p̂x〉= 0.

Further, we calculate

p̂2
xψ(x) = 2α h̄2

(
e−2α(x−b)2−2α e−2α(x−b)2

)
. (2.7.24)

〈p̂2
x〉=

∫ +∞

−∞
ψ∗(x) ( p̂x ψ(x))dx = 2α h̄2|A|2

∫ +∞

−∞

[
e−2α(x−b)2−2α(x−b)2 e−2α(x−b)2

]
dx

= 2|A|2α h̄2
[√

π
2α
− 1

2

√
π

2α

]
=

|A|2
√

π
√

2α h̄2

2
. (2.7.25)

The expectation value of p̂2
x is then given by

〈p̂2
x〉=

|A|2
√

π
√

2α h̄2

2
×
√

2α
|A|2

√
π
= α h̄2. (2.7.26)

Example 2.7.2: Consider a particle of mass m confined to move in one spatial dimension
in the region 0 < x < a. Let the particle be in a state described by the wave function
ψ1(x, t) = sin (πa/x) exp(−iωt), where ω is a constant. Find the average values of the
position and momentum operators in this state.

Solution: First, let us check whether the wave function of the particle is normalized or not.
We have

∫ a

0
|ψ1(x, t)|2 dx =

∫ a

0
sin2 (πa/x) dx

=
∫ a

0

((1− cos (2πa/x))
2

dx =
a
2

. (2.7.27)
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Solution: First, let us check whether the wave function of the particle is normalized or not.
We have

∫ a
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The average value of the position operator and momentum 
will be given by 
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Therefore, the normalized wave function is

ψ(x, t) =
√

2
a

sin (πa/x) exp(−iωt). (2.7.28)

The average value of the position operator x̂ will be given by

〈x̂〉=
∫ a

0
x̂ |ψ(x, t)|2 dx =

2
a

∫ a

0
x sin2 (πa/x) dx

=
2
a

∫ a

0

((x− x cos (2πa/x))
2

dx. (2.7.29)

Integrating the second term by parts, we arrive at 〈x̂〉 = a/2. The average value of the
momentum operator p̂x will be

〈 p̂x〉=
∫ a

0
ψ∗(x, t)

(
−ih̄

d
dx

)
ψ(x, t)dx = − ih̄

π

∫ a

0
sin (2πa/x) dx. (2.7.30)

Taking the integral, we get

〈 p̂x〉= −
ih̄
π

∫ a

0
sin (2πa/x) dx = 0. (2.7.31)

Example 2.7.3: Consider a particle of mass m confined to move in a one-dimensional infinite
potential well of width a. Let, at t = 0, the particle be in a state described by the wave
function ψ(x, t) = sin3 (πa/x). If the energy of the particle is measured, what values will
be obtained and with what probabilities? What will be the average value of energy in this
state?

Solution: We shall show in Chapter 3 that the eigenfunctions and the corresponding
eigenvalues of the Hamiltonian, for a particle of mass m moving in a 1D infinite potential
well of width a, are given by

ψn(x) =

√
2
a

sin (nπa/x) , En =
n2π2h̄2

2ma2 , n = 1,2,3, ... (2.7.32)

The wave function of the particle at t = 0 can be written as

ψ(x) =
3
4

sin (πa/x)− 1
4

sin (3πa/x) =
3
√

a
4
√

2
φ1(x)−

√
a

4
√

2
φ3(x), (2.7.33)

where φ1 and φ3 are the ground state and the second excited state wave functions of the
particle in the infinite potential well. Let us check whether the wave function (2.7.33) is
normalized or not. We have
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Exercise

3.Consider a particle of mass m confined to move in a one-
dimensional infinite potential well of width a. Let, at t = 0, 
the particle be in a state described by the wave function 
�(x,t) = sin3 (πx/a). If the energy of the particle is 
measured, what values will be obtained and with what 
probabilities? What will be the average value of energy in 
this state? 
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be obtained and with what probabilities? What will be the average value of energy in this
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√
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√

2
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where φ1 and φ3 are the ground state and the second excited state wave functions of the
particle in the infinite potential well. Let us check whether the wave function (2.7.33) is
normalized or not. We have

x/a
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The wave function of the particle at t = 0 can be written as 
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Example 2.7.3: Consider a particle of mass m confined to move in a one-dimensional infinite
potential well of width a. Let, at t = 0, the particle be in a state described by the wave
function ψ(x, t) = sin3 (πa/x). If the energy of the particle is measured, what values will
be obtained and with what probabilities? What will be the average value of energy in this
state?
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eigenvalues of the Hamiltonian, for a particle of mass m moving in a 1D infinite potential
well of width a, are given by
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sin (nπa/x) , En =
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The wave function of the particle at t = 0 can be written as
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4
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where φ1 and φ3 are the ground state and the second excited state wave functions of the
particle in the infinite potential well. Let us check whether the wave function (2.7.33) is
normalized or not. We have

x/a x/a

Normalization constant 
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∫ a

0
|ψ(x)|2 dx =

9a
32

∫ a

0
|φ1(x)|2 dx+

a
32

∫ a

0
|φ3(x)|2 dx

− 6a
32

∫ a

0
φ1(x)φ3(x)dx =

9a
32

+
a
32

=
5a
16

, (2.7.34)

where we have used the fact that the eigenfunctions of the Hamiltonian are orthonormal:

∫ a

0
φ ∗i (x)φ j(x)dx = δi j =

{
1, if i = j
0, if i #= j. (2.7.35)

As a result, the normalized wave function at t = 0 is

φ (x) = 4√
5a

3
√

a
4
√

2
φ1(x)−

4√
5a

√
a

4
√

2
φ3(x) =

3√
10

φ1(x)−
1√
10

φ3(x). (2.7.36)

Therefore, when energy is measured on the system, the values that can result are

E1 =
π2h̄2

2ma2 and E3 =
9π2h̄2

2ma2 . (2.7.37)

Now the probability of getting E1 is

P1 = |〈φ1 | φ〉|2 = 9
10

, (2.7.38)

while the probability of getting E3 is

P3 = |〈φ3 | φ〉|2 = 1
10

. (2.7.39)

The average value of energy in the state ψ(x) is

〈E〉= P1E1 +P3E3 =
9
10
× π2h̄2

2ma2 +
1
10
× 9π2h̄2

2ma2 =
9π2h̄2

10ma2 . (2.7.40)

Compatible operators: In physics, we want to have the maximal information about the
system under study. The same applies to a quantum mechanical system. Obviously, this
is possible only if we are able to determine and measure accurately the maximal number
of relevant physical characteristics of the system. Therefore, it is important to discuss the
possibilities that quantum mechanics offers and the restrictions it puts on achieving this
goal. Keeping this in mind, we are now going to prove some important theorems that will
tell us about the extent to which we can accomplish this task.

Theorem 2.7.1: If two observables A and B are compatible, they possess a common set of
eigenfunctions (this theorem holds for both degenerate and non-degenerate eigenstates).

As a result, the normalized wave function at t = 0 is 
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φ (x) = 4√
5a

3
√

a
4
√

2
φ1(x)−

4√
5a

√
a

4
√

2
φ3(x) =

3√
10

φ1(x)−
1√
10

φ3(x). (2.7.36)

Therefore, when energy is measured on the system, the values that can result are

E1 =
π2h̄2

2ma2 and E3 =
9π2h̄2

2ma2 . (2.7.37)

Now the probability of getting E1 is

P1 = |〈φ1 | φ〉|2 = 9
10

, (2.7.38)

while the probability of getting E3 is

P3 = |〈φ3 | φ〉|2 = 1
10

. (2.7.39)

The average value of energy in the state ψ(x) is

〈E〉= P1E1 +P3E3 =
9
10
× π2h̄2

2ma2 +
1
10
× 9π2h̄2

2ma2 =
9π2h̄2

10ma2 . (2.7.40)

Compatible operators: In physics, we want to have the maximal information about the
system under study. The same applies to a quantum mechanical system. Obviously, this
is possible only if we are able to determine and measure accurately the maximal number
of relevant physical characteristics of the system. Therefore, it is important to discuss the
possibilities that quantum mechanics offers and the restrictions it puts on achieving this
goal. Keeping this in mind, we are now going to prove some important theorems that will
tell us about the extent to which we can accomplish this task.

Theorem 2.7.1: If two observables A and B are compatible, they possess a common set of
eigenfunctions (this theorem holds for both degenerate and non-degenerate eigenstates).
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4. A particle in an infinite symmetrical potential well of 
width a (-a/2≤ x ≤ a/2 ) is initially (t = 0) in a state with the 
wave function 
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necessity of minimum motion of the particle due to localization. It occurs for all bound
state problems. In the case of binding potentials, the lowest energy state has energy higher
than the minimum of the potential energy. This is in contrast to the situation in classical
mechanics where the lowest possible energy is equal to the minimum of the potential
energy with zero kinetic energy. In quantum mechanics, however, the lowest energy state
does minimize the total energy E = T +V but leads to a finite nonzero value of the
kinetic energy.

Example 3.3.1: A particle in an infinite symmetrical potential well of width a (−a
2 ≤ x ≤

+ a
2 ) is initially (t = 0) in a state with the wave function

ψ(x,0) = A
(

1− x2

a2

)
, (3.3.18)

where A is an arbitrary real constant. Find the wave function ψ(x, t) at t > 0.

Solution: First, we normalize the wave function to find A. We have

∫ +a

−a
|ψ(x, t)|2 dx = A2

∫ +a

−a

(
1−2

x2

a2 +
x4

a4

)
dx

= A2
(

2a− 4a
3
+

2a
5

)
= A2 16a

15
= 1. (3.3.19)

This gives the constant A as

A =

√
15

4
√

a
. (3.3.20)

The general solution at t > 0 is given by the linear combination

ψ(x, t) = ∑
n

cnφn(x) e−
i
h̄ Ent , (3.3.21)

where φn(x) are the normalized time independent solutions of the corresponding TISE. The
coefficients, cn, are to be calculated for a given ψ(x,0). Since the potential is symmetric
with respect to the centre of the well (at x = 0), the solutions are

φn(x) =






√
2
a cos

(nπx
a
)

, n = 1,3,5, ...

√
2
a sin

(nπx
a
)

, n = 2,4,6, ...

(3.3.22)

where A is an arbitrary real constant. Find the wave function 
�(x,t) at t > 0. 


Exercise
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This gives the constant A as 
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The general solution at t > 0 is given by the linear 
combination 


66 Fundamentals of Quantum Mechanics

necessity of minimum motion of the particle due to localization. It occurs for all bound
state problems. In the case of binding potentials, the lowest energy state has energy higher
than the minimum of the potential energy. This is in contrast to the situation in classical
mechanics where the lowest possible energy is equal to the minimum of the potential
energy with zero kinetic energy. In quantum mechanics, however, the lowest energy state
does minimize the total energy E = T +V but leads to a finite nonzero value of the
kinetic energy.

Example 3.3.1: A particle in an infinite symmetrical potential well of width a (−a
2 ≤ x ≤

+ a
2 ) is initially (t = 0) in a state with the wave function

ψ(x,0) = A
(

1− x2

a2

)
, (3.3.18)

where A is an arbitrary real constant. Find the wave function ψ(x, t) at t > 0.

Solution: First, we normalize the wave function to find A. We have

∫ +a

−a
|ψ(x, t)|2 dx = A2

∫ +a

−a

(
1−2

x2

a2 +
x4

a4

)
dx

= A2
(

2a− 4a
3
+

2a
5

)
= A2 16a

15
= 1. (3.3.19)

This gives the constant A as

A =

√
15

4
√

a
. (3.3.20)

The general solution at t > 0 is given by the linear combination

ψ(x, t) = ∑
n

cnφn(x) e−
i
h̄ Ent , (3.3.21)

where φn(x) are the normalized time independent solutions of the corresponding TISE. The
coefficients, cn, are to be calculated for a given ψ(x,0). Since the potential is symmetric
with respect to the centre of the well (at x = 0), the solutions are

φn(x) =






√
2
a cos

(nπx
a
)

, n = 1,3,5, ...

√
2
a sin

(nπx
a
)

, n = 2,4,6, ...

(3.3.22)

where !n(x) are the normalized time independent solutions of 
the corresponding TISE. 


Exercise

3.5: Particle in One-Dimensional Box 65

The Stationary States form a Complete Orthonormal Basis of F1

We want to demonstrate now that the set of solutions (3.89, 3.90, 3.94)

B1 = {�n(a;x) , n = 1, 2, 3, . . .} (3.95)

where

�n(a;x) =
r

1
a

⇢
cosn⇡x

2a for n = 1, 3, 5 . . .
sinn⇡x

2a for n = 2, 4, 6 . . .
(3.96)

together with the scalar product5

hf |gi⌦1 =
Z +a

�a
dxf(x) g(x) , f, g 2 F1 (3.97)

form an orthonormal basis set, i.e., it holds

h�n|�mi⌦1 = �n m . (3.98)

The latter property is obviously true for n = m. In case of n 6= m we have to consider three cases,
(i) n, m both odd, (ii) n, m both even, and (iii) the mixed case. The latter case leads to integrals

h�n|�mi⌦1 =
1
a

Z +a

�a
dx cos

n⇡x

2a
sin

m⇡x

2a
. (3.99)

Since in this case the integrand is a product of an even and of an odd function, i.e., the integrand
is odd, the integral vanishes. Hence we need to consider only the first two cases. In case of n, m
odd, n 6= m, the integral arises

h�n|�mi⌦1 = 1
a

R +a
�a dx cosn⇡x

2a cosm⇡x
2a =

1
a

R +a
�a dx

h
cos (n�m)⇡x

2a + cos (n+m)⇡x
2a

i
(3.100)

The periods of the two cos-functions in the interval [�a, a] are N, N � 1. Obviously, the integrals
vanish. Similarly, one obtains for n, m even

h�n|�mi⌦1 = 1
a

R +a
�a dx sinn⇡x

2a sinm⇡x
2a =

1
a

R +a
�a dx

h
cos (n�m)⇡x

2a � cos (n+m)⇡x
2a

i
(3.101)

and, hence, this integral vanishes, too.
Because of the property (3.98) the elements of B1 must be linearly independent. In fact, for

f(x) =
1X

n=1

dn �n(a;x) (3.102)

holds according to (3.98)

hf |fi⌦1 =
1X

n=1

d2
n . (3.103)

5We will show in Section 5 that the property of a scalar product do indeed apply. In particular, it holds:
hf |fi⌦1 = 0 ! f(x) ⌘ 0.



21/09/2023 Jinniu Hu

For odd n, the coefficients cn are 


For even n, the coefficients cn are 


In this case, both the integrals are zero because the 
integrands are odd functions of x. 


Exercise

c1n = A
1
a ∫

a

−a
cos nπx

2a
dx − A

a2
1
a ∫

a

−a
x2 cos nπx

2a
dx = I1 + I2

I1 = 15
nπ

sin ( nπ
2 ) I2 = 15 [ 1

nπ
− 8

n3π3 ] sin ( nπ
2 )

c2n = A
1
a ∫

a

−a
sin nπx

2a
dx − A

a2
1
a ∫

a

−a
x2 sin nπx

2a
dx
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Therefore, the expansion coefficients are given by 


As a consequence, the wave function at t > 0 is given by the 
following linear combination 

 


Exercise

cn = 15 [ 2
nπ

− 8
n3π3 ] sin ( nπ

2 )

ψ(x, t) = ∑
n

15 [ 2
nπ

− 8
n3π3 ] sin ( nπ

2 ) ϕn(x)e−i(n2π2ℏ/8ma2)t, n = 1, 3, 5,...
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5.At t=0, a particle of mass m, free to move inside an 
infinite potential well with walls at x = 0 and x = a, is in a 
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Example 3.5.2: At t = 0, a particle of mass m, free to move inside an infinite potential well
with walls at x = 0 and x = a, is in a state that is a linear superposition of the ground state
and the first excited state

ψ(x,0) =
1√
2
[φ1(x)+φ2(x)] =

1√
a

[
sin

(πx
a

)
+ sin

(
2πx

a

)]
,

Find the wave function at any t > 0. Check whether the continuity equation holds good for
this state or not.

Solution: The wave function of the particle at t > 0 will be

ψ(x, t) =
1√
a

[
sin

(πx
a

)
e−i E1

h̄ t + sin
(

2πx
a

)
e−i E2

h̄ t
]

(3.5.16)

The probability density is calculated to be

ρ(x, t) = |ψ(x, t)|2 = 1
a

[
sin2

(πx
a

)
+ sin2

(
2πx

a

)]
.

+
1
a

sin
(πx

a

)
sin

(
2πx

a

){
ei (E1−E2)

h̄ t + e−i (E1−E2)
h̄ t

}
. (3.5.17)

We simplify it further, by dividing the last term by 2 and using the Euler formula, to obtain

ρ(x, t) =
1
a

[
sin2

(πx
a

)
+ sin2

(
2πx

a

)]

+
2
a

sin
(πx

a

)
sin

(
2πx

a

)
cos

[
(E1−E2)

h̄
t
]

. (3.5.18)

Let us now calculate the probability current density. We have

∂ψ
∂x

=
1√
a

[
π
a

cos
(πx

a

)
e−i E1

h̄ t +
2π
a

cos
(

2πx
a

)
e−i E2

h̄ t
]

, (3.5.19)

ψ∗(x, t)
∂ψ
∂x

=
π
a2 sin

(πx
a

)
cos

(πx
a

)
+

2π
a2 sin

(πx
a

)
cos

(
2πx

a

)
ei (E1−E2)

h̄ t

+
π
a2 sin

(
2πx

a

)
cos

(πx
a

)
e−i (E1−E2)

h̄ t +
2π
a2 sin

(
2πx

a

)
cos

(
2πx

a

)
. (3.5.20)

Find the wave function at any t > 0. Check whether the 
continuity equation holds good for this state or not. 




21/09/2023 Jinniu Hu

5.At t=0, a particle of mass m, free to move inside an 
infinite potential well with walls at x = 0 and x = a, is in a 
state that is a linear superposition of the ground state and 
the first excited state 


Exercise
76 Fundamentals of Quantum Mechanics

Example 3.5.2: At t = 0, a particle of mass m, free to move inside an infinite potential well
with walls at x = 0 and x = a, is in a state that is a linear superposition of the ground state
and the first excited state

ψ(x,0) =
1√
2
[φ1(x)+φ2(x)] =

1√
a

[
sin

(πx
a

)
+ sin

(
2πx

a

)]
,

Find the wave function at any t > 0. Check whether the continuity equation holds good for
this state or not.

Solution: The wave function of the particle at t > 0 will be

ψ(x, t) =
1√
a

[
sin

(πx
a

)
e−i E1

h̄ t + sin
(

2πx
a

)
e−i E2

h̄ t
]

(3.5.16)

The probability density is calculated to be

ρ(x, t) = |ψ(x, t)|2 = 1
a

[
sin2

(πx
a

)
+ sin2

(
2πx

a

)]
.

+
1
a

sin
(πx

a

)
sin

(
2πx

a

){
ei (E1−E2)

h̄ t + e−i (E1−E2)
h̄ t

}
. (3.5.17)

We simplify it further, by dividing the last term by 2 and using the Euler formula, to obtain

ρ(x, t) =
1
a

[
sin2

(πx
a

)
+ sin2

(
2πx

a

)]

+
2
a

sin
(πx

a

)
sin

(
2πx

a

)
cos

[
(E1−E2)

h̄
t
]

. (3.5.18)

Let us now calculate the probability current density. We have

∂ψ
∂x

=
1√
a

[
π
a

cos
(πx

a

)
e−i E1

h̄ t +
2π
a

cos
(

2πx
a

)
e−i E2

h̄ t
]

, (3.5.19)

ψ∗(x, t)
∂ψ
∂x

=
π
a2 sin

(πx
a

)
cos

(πx
a

)
+

2π
a2 sin

(πx
a

)
cos

(
2πx

a

)
ei (E1−E2)

h̄ t

+
π
a2 sin

(
2πx

a

)
cos

(πx
a

)
e−i (E1−E2)

h̄ t +
2π
a2 sin

(
2πx

a

)
cos

(
2πx

a

)
. (3.5.20)

Find the wave function at any t > 0. Check whether the 
continuity equation holds good for this state or not. 


Solution: The wave function of the particle at t > 0 will be 


76 Fundamentals of Quantum Mechanics

Example 3.5.2: At t = 0, a particle of mass m, free to move inside an infinite potential well
with walls at x = 0 and x = a, is in a state that is a linear superposition of the ground state
and the first excited state

ψ(x,0) =
1√
2
[φ1(x)+φ2(x)] =

1√
a

[
sin

(πx
a

)
+ sin

(
2πx

a

)]
,

Find the wave function at any t > 0. Check whether the continuity equation holds good for
this state or not.

Solution: The wave function of the particle at t > 0 will be

ψ(x, t) =
1√
a

[
sin

(πx
a

)
e−i E1

h̄ t + sin
(

2πx
a

)
e−i E2

h̄ t
]

(3.5.16)

The probability density is calculated to be

ρ(x, t) = |ψ(x, t)|2 = 1
a

[
sin2

(πx
a

)
+ sin2

(
2πx

a

)]
.

+
1
a

sin
(πx

a

)
sin

(
2πx

a

){
ei (E1−E2)

h̄ t + e−i (E1−E2)
h̄ t

}
. (3.5.17)

We simplify it further, by dividing the last term by 2 and using the Euler formula, to obtain

ρ(x, t) =
1
a

[
sin2

(πx
a

)
+ sin2

(
2πx

a

)]

+
2
a

sin
(πx

a

)
sin

(
2πx

a

)
cos

[
(E1−E2)

h̄
t
]

. (3.5.18)

Let us now calculate the probability current density. We have

∂ψ
∂x

=
1√
a

[
π
a

cos
(πx

a

)
e−i E1

h̄ t +
2π
a

cos
(

2πx
a

)
e−i E2

h̄ t
]

, (3.5.19)

ψ∗(x, t)
∂ψ
∂x

=
π
a2 sin

(πx
a

)
cos

(πx
a

)
+

2π
a2 sin

(πx
a

)
cos

(
2πx

a

)
ei (E1−E2)

h̄ t

+
π
a2 sin

(
2πx

a

)
cos

(πx
a

)
e−i (E1−E2)

h̄ t +
2π
a2 sin

(
2πx

a

)
cos

(
2πx

a

)
. (3.5.20)



21/09/2023 Jinniu Hu

The probability density is calculated to be 
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The probability current density jx is therefore given by 
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∂ψ
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π
a2 sin

(πx
a
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cos

(πx
a

)
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2π
a2 sin

(πx
a
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(
2πx

a
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ei (E1−E2)

h̄ t

+
π
a2 sin

(
2πx

a
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cos

(πx
a
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2π
a2 sin
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2πx

a
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(
2πx

a
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Taking the complex conjugate of the last equation, we get

∂ψ∗

∂x
ψ(x, t) =

π
a2 sin

(πx
a

)
cos

(πx
a

)
+

2π
a2 sin

(πx
a

)
cos

(
2πx

a

)
e−i (E1−E2)

h̄ t

+
π
a2 sin

(
2πx

a

)
cos

(πx
a

)
ei (E1−E2)

h̄ t +
2π
a2 sin

(
2πx

a

)
cos

(
2πx

a

)
. (3.5.21)

If we subtract (3.5.21) from (3.5.20), we obtain

ψ∗(x, t)
∂ψ
∂x
− ∂ψ∗

∂x
ψ(x, t) =

2π
a2 sin

(πx
a

)
cos

(
2πx

a

)[
ei (E1−E2)

h̄ t − e−i (E1−E2)
h̄ t

]

− π
a2 sin

(
2πx

a

)
cos

(πx
a

)[
ei (E1−E2)

h̄ t − e−i (E1−E2)
h̄ t

]
. (3.5.22)

The probability current density jx is therefore given by

jx =
h̄

2mi

[
ψ∗(x, t)

∂ψ
∂x
− ∂ψ∗

∂x
ψ(x, t)

]

=
2π h̄
ma2 sin

(πx
a

)
cos

(
2πx

a

)
sin

[
(E1−E2)

h̄
t
]

− π h̄
ma2 sin

(
2πx

a

)
cos

(πx
a

)
sin

[
(E1−E2)

h̄
t
]

. (3.5.23)

The time derivative of the probability density is

∂ρ(x, t)
∂ t

= −2
a
(E1−E2)

h̄
sin

(πx
a

)
sin

(
2πx

a

)
sin

[
(E1−E2)

h̄
t
]

. (3.5.24)

Since

(E1−E2)
h̄

=
1
h̄
(π2h̄2−4π2h̄2)

2ma2 = − 3π2h̄
2ma2 , (3.5.25)

we get from (3.5.24)

∂ρ(x, t)
∂ t

=
3π2h̄
ma3 sin

(πx
a

)
sin

(
2πx

a

)
sin

[
(E1−E2)

h̄
t
]

. (3.5.26)
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Therefore,
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The x derivative of jx can be calculated to be

∂ jx
∂x

=

[
2π2h̄
ma3 cos

(πx
a

)
cos

(
2πx

a

)
− 4π2h̄

ma3 sin
(πx

a

)
sin

(
2πx

a

)]
sin

[
(E1−E2)

h̄
t
]

−
[

2π2h̄
ma3 cos

(
2πx

a

)
cos

(πx
a

)
− π2h̄

ma3 sin
(

2πx
a

)
sin

(πx
a

)]
sin

[
(E1−E2)

h̄
t
]

,

∂ jx
∂x

= −3π2h̄
ma3 sin

(πx
a

)
sin

(
2πx

a

)
sin

[
(E1−E2)

h̄
t
]

. (3.5.27)

From (3.5.26) and (3.5.27), we conclude that

∂ρ(x, t)
∂ t

+
∂ jx
∂x

= 0. (3.5.28)

Hence, the continuity equation is indeed satisfied.

3.6 Symmetric Potential and Even and Odd Parity Solutions

In Chapter 2, we discussed about the parity operator and proved that it is hermitian as well
as unitary. We also saw that its eigenfunctions had definite parity and they formed a
complete set. In the following we shall study the properties of the solutions of the
Schrödinger equation with symmetric potentials, i.e., with potentials that are invariant
under parity transformation.

Consider the Schrödinger equation with a potential that is symmetric with respect to
space inversion: V (−x) = V (x). Clearly, when V (x) is symmetric, the corresponding
Hamiltonian,

Ĥ = − h̄2

2m
∂ 2ψ
∂x2 +V (x), (3.6.1)

is also symmetric. In other words, Ĥ is an even operator. We have seen in Chapter 2 that
even operators commute with the parity operator P̂ . Therefore, for symmetric potentials
[P̂ , Ĥ] = 0 and the Hamiltonian and the parity operator can have a common set of
eigenfunctions.

Theorem 3.6.1: The bound state wave functions of a particle moving in a one-dimensional
symmetric potential have definite parity, that is, they are either even or odd.

Proof: Although this theorem follows immediately from the fact that the parity operator, P̂ ,
and the Hamiltonian, Ĥ, are compatible and that the eigenfunctions of the parity operator
has a definite parity, it is useful and instructive to prove the theorem in a straightforward

and
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is also symmetric. In other words, Ĥ is an even operator. We have seen in Chapter 2 that
even operators commute with the parity operator P̂ . Therefore, for symmetric potentials
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