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Group works

1. The Heisenberg's Matrix Mechanics

2. How to solve the harmonies oscillator in momentum space

3. The mathematical basis of quantum mechanics

4. The pictures of quantum mechanic

5. The quantum computing methods

6. The Hydrogen solved by Machine learning

7. The algebra solution of hydrogen 

8. The approximated methods in quantum mechanics
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Mechanics


Optics


Thermodynamics


Atomic Physics


Linear Algebra 


Differential equation
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Origins of quantum mechanics 
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Origins of quantum mechanics 

Classical physics - (pre 1900) 
Mechanics - Newton 
Thermodynamics - Boltzmann, Gibbs et al. 

Electromagnetics - Maxwell et al. 

Scientists believed that: 
The physical universe was deterministic. 
Light consisted of waves, ordinary matter was composed of 
particles. 
Physical quantities (energy, momentum, etc) could be treated as 
continuous variables. 
There exists an objective physical reality independent of any 
observer. 
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Origins of quantum mechanics 

What happens to those ideas? 
Before we get into the details, let’s see what the development 
of quantum mechanics meant for those four “certainties” of 
classical physics: 

Classical ⇒ The physical universe is deterministic. 
 Modern ⇒ The physical universe is not deterministic. 

At the scale of atomic particles, the best that we can do is 
find the probability of the outcome of an experiment. We 
can’t predict exact results with certainty. Uncertainty is an 
intrinsic property of matter at this level. 
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Origins of quantum mechanics 

Classical ⇒ Physical quantities (energy, momentum, etc) can 
be treated as continuous variables. 
  Modern ⇒ Under certain circumstances, some physical 
quantities are quantized, meaning that they can take on only 
certain discrete values. 

Classical ⇒ Light consists of waves, while ordinary matter is 
composed of particles. 
Modern ⇒ Both light and matter exhibit behavior that seems 
characteristic of both particles and wave. (wave-particle 
duality) 
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Origins of quantum mechanics 

Classical ⇒ There exists an objective physical reality 
independent of any observer. 
Modern ⇒ It appears that the observer always affects the 
experiment. It is impossible to disentangle the two. 

EE 439 Before quantum mechanics –

Outstanding problems c. 1900

• Black-body radiation

• The nature of light

• The structure of the atom

4

Planck Einstein Bohr

Outstanding problems c. 1900 
Black-body radiation          The nature of light 
The structure of the atom 
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Foundation of quantum mechanics

The fifth Solvay conference
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Timeline of quantum mechanics
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Timeline of quantum mechanics

1897 - Pieter Zeeman shows that light is radiated by the 
motion of charged particles in an atom, and Joseph John 
Thomson discovers the electron. 


1900 Max Planck explains blackbody radiation in the context 
of quantized energy emission: Quantum theory is born.


1905 Albert Einstein proposes that light, which has wavelike 
properties, also consists of discrete quantized bundles of 
energy, which are later called photons. 
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Timeline of quantum mechanics

1911 Ernest Rutherford proposes the nuclear 
model of the atom. 


1913 Niels Bohr proposes his planetary model 
of the atom, along with the concept of 
stationary energy states, and accounts for the 
spectrum of hydrogen. 


1914 James Franck and Custav Hertz confirm 
the existence of stationary states through an 
electron scattering experiment. 

P A T H W A Y S  O F  D I S C O V E R Y  

A Timeline 
of Quantum 
Physics 

1897 - 
Pieter Zeeman 
shows that light 
is radiated by 
the motion of 
charged particles 
in an atom, and 
Joseph John (J. 1.) 
Thomson discov- 
ers the electron. 

1900 
Max Planck ex- 
plains blackbody 
radiation in the 
context of quan- 
tized energy 
emission: 
Quantum theory 
is born. 

1905 
Albert Einstein 
proposes that 
light, which has 
wavelike proper- 
ties, also con- 
sists of discrete. 
quantized bun- 
dles of energy. 
which are later 
called photons. 

1911 
Ernest Ruther- 
ford proposes 
the nuclear 
model of the 
atom. 

1913 
Niels Bohr pro- 
poses his plane- 
tary model of 
the atom, along 
with the concept 
of stationary en- 
ergy states, and 
accounts for the 
spectrum of 
hydrogen. 

1914 
James Franck 
and Custav 
Hertz confirm 
the existence of 
stationary states 
through an elec- 
tron scattering 
experlment. 

1923 
Arthur Compton 
observes that 
x-rays behave 
like miniature 
billiard balls in 
their interac- 
tions with elec- 
trons. thereby 
providing further 
evidence for the 
particle. nature 
of light. 

tially every other measurable property of matter, such as It should have been possible to understand the shape of 
viscosity, elasticity, electrical and thermal conductivity, co- the spectrum by combining concepts from thermodynamics 
efficients of expansion, indices of refraction, and thermo- and electromagnetic theory, but all attempts failed. However, 
elastic coefficients. Spurred by the energy of the Victorian by assuming that the energies of the vibrating electrons that 
work ethic and the development of ever more ingenious radiate the light are quantized, Planck obtained an expres- 
experimental methods, sion that agreed beautiful- 
knowledge accumulated at ly with experiment. But as 
a prodigious rate. he recognized all too well, 

What is most striking the theory was physically 
to the contemporary eye, absurd, "an act of desper- 
however, is that the com- ation," as he later de- 
pendious descriptions of scribed it. 
the properties of matter Planck applied his 
were essentially empirical. quantum hypothesis to the 
Thousands of pages of energy of the vibrators in 
spectral data listed precise the walls of a radiating 
values for the wavelengths body. Quantum physics 
of the elements, but no- might have ended there if 
body knew why spectral in 1905 a novice-Albert 
lines occurred, much less Einstein-had not reluc- 
what information they con- tantly concluded that if a 
veyed. Thermal and electri- vibrator's energy is quan- 
cal conductivities were in- tized, then the energy of 
terpreted by suggestive the electromagnetic field 
models that fitted roughly Superatom. These colorful data, from NlST in 1995, emerged from that it radiates-light- 
half of the facts. There measurements of rubidium atoms coalescing into the first document- must also be quantized. 
were numerous empirical ed Bose-Einstein condensate. Einstein thus imbued 
laws, but they were not sat- light with particlelike be- 
isfying. For instance, the Dulong-Petit law established a sim- havior, notwithstanding that James Clerk Maxwell's theory, 
ple relation between specific heat and the atomic weight of a and over a century of definitive experiments, testified to 
material. Much of the time it worked; sometimes it didn't. light's wave nature. Experiments on the photoelectric effect 
The masses of equal volumes of gas were in the ratios of in- in the following decade revealed that when light is absorbed 
tegers-mostly. The Periodic Table, which provided a key its energy actually amves in discrete bundles, as if carried 
organizing principle for the flourishing science of chemistry, by a particle. The dual nature of light-particlelike or wave- 
had absolutely no theoretical basis. like depending on what one looks for-was the first exam- 

Among the greatest achievements of the revolution is this: ple of a vexing theme that would recur throughout quantum 
Quantum mechanics has provided a quantitative theory of physics. The duality constituted a theoretical conundrum for 
matter. We now understand essentially every detail of atomic the next 20 years. 
structure; the Periodic Table has a simple and natural explana- The first step toward quantum theory had been precipi- 
tion; and the vast arrays of spectral data fit into an elegant the- tated by a dilemma about radiation. The second step was 
oretical framework. Quantum theory permits the quantitative precipitated by a dilemma about matter. It was known that 
understanding of molecules, of solids and liquids, and of con- atoms contain positively and negatively charged particles. 
ductors and semiconductors. It explains bizarre phenomena But oppositely charged particles attract. According to elec- 
such as superconductivity and supertluidity, and exotic forms tromagnetic theory, therefore, 
of matter such as the stuff of neutron stars and BossEinstein they should spiral into each 
condensates, in which all the atoms in a gas behave like a sin- other, radiating light in a broad 
gle superatom. Quantum mechanics provides essential tools spectrum until they collapse. 
for all of the sciences and for every advanced technology. Once again, the door to $ 

Quantum physics actually encompasses two entities. The progress was opened by a - 
first is the theory of matter at the atomic level: quantum me- novice: Niels Bohr. In 1913, ; 
chanics. It is quantum mechanics that allows us to under- Bohr proposed a radical hy- 5 
stand and manipulate the material world. The second is the pothesis: Electrons in an atom 5 
quantum theory of fields. Quantum field theory plays a to- exist only in certain stationary 2 
tally different role in science, to which we shall return later. states, including a ground state. 2 

Electrons change their energy 2 
Quantum Mechanics by "jumping" between the sta- $ 
The clue that triggered the quantum revolution came not tionary states, emitting light $ 
from studies of matter but from a problem in radiation. The Atoms go quantum. I n whose wavelength depends on 
specific challenge was to understand the spectrum of light 1913, Niels Bohr ushered the energy difference. By com- 5 
emitted by hot bodies: blackbody radiation. The phe- quantum physics into world bining known laws with bizarre 
nomenon is familiar to anyone who has stared at a fire. Hot of atoms. assumptions about quantum be- 
matter glows, and the hotter it becomes the brighter it glows. havior, Bohr swept away the 
The spectrum of the light is broad, with a peak that shifts problem of atomic stability. Bohr's theory was full of contra- g 
from red to yellow and finally to blue (although we cannot dictions, but it provided a quantitative description of the % 
see that) as the temperature is raised. spectrum of the hydrogen atom. He recognized both the suc- 5 

11 AUGUST 2000 VOL 289 SCIENCE www.sciencemag.org 
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Timeline of quantum mechanics
1923 Arthur Compton observes that x-rays behave like 
miniature billiard balls in their interactions with electrons. 
Thereby providing further evidence for the particle nature of 
light.


1923 Louis De Broglie generalizes wave-particle duality by 
suggesting that particles of mater are also wavelike.


1924 Satyendra Nath Bose and Albert Einstein find a new 
way to count quantum particles, later called Bose-Einstein 
statistics, and they predict that extremely cold atoms should 
condense into a single quantum state, later known as a Bose-
Einstein condensate.
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Timeline of quantum mechanics

1925 Wolfgang Pauli enunciates the exclusion principle.

1925 Werner Heisenberg, Max Born, and Pascual Jordan 
develop matrix mechanics, the first version of quantum 
mechanics, and make an initial step toward quantum field 
theory.


1926 Erwin Schrödinger develops a second description of 
quantum physics, called wave mechanics. It includes what 
becomes one of the most famous formulae of science, which 
is later known as the Schrödinger equation.
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Timeline of quantum mechanics

1926 Enrico Fermi and Paul A. M. Dirac find 
that quantum mechanics requires a second way 
to count particles, Fermi-Dirac statistics, 
opening the way to solid state physics.


1926 Dirac publishes a seminal paper on the 
quantum theory of light.


1927 Heisenberg states his uncertainty 
principle, that it is impossible to exactly 
measure the position and momentum of a 
particle at the same time.

P A T H W A Y S  O F  D I S C O V E R Y  

cess and the shortcomings of his model. With uncanny fore- 
sight, he rallied physicists to create a new physics. His vision 
was eventually fulfilled, although it took 12 years and a new 
generation of young physicists. 

At first, attempts to advance Bohr's quantum idea-the 
so-called old quantum theory-suffered one defeat after an- 
other. Then a series of developments totally changed the 
course of thinking. 

In 1923 Louis de Broglie. in his Ph.D. thesis, urouosed 
that the particle behavior Gf liiht should 
have its counterpart in the wave behav- 
ior of particles. He associated a wave- 
length with the momentum of a particle: 
The higher the momentum the shorter 
the wavelength. The idea was intriguing, 
but no one knew what a particle's wave 
nature might signify or how it related to 
atomic structure. Nevertheless, de 
Broglie's hypothesis was an important 
precursor for events soon to take place. 

In the summer of 1924, there was 
yet another precursor. Satyendra N. 
Bose proposed a totally new way to ex- 
plain the Planck radiation law. He treat- 
ed light as if it were a gas of massless 
uarticles (now called uhotons) that do 

Dirac laid the foundations of quantum field theory by 
providing a quantum description of the electromagnetic field. 

Bohr announced the complementarity principle, a 
philosophical principle that helped to resolve apparent para- 
doxes of quantum theory, particularly wave-particle duality. 

The principal players in the creation of quantum theory 
were young. In 1925, Pauli was 25 years old, Heisenberg 
and Enrico Fermi were 24, and Dirac and Jordan were 23. 
Schriidinger. at age 36. was a late bloomer. Born and Bohr 

were older still, and it is significant that their 
contributions were largely interpretative. 
The profoundly radical nature of the intel- 
lectual achievement is revealed by Einstein's 
reaction. Having invented some of the key 
concepts that led to quantum theory, Ein- 
stein rejected it. His paper on Bose-Einstein 
statistics was his last contribution to quan- 
tum physics and his last significant contribu- 
tion to physics. 

That a new generation of physicists was 
needed to create quantum mechanics is 
hardly surprising. Lord Kelvin described 
why in a letter to Bohr congratulating him 
on his 1913 paper on hydrogen. He said that 
there was much truth in Bohr's paper, but he 
would never understand it himself. Kelvin 

Aot obey 'the classicai laws of Boltz- Getting weirder. Louis de Broglie recognized that radically new physics would 
mann statistics but behave according to said that if wavelike light can behave need to come from unfettered minds. 
a new type of statistics based on parti- like particles, then particles can be- In 1928, the revolution was finished and 
cles' indistinguishable nature. Einstein have like waves. the foundations of quantum mechanics were 
immediately applied Bose's reasoning essentially complete. The frenetic pace with 
to a real gas of massive particles and obtained a new law- which it occurred is revealed by an anecdote recounted by 
to become known as the Bose-Einstein distribution-for the late Abraham Pais in Inward Bound. In 1925. the con- 
how energy is shared by the particles in agas. Under normal cept of electron spin had been proposed by Samuel 
circumstances, however, the new and old theories predicted Goudsmit and George Uhlenbeck. Bohr was deeply skepti- 
the same behavior for atoms in a gas. Einstein took no fbr- cal. In December, he traveled to Leiden, the Netherlands, to 
ther interest, and the result lay ideveloped for more 
than a decade. Still, its key idea, the indistinguishability 
of particles, was about to become critically important. 

Suddenly, a tumultuous series of events occurred, 
culminating in a scientific revolution. In the 3-year pe- 
riod from January 1925 to January 1928: 

Wolfgang Pauli proposed the exclusion principle, 
providing a theoretical basis for the Periodic Table. 

Werner Heisenberg, with Max Born and Pascual 
Jordan, discovered matrix mechanics, the first version 
of quantum mechanics. The historical goal of under- 
standing electron motion within atoms was abandoned 
in favor of a systematic method for organizing observ- 

8 able spectral lines. 
Erwin Schrodinger invented wave mechanics, a 

I; second form of quantum mechanics in which the state 
$ of a system is described by a wave function, the solu- 
2 tion to Schrodinger's equation. Matrix mechanics and 
3 wave mechanics, apparently incompatible, were shown 

to be equivalent. 
Electrons were shown to obey a new type of statis- 

2 tical law, Fermi-Dirac statistics. It was recognized that 
$ all particles obey either Fermi-Dirac statistics or Bose- B Einstein statistics, and that the two classes have funda- ! mentally different properties. 

Heisenberg enunciated the Uncertainty Principle. 
Paul A. M. Dirac developed a relativistic wave e 

tion for the electron that explained electron spin and 
E dicted antimatter. 

attend the jubilee of 
Hendrik A. Lorentz's 
doctorate. Pauli met 
the train at Hamburg, 
Germany, to find out 
Bohr's opinion about 
the possibility of elec- 
tron spin. Bohr said the 
proposal was "very, 
very interesting," his 
well-known put-down 
phrase. Later at Lei- 
den, Einstein and Paul 
Ehrenfest met Bohr's 
train, also to discuss 
spin. There, Bohr ex- 
plained his objection, 
but Einstein showed a 
wav around it and con- 

Unknowable reality. Werner Heisenberg veked B o b  into a SUP- 
articulated one of the most societally ab- Porter. On his return 
sorbed ideas of quantum physics: the Un- JoUImey, B o b  met with 
certainty Principle. yet more discussants. 

When the train passed 
through Gottingen, Germany, Heisenberg and Jordan were 
waiting at the station to ask his opinion. And at the Berlin 

:qua- station, Pauli was waiting, having traveled especially from 
pre- Hamburg. Bohr told them all that the discovery of electron 

spin was a great advance. 

www.sciencemag.org SCIENCE VOL 289 11 AUGUST 2000 
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Timeline of quantum mechanics

1928 Dirac presents a relativistic theory of the electron that 
includes the prediction of antimatter.


1932 Carl David Anderson discovers antimatter, an 
antielectron called the positron.


1948 Richard Feynman, Julian Schwinger, and Sinitiro 
Tomonaga develop the first complete theory of the interaction 
of photons and electrons, quantum electrodynamics, which 
accounts for the discrepancies in the Dirac theory.

……
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Blackbody Radiation 

If the temperature were increased still further, the color 
would progress through orange, yellow, and finally white. 
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The spectrum of star
Hertzsprung–Russell diagram is a plot of stars showing 
the relationship between the stars' luminosities versus 
their effective temperatures. 




27/08/2023 Jinniu Hu

Blackbody Radiation 
Thermal equilibrium: one body absorbs thermal energy at 
the same rate as it emits it. 

Blackbody: a body absorbs all the radiations falling upon 
it and emits all the radiations when heated.


The simplest way to construct a blackbody is to drill a 
small hole in the wall of a hollow container. 

76 3 Development of Quantum Physics

I = cε0E2 = cwem (3.2a)

and the power, transmitted through the area Awith the normal
unit vector ên

dW
dt

= I A
k
|k| ên (3.2b)

is determined by the relative orientation of wave vector k and
normal vector en of the area A.

Note that in this classical description both power density
and intensity depend on the square of the electric field ampli-
tude E . They are continuous functions of E and of the space
coordinates inside the radiation field.

The classical electromagnetic wave also has a momentum
density (momentum per unit volume),

πem = ε0(E × B) = 1
c2

S (3.2c)

described by the pointing vector S = ε0c2(E×B), where the
amount of S

|S| = ε0cE2 = I (3.2d)

equals the intensity of the wave.
An important quantity is the spectral intensity Iν [Wm−2 s]

with

I =
∞∫

ν=0

Iν(ν)dν, (3.2e)

where Iν(ν)dν gives the incident power density within the
spectral interval dν.

All these results can be derived from Maxwell’s equa-
tions and the continuity equation, which describes all phe-
nomena observed until the end of the 19th century very
well.

The first hints that corrections were necessary came from
experiments measuring the spectral distribution of the radia-
tion emitted by a hot blackbody, which will be discussed in
the following section.

3.1.1 Blackbody Radiation

Material that absorbs all incident radiation (its absorption is
A∗ = 1) is called a blackbody. It can be approximately real-
ized by a closed cavity with absorbing walls and a small hole
in one of the walls (Fig. 3.1). If the area ∆A of this hole is
very small compared to the area A of the inner walls, radi-
ation passing from outside through the hole into the cavity
has a negligible chance to leave the cavity again, i.e., it is

completely absorbed. This means that the absorption of the
hole is A∗ ≈ 1.

When the walls of the cavity are heated to a temperature
T > Ts, where Ts is the temperature of the surrounding, the
hole acts as radiation source with an intensity that is larger
than that of any other body at the same temperature. This
can be demonstrated by a simple experiment. Into one side
of a solid graphite cube the letter H is mill-cut (Fig. 3.2).
At low temperatures the letter appears much darker than its
surroundings, but at higher temperatures (about 1000K) it
appears bright yellow on a dark red surrounding. This means
that at low temperatures it absorbs nearly all incident radiation
while at higher temperatures it emits more than the surface of
the cube at the same temperature.

Inside the closed cavity of Fig. 3.1 a stationary radiation
field exists that depends solely on the temperature of the cavity
walls and not on the dimensions d of the cavity as long as
d & λ, where λ is the wavelength of the enclosed radiation.
The application of basic laws of thermodynamics lead to the
following considerations.

Fig.3.1 A closed cavity absorbs nearly all radiation entering the cavity
through a small hole

Fig. 3.2 The letter H mill-cut into a graphite cube appears completely
black at temperature Tk < Ts = temperature of the surrounding, but
appears bright for Tk & Ts

1.2.1 THE EXPERIMENTAL OBSERVATIONS

The black bodies available naturally are not perfect black bodies. However, radiation inside a heated
closed enclosure kept at a constant temperature can be considered as a perfect black body (Figure 1.4).
Therefore, experiments were performed using such black bodies to understand the properties of radi-
ation. The radiation inside such an enclosure behaves very similar to gas. It exerts pressure against the
walls of the enclosure, work must be done to compress it to a smaller volume, and if the enclosure
remains closed, the characteristics of the radiation remains unchanged even after a very long period
of time. Thus, such radiation is named radiation gas (Figure 1.4).

Inside the enclosure, it is only radiation gas and no matter, and walls of the enclosure are perfectly
reflecting. Hence, the radiation has no source inside the enclosure for its absorption and emission.
Suppose that inside such an enclosure maintained at constant temperature a piece of matter is intro-
duced into the box such as any approximate black body such as “soot.” This soot is capable of absorb-
ing radiations of all frequencies and at the same time emits radiations of all frequencies. The
absorption and emission will continue until an equilibrium is reached, and the radiation inside the
enclosure remains unchanged in its composition. Such a state of radiation is called as a state of stat-
istical equilibrium, and the name equilibrium radiation is given to a mixture of radiation of different
frequencies that will be found in the enclosure.

Several experiments were performed using such a black body, and several properties of the
radiation were derived, in the form of the following laws.

1. Kirchhoff’s law: According to this law, for a given temperature, the composition of the equi-
librium radiation inside the enclosure is exactly the same regardless of the nature of matter.
The intensity of the radiation coming out of the enclosure is independent of the size and
shape of the enclosure. The intensity of the monochromatic radiation is solely dependent
on the frequency of the radiation and the temperature of the enclosure. Therefore, intensity
can be represented as a function of frequency and temperature

Iν = I(ν, T) (1.2)

The intensity of the monochromatic radiation is generally related to the differential
amount of radiant energy, dE, that crosses an area element dA, in directions confined to a

FIGURE 1.4 A schematic of a black body. The radiation inside the enclosure is perfectly reflected from
all the walls.

An Introductory History of Quantum Mechanics-I 5
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Blackbody Radiation 

The Kirchhoff’s law: for a given temperature, the 
composition of the equilibrium radiation inside the enclosure 
is exactly the same regardless of the nature of matter. 

  

Spectral distribution: properties of intensity versus 
wavelength at fixed temperatures. 


The intensity:


is the total power radiated per unit area per unit 

wavelength at a given temperature. 


should be frequently repolished” to ensure reliable operation of the spark.2

Apparently this result was initially quite mysterious to Hertz. In an effort to re-
solve the mystery, he later investigated this side effect and concluded that it
was the ultraviolet light from the initial spark acting on a clean metal surface
that caused current to flow more freely between the poles of the spark gap. In
the process of verifying the electromagnetic wave theory of light, Hertz had
discovered the photoelectric effect, a phenomenon that would undermine the
priority of the wave theory of light and establish the particle theory of light on
an equal footing.

3.2 BLACKBODY RADIATION

The tremendous success of Maxwell’s theory of light emission immediately led
to attempts to apply it to a long-standing puzzle about radiation—the so-
called “blackbody” problem. The problem is to predict the radiation intensity
at a given wavelength emitted by a hot glowing solid at a specific temperature.
Instead of launching immediately into Planck’s solution of this problem, let
us develop a feeling for its importance to classical physics by a quick review
of its history.

Thomas Wedgwood, Charles Darwin’s relative and a renowned maker of
china, seems to have been the first to note the universal character of all
heated objects. In 1792, he observed that all the objects in his ovens, regard-
less of their chemical nature, size, or shape, became red at the same tempera-
ture. This crude observation was sharpened considerably by the advancing
state of spectroscopy, so that by the mid-1800s it was known that glowing solids
emit continuous spectra rather than the bands or lines emitted by heated
gases. (See Fig. 3.3.) In 1859, Gustav Kirchhoff proved a theorem as important
as his circuit loop theorem when he showed by arguments based on thermody-
namics that for any body in thermal equilibrium with radiation3 the emitted
power is proportional to the power absorbed. More specifically,

ef ! J( f, T )Af (3.1)

where ef is the power emitted per unit area per unit frequency by a particular
heated object, Af is the absorption power (fraction of the incident power ab-
sorbed per unit area per unit frequency by the heated object), and J( f, T ) is a
universal function (the same for all bodies) that depends only on f, the light
frequency, and T, the absolute temperature of the body. A blackbody is defined
as an object that absorbs all the electromagnetic radiation falling on it and
consequently appears black. It has Af ! 1 for all frequencies and so Kirch-
hoff’s theorem for a blackbody becomes

ef ! J( f, T ) (3.2)

68 CHAPTER 3 THE QUANTUM THEORY OF LIGHT

2H. Hertz, Ann. Physik (Leipzig), 33:983, 1887.
3An example of a body in equilibrium with radiation would be an oven with closed walls at a fixed
temperature and the radiation within the oven cavity. To say that radiation is in thermal equilib-
rium with the oven walls means that the radiation has exchanged energy with the walls many
times and is homogeneous, isotropic, and unpolarized. In fact, thermal equilibrium of radiation
within a cavity can be considered to be quite similar to the thermal equilibrium of a fluid within a
container held at constant temperature—both will cause a thermometer in the center of the cav-
ity to achieve a final stationary temperature equal to that of the container.
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Figure 3.3 Emission from a
glowing solid. Note that the
amount of radiation emitted
(the area under the curve) in-
creases rapidly with increasing
temperature.
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Blackbody Radiation 

Measurements of intensity for a blackbody are displayed 

   3.5 Blackbody Radiation 97

The first observation is expressed in Wien’s displacement law:

 lmaxT ! 2.898 " 10#3 m # K  (3.14)

where lmax is the wavelength of the peak of the spectral distribution at a given 
temperature. We can see in Figure 3.9 that the position of lmax varies with tem-
perature as prescribed by Equation (3.14). Wilhelm Wien received the Nobel 
Prize in 1911 for his discoveries concerning radiation. We can quantify the sec-
ond observation by integrating the quantity I(l, T ) over all wavelengths to find 
the power per unit area at temperature T.

 R 1T 2 ! !
q

0

I1l, T 2  dl (3.15)

Josef Stefan found empirically in 1879, and Boltzmann demonstrated theoreti-
cally several years later, that R(T ) is related to the temperature by

 R 1T 2 ! PsT 4  (3.16)

This is known as the Stefan-Boltzmann law, with the constant s experimentally 
measured to be 5.6705 " 10#8 W/(m2 # K4). The Stefan-Boltzmann law equation 
can be applied to any material for which the emissivity is known. The emissivity P 
(P ! 1 for an idealized blackbody) is simply the ratio of the emissive power of an 
object to that of an ideal blackbody and is always less than 1. Thus, Equa-
tion (3.16) is a useful and valuable relation for practical scientific and engineer-
ing work.

Wien’s displacement law

Stefan-Boltzmann law
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Measurements of intensity for a blackbody are displayed 
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Blackbody Radiation 

Two important observations should be noted: 

1. The maximum of the distribution shifts to smaller 

   wavelengths as the temperature is increased. 

2. The total power radiated increases with the temperature.


The first observation is expressed in Wien’s displacement law:
�maxT = 2.898⇥ 10�3 m ·K

 where !max is the wavelength of the peak of the spectral 
distribution at a given temperature.


Wilhelm Wien received the Nobel Prize in 1911 for his 
discoveries concerning radiation. 
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Blackbody Radiation 
We can quantify the second observation by integrating the 
quantity intensity over all wavelengths to find the power per 
unit area at temperature T�

Stefan-Boltzmann law: 

 with the constant 
� = 5.6705⇥ 10�8 W/(m2 ·K4)

 The emissivity a is simply the ratio of the emissive power of 
an object to that of an ideal blackbody and is always less 
than 1. 

 

Equation 3.2 shows that the power emitted per unit area per unit frequency by
a blackbody depends only on temperature and light frequency and not on
the physical and chemical makeup of the blackbody, in agreement with
Wedgwood’s early observation.

Because absorption and emission are connected by Kirchhoff’s theorem, we
see that a blackbody or perfect absorber is also an ideal radiator. In practice, a
small opening in any heated cavity, such as a port in an oven, behaves like a
blackbody because such an opening traps all incident radiation (Fig. 3.4). If
the direction of the radiation is reversed in Figure 3.4, the light emitted by a
small opening is in thermal equilibrium with the walls, because it has been
absorbed and re-emitted many times.

The next important development in the quest to understand the universal
character of the radiation emitted by glowing solids came from the Austrian
physicist Josef Stefan (1835–1893) in 1879. He found experimentally that the
total power per unit area emitted at all frequencies by a hot solid, e total, was
proportional to the fourth power of its absolute temperature. Therefore,
Stefan’s law may be written as

(3.3)

where e total is the power per unit area emitted at the surface of the blackbody
at all frequencies, ef is the power per unit area per unit frequency emitted by
the blackbody, T is the absolute temperature of the body, and ! is the
Stefan–Boltzmann constant, given by ! " 5.67 # 10$8 W % m$2 % K$4. A body
that is not an ideal radiator will obey the same general law but with a coeffi-
cient, a, less than 1:

e total " a!T 4 (3.4)

Only 5 years later another impressive confirmation of Maxwell’s electromag-
netic theory of light occurred when Boltzmann derived Stefan’s law from a
combination of thermodynamics and Maxwell’s equations.

e total " !&

0
ef df " !T 4

3.2 BLACKBODY RADIATION 69

Figure 3.4 The opening to the
cavity inside a body is a good
approximation of a blackbody.
Light entering the small opening
strikes the far wall, where some
of it is absorbed but some is re-
flected at a random angle. The
light continues to be reflected,
and at each reflection a portion
of the light is absorbed by the
cavity walls. After many reflec-
tions essentially all of the inci-
dent energy is absorbed.

Stefan’s law

e total(R s). This comes from the conservation of energy:

e total(R s) % 4'R s
2 " e total(R ) % 4'R 2

or

Using Equation 3.5, we have

or

" 5800 K

T " " (1400 W/m2)(1.5 # 1011 m)2

(5.6 # 10$8 W/m2 % K4)(7.0 # 108 m)2 #
1/4

T " " e total(R) %R2

!R2
s

#
1/4

e total(R s) " e total(R) %
R2

R2
s

EXAMPLE 3.1 Stefan’s Law Applied to the Sun

Estimate the surface temperature of the Sun from
the following information. The Sun’s radius is given
by R s " 7.0 # 108 m. The average Earth–Sun distance
is R " 1.5 # 1011 m. The power per unit area (at all fre-
quencies) from the Sun is measured at the Earth to be
1400 W/m2. Assume that the Sun is a blackbody.

Solution For a black body, we take a " 1, so Equation
3.4 gives

e total(R s) " !T 4 (3.5)

where the notation e total(R s) stands for the total power
per unit area at the surface of the Sun. Because the prob-
lem gives the total power per unit area at the Earth,
e total(R), we need the connection between e total(R) and
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Blackbody Radiation 

It is more convenient to consider the spectral energy density, 
or energy per unit volume per unit frequency of the radiation 
within the blackbody cavity, u(f, T). 


Because the cavity radiation is isotropic and unpolarized, one 
can average over direction to show that the constant of 
proportionality between J(f, T) and u(f, T) is c/4, where c is 
the speed of light. Therefore, 


As can be seen in Figure 3.3, the wavelength marking the maximum power
emission of a blackbody, !max, shifts toward shorter wavelengths as the black-
body gets hotter. This agrees with Wedgwood’s general observation that
objects in his kiln progressed from dull red to orange to white in color as
the temperature was raised. This simple effect of !max " T #1 was not
definitely established, however, until about 20 years after Kirchhoff’s
seminal paper had started the search to find the form of the universal
function J( f, T ). In 1893, Wilhelm Wien proposed a general form for
the blackbody distribution law J( f, T ) that gave the correct experimental
behavior of !max with temperature. This law is called Wien’s displacement law
and may be written

!maxT $ 2.898 % 10#3 m &K (3.6)

where !max is the wavelength in meters corresponding to the blackbody’s
maximum intensity and T is the absolute temperature of the surface of
the object emitting the radiation. Assuming that the peak sensitivity of
the human eye (which occurs at about 500 nm — blue-green light) coin-
cides with !max for the Sun (a blackbody), we can check the consistency
of Wien’s displacement law with Stefan’s law by recalculating the Sun’s
surface temperature:

Thus we have good agreement between measurements made at all wave-
lengths (Example 3.1) and at the maximum-intensity wavelength.

Exercise 1 How convenient that the Sun’s emission peak is at the same wavelength as
our eyes’ sensitivity peak! Can you account for this?

So far, the power radiated per unit area per unit frequency by the black-
body, J( f, T ) has been discussed. However, it is more convenient to consider
the spectral energy density, or energy per unit volume per unit frequency of the radi-
ation within the blackbody cavity, u( f, T ). For light in equilibrium with the walls,
the power emitted per square centimeter of opening is simply proportional to
the energy density of the light in the cavity. Because the cavity radiation is
isotropic and unpolarized, one can average over direction to show that the
constant of proportionality between J( f, T ) and u( f, T ) is c/4, where c is the
speed of light. Therefore,

J( f, T ) $ u( f, T )c/4 (3.7)

An important guess as to the form of the universal function u( f, T ) was
made in 1893 by Wien and had the form

u( f, T )$Af 3e#'f/T (3.8)

where A and ' are constants. This result was known as Wien’s exponential law;
it resembles and was loosely based on Maxwell’s velocity distribution for gas
molecules. Within a year the great German spectroscopist Friedrich Paschen

T $
2.898 % 10#3 m&K

500 % 10#9 m
$ 5800 K

70 CHAPTER 3 THE QUANTUM THEORY OF LIGHT

Spectral energy density of a
blackbody

Copyright 2005 Thomson Learning, Inc. All Rights Reserved.  

 



27/08/2023 Jinniu Hu

Blackbody Radiation 

An important guess as to the form of the universal function 
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isotropic and unpolarized, one can average over direction to show that the
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speed of light. Therefore,
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made in 1893 by Wien and had the form

u( f, T )$Af 3e#'f/T (3.8)
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T $
2.898 % 10#3 m&K

500 % 10#9 m
$ 5800 K
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Spectral energy density of a
blackbody
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where A and " ︎are constants. This result was known as Wien’s 

exponential law; it resembles and was loosely based on 
Maxwell’s velocity distribution for gas molecules. 


had confirmed Wien’s guess by working in the then difficult infrared range of
1 to 4 !m and at temperatures of 400 to 1600 K.4

As can be seen in Figure 3.5, Paschen had made most of his measurements
in the maximum energy region of a body heated to 1500 K and had found
good agreement with Wien’s exponential law. In 1900, however, Lummer and
Pringsheim extended the measurements to 18 !m, and Rubens and Kurlbaum
went even farther—to 60 !m. Both teams concluded that Wien’s law failed
in this region (see Fig. 3.5). The experimental setup used by Rubens and
Kurlbaum is shown in Figure 3.6. It is interesting to note that these historic

3.2 BLACKBODY RADIATION 71

4We should point out the great difficulty in making blackbody radiation measurements and the
singular advances made by German spectroscopists in the crucial areas of blackbody sources, sen-
sitive detectors, and techniques for operating far into the infrared region. In fact, it is dubious
whether Planck would have found the correct blackbody law as quickly without his close associa-
tion with the experimentalists at the Physikalisch Technische Reichsanstalt of Berlin (a sort of
German National Bureau of Standards)—Otto Lummer, Ernst Pringsheim, Heinrich Rubens,
and Ferdinand Kurlbaum.
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Figure 3.5 Discrepancy between Wien’s law and experimental data for a blackbody
at 1500 K.
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Figure 3.6 Apparatus for measuring blackbody radiation at a single wavelength in
the far infrared region. The experimental technique that disproved Wien’s law and
was so crucial to the discovery of the quantum theory was the method of residual
rays (Restrahlen). In this technique, one isolates a narrow band of far infrared radia-
tion by causing white light to undergo multiple reflections from alkalide halide crys-
tals (P1 –P4). Because each alkali halide has a maximum reflection at a characteristic
wavelength, quite pure bands of far infrared radiation may be obtained with
repeated reflections. These pure bands can then be directed onto a thermopile (T )
to measure intensity. E is a thermocouple used to measure the temperature of the
blackbody oven, K.
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Blackbody Radiation 

By considering the conditions leading to equilibrium between 
the wall resonators and the radiation in the blackbody cavity, 
the spectral energy density u(f, T) could be expressed as the 
product of the number of oscillators having frequency 
between f and f+df, denoted by N(f) df, and the average 
energy emitted per oscillator, E. Thus we have the important 
result 

Exercise 2 Calculate the quantum number, n, for this pendulum with E ! 1.5 " 10#2 J.

Answer 4.6 " 1031

Exercise 3 An object of mass m on a spring of stiffness k oscillates with an amplitude A
about its equilibrium position. Suppose that m ! 300 g, k ! 10 N/m, and A ! 10 cm. (a)
Find the total energy. (b) Find the mechanical frequency of vibration of the mass. (c) Cal-
culate the change in amplitude when the system loses one quantum of energy.

Answer (a) E total ! 0.050 J; (b) f ! 0.92 Hz; (c) $Equantum ! 6.1 " 10#34 J, so

Until now we have been concentrating on the remarkable quantum proper-
ties of single oscillators of frequency f. Planck explained the continuous spec-
trum of the blackbody by assuming that the heated walls contained resonators
vibrating at many different frequencies, each emitting light at the same fre-
quency as its vibration frequency. By considering the conditions leading to
equilibrium between the wall resonators and the radiation in the blackbody
cavity, he was able to show that the spectral energy density u( f, T ) could be
expressed as the product of the number of oscillators having frequency
between f and f % df, denoted by N( f ) df, and the average energy emitted per
oscillator, . Thus we have the important result

(3.12)

Furthermore, Planck showed that the number of oscillators with frequency
between f and f % df was proportional to f 2 or

(3.13)

(See Appendix 1 on our book Web site at http://info.brookscole.com/mp3e
for details.)

Substituting Equation 3.13 into Equation 3.12 gives

(3.14)u( f, T )df ! E
8&f 2

c3 df

N( f )df !
8&f 2

c3 df

u( f, T )df ! E N( f )df

E

$A ! #
$E

√2Ek
! #6.1 " 10#34 m

76 CHAPTER 3 THE QUANTUM THEORY OF LIGHT

Because the total energy of a pendulum of mass m and
length ! displaced through an angle ' is

E ! mg!(1 # cos ')

we have for a typical pendulum with m ! 100 g, ! !
1.0 m, and ' ! 10(,

E ! (0.10 kg)(9.8 m/s2)(1.0 m)(1 # cos 10() ! 0.015 J

Therefore, the fractional change in energy, $E/E, is un-
observably small:

Note that the energy quantization of large vibrating
systems is unobservable because of their low frequencies
compared to the high frequencies of atomic oscillators.
Hence there is no contradiction between Planck’s
quantum postulate and the behavior of macroscopic
oscillators.

$E

E
!

3.3 " 10#34 J

1.5 " 10#2 J
! 2.2 " 10#32
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In the classical case considered by Rayleigh, an oscillator 
could have any energy E in a continuous range from 0 to ︎ 

 ∞

k1

m ω1
ω2

k2

m

energy E in a continuous range from 0 to !. Thus the sums in Equation 3.16 must
be replaced with integrals, and the expression for becomes

The calculation of N( f ) is a bit more complicated but is of importance here as
well as in the free electron model of metals. Appendix 1 on our Web site gives the
derivation of the density of modes, N( f ) df. One finds

(3.45)

or in terms of wavelength,

(3.46)

The spectral energy density is simply the density of modes multiplied by kBT, or

(3.17)

In terms of wavelength,

(3.18)

However, as one can see from Figure 3.12, this classical expression, known as the
Rayleigh – Jeans law, does not agree with the experimental results in the short
wavelength region. Equation 3.18 diverges as " : 0, predicting unlimited energy
emission in the ultraviolet region, which was dubbed the “ultraviolet catastro-
phe.” One is forced to conclude that classical theory fails miserably to explain
blackbody radiation.

u(", T )d" #
8$

"4 kBT d"

u( f, T )df #
8$f 2

c3 kBT df

N(")d" #
8$

"4 d"

N( f )df #
8$f 2

c3 df

E #

!!

0
Ee%E/kBTdE

!!

0
e%E/kBT dE

# kBT

E
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Figure 3.11 A one-dimensional harmonic oscillator is equivalent to a plane-
polarized electromagnetic standing wave.

Density of standing waves in
a cavity

Rayleigh–Jeans blackbody
law
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The density of modes, N(f) df is
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m ω1
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k2

m
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The spectral energy density is simply the density of modes 
multiplied by kBT, or 
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Rayleigh-Jeans formula:

It is the best formulation that classical theory can provide to 
describe blackbody radiation. 

When

� ! 0

the total energy of all configurations is infinite. In 1911 Paul 
Ehrenfest dubbed this situation the “ultraviolet catastrophe,” 
and it was one of the outstanding exceptions that classical 
physics could not explain. 
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Figure 3.11 A one-dimensional harmonic oscillator is equivalent to a plane-
polarized electromagnetic standing wave.
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Attempts to understand and derive from basic principles the shape of the 
blackbody spectral distribution (Figure 3.9) were unsuccessful throughout the 
1890s and presented a serious dilemma to the best scientists of the day. The nature 
of the dilemma can be understood from classical electromagnetic theory, together 
with statistical thermodynamics. The radiation emitted from a blackbody can be 
expressed as a superposition of electromagnetic waves of different frequencies 
within the cavity. That is, radiation of a given frequency is represented by a stand-
ing wave inside the cavity. The equipartition theorem of thermodynam ics (Chap-
ter 9) assigns equal average energy kT to each possible wave configuration.

Lord Rayleigh used the classical theories of electromagnetism and thermo-
dynamics to show in June 1900 that the blackbody spectral distribution should 
have a 1/!4 dependence, which is completely inconsistent with the experimental 
result at low wavelength shown in Figure 3.9. Later, in 1905, after Sir James Jeans 
helped Rayleigh determine the factor in front of this distribution, they presented 
their complete result to be

 I1l,T 2 !
2pckT
l4  (3.22)

This result is known as the Rayleigh-Jeans formula, and it is the best formulation 
that classical theory can provide to describe blackbody radiation. For long wave-
lengths there are few confi gurations through which a standing wave can form 
inside the cavity. However, as the wavelength becomes shorter the number of 
standing wave possibilities increases, and as ! S 0, the number of possible con-
fi gurations increases without limit. This means the total energy of all confi gura-
tions is infi nite, because each standing wave confi guration has the nonzero en-
ergy kT. We show a graph of the Rayleigh-Jeans result compared with experimental 
data in Figure 3.10, and although the prediction approaches the data at long 
wavelengths, it deviates badly at short wavelengths. In 1911 Paul Ehrenfest 
dubbed this situation the “ultraviolet catastrophe,” and it was one of the out-
standing exceptions that classical physics could not explain.

Rayleigh-Jeans formula

This is the source of most of our energy on Earth. Measure-
ments of the sun’s radiation outside the Earth’s atmosphere 
give a value near 1400 W/m2, so our calculation is fairly ac-

curate. Apparently the sun does act as a blackbody, and the 
energy received by the Earth comes primarily from the sur-
face of the sun.
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Figure 3.10 The spectral distribution calculated by the Rayleigh-Jeans formula is compared with 
blackbody radiation experimental data at 1200 K. The formula approaches the data at large wave-
lengths but disagrees badly at low wavelengths.
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Planck’s radiation law:

  He could arrive at agreement with the experimental data   

  only by making two important modifications of classical 

  theory: 


1. The oscillators (of electromagnetic origin) can only have 
certain discrete energies determined by 


       where n is an integer, f is the frequency, and h is 

       called Planck’s constant and has the value 


h = 6.6261⇥ 10�34J · s

measurements showed that u( f, T ), the spectral energy density, was propor-
tional to T for long wavelengths or low frequency. Planck knew that Wien’s law
agreed well with the data at high frequency and indeed had been working
hard for several years to derive Wien’s exponential law from the principles of
statistical mechanics and Maxwell’s laws. Interpolating between the two limit-
ing forms (Wien’s exponential law and an energy density proportional to tem-
perature), he immediately found a general formula, which he sent to Rubens,
on a postcard, the same evening. His formula was5

(3.9)

where h is Planck’s constant ! 6.626 " 10#34 J $ s, and kB is Boltzmann’s
constant ! 1.380 " 10#23 J/K. We can see that Equation 3.9 has the correct
limiting behavior at high and low frequencies with the help of a few approxi-
mations. At high frequencies, where hf/kBT %% 1,

so that

and we recover Wien’s exponential law, Equation 3.8. At low frequencies,
where hf/kBT && 1,

and

This result shows that the spectral energy density is proportional to T in the
low-frequency or so-called classical region, as Rubens had found.

We should emphasize that Planck’s work entailed much more than clever
mathematical manipulation. For more than six years Planck (Fig. 3.8) labored to
find a rigorous derivation of the blackbody distribution curve. He was driven, in
his own words, by the fact that the emission problem “represents something
absolute, and since I had always regarded the search for the absolute as the lofti-
est goal of all scientific activity, I eagerly set to work.” This work was to occupy
most of his life as he strove to give his formula an ever deeper physical interpreta-
tion and to reconcile discrete quantum energies with classical theory.
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5Planck originally published his formula as , where C1 ! 8'ch and

C2 ! hc/kB. He then found best-fit values to the experimental data for C1 and C2 and evaluated
h ! 6.55 " 10#34 J $ s and kB ! NA/R ! 1.345 " 10#23 J/K. As R , the universal gas constant, was
fairly well known at the time, this technique also resulted in another method for finding NA,
Avogadro’s number.

u(), T) !
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)5 ! 1

eC2/)T # 1 "

Figure 3.8 Max Planck (1858–
1947). The work leading to the
“lucky” blackbody radiation for-
mula was described by Planck in
his Nobel prize acceptance
speech (1920): “But even if the
radiation formula proved to be
perfectly correct, it would after
all have been only an interpola-
tion formula found by lucky
guess-work and thus, would have
left us rather unsatisfied. I there-
fore strived from the day of its
discovery, to give it a real physi-
cal interpretation and this led
me to consider the relations be-
tween entropy and probability
according to Boltzmann’s ideas.
After some weeks of the most in-
tense work of my life, light be-
gan to appear to me and unex-
pected views revealed themselves
in the distance.” (AIP Niels Bohr
Library, W. F. Meggers Collection)
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The Quantum of Energy

Planck’s original theoretical justification of Equation 3.9 is rather abstract
because it involves arguments based on entropy, statistical mechanics, and several
theorems proved earlier by Planck concerning matter and radiation in equilib-
rium.6 We shall give arguments that are easier to visualize physically yet attempt
to convey the spirit and revolutionary impact of Planck’s original work.

Planck was convinced that blackbody radiation was produced by vibrating
submicroscopic electric charges, which he called resonators. He assumed that
the walls of a glowing cavity were composed of literally billions of these
resonators (whose exact nature was unknown at the time), all vibrating at
different frequencies. Hence, according to Maxwell, each oscillator should
emit radiation with a frequency corresponding to its vibration frequency. Also
according to classical Maxwellian theory, an oscillator of frequency f
could have any value of energy and could change its amplitude continu-
ously as it radiated any fraction of its energy. This is where Planck made
his revolutionary proposal. To secure agreement with experiment, Planck
had to assume that the total energy of a resonator with mechanical
frequency f could only be an integral multiple of hf or

(3.10)

where h is a fundamental constant of quantum physics, h ! 6.626 " 10#34 J $ s,
known as Planck’s constant. In addition, he concluded that emission of radiation
of frequency f occurred when a resonator dropped to the next lowest energy
state. Thus the resonator can change its energy only by the difference %E according to

%E ! hf (3.11)

That is, it cannot lose just any amount of its total energy, but only a finite amount, hf,
the so-called quantum of energy. Figure 3.9 shows the quantized energy levels and
allowed transitions proposed by Planck.

Eresonator ! nhf  n ! 1, 2, 3, $ $ $
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Figure 3.9 Allowed energy levels according to Planck’s original hypothesis for an
oscillator with frequency f. Allowed transitions are indicated by the double-headed arrows.

6M. Planck, Ann. Physik, 4:553, 1901.
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     2. The oscillators can absorb or emit energy in discrete 

        multiples of the fundamental quantum of energy given 

        by

Planck found these results quite disturbing and spent several 
years trying to find a way to keep the agreement with 
experiment while letting h�0. Each attempt failed, and 
Planck’s quantum result became one of the cornerstones of 
modern science. 
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3.3 THE RAYLEIGH–JEANS LAW AND PLANCK’S LAW 77

This result shows that the spectral energy density is proportional to the
product of the frequency squared and the average oscillator energy. Also,
since u( f, T ) approaches zero at high frequencies (see Fig. 3.5), must tend
to zero at high frequencies faster than 1/f 2. The fact that the mean oscillator
energy must become extremely small when the frequency becomes high
guided Planck in the development of his theory. In the next section we shall
see that the failure of to become small at high frequencies in the classical
Rayleigh–Jeans theory led to the “ultraviolet catastrophe”—the prediction of
an infinite spectral energy density at high frequencies in the ultraviolet region.

3.3 THE RAYLEIGH–JEANS LAW AND PLANCK’S LAW

Rayleigh–Jeans Law
Both Planck’s law and the Rayleigh–Jeans law (the classical theory of blackbody
radiation formulated by Lord Rayleigh, John William Strutt, 1842–1919, English
physicist, and James Jeans, 1887–1946, English astronomer and physicist) may be
derived using the idea that the blackbody radiation energy per unit volume with fre-
quency between f and f ! df can be expressed as the product of the number of oscil-
lators per unit volume in this frequency range and the average energy per oscillator:

(3.12)

It is instructive to perform both the Rayleigh–Jeans and Planck calculations to see
the effect on u( f, T ) of calculating from a continuous distribution of classical
oscillator energies (Rayleigh–Jeans) as opposed to a discrete set of quantum oscilla-
tor energies (Planck). We discuss Lord Rayleigh’s derivation first because it is a
more direct classical calculation.

While Planck concentrated on the thermal equilibrium of cavity radiation with oscillating
electric charges in the cavity walls, Rayleigh concentrated directly on the electromagnetic waves
in the cavity. Rayleigh and Jeans reasoned that the standing electromagnetic waves in
the cavity could be considered to have a temperature T, because they constantly ex-
changed energy with the walls and caused a thermometer within the cavity to reach
the same temperature as the walls. Further, they considered a standing polarized
electromagnetic wave to be equivalent to a one-dimensional oscillator (Fig. 3.11).
Using the same general idea as Planck, they expressed the energy density as a prod-
uct of the number of standing waves (oscillators) and the average energy per oscilla-
tor. They found the average oscillator energy to be independent of frequency and
equal to kBT from the Maxwell-Boltzmann distribution law (see Chapter 10).
According to this distribution law, the probability P of finding an individual system
(such as a molecule or an atomic oscillator) with energy E above some minimum
energy, E0, in a large group of systems at temperature T is

(3.15)

where P0 is the probability that a system has the minimum energy. In the case of a
discrete set of allowed energies, the average energy, , is given by

(3.16)

where division by the sum in the denominator serves to normalize the total
probability to 1. In the classical case considered by Rayleigh, an oscillator could have any
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!E #P(E)
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E
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E
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Photoelectric Effect 

While Heinrich Hertz was 
performing his famous 
experiment in 1887 that 
confirmed Maxwell’s 
electromagnetic wave 
theory of light, he noticed 
that when ultraviolet light 
fell on a metal electrode, a 
charge was produced that 
separated the leaves of his 
electroscope. 
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Photoelectric Effect 

The photoelectric effect is one of several ways in which 
electrons can be emitted by materials. 

The methods known now by which electrons can be made to 
completely leave the material include: 

1. Thermionic emission: Application of heat allows electrons to gain enough         
energy to escape.  
2. Secondary emission: The electron gains enough energy by transfer from     
a high-speed particle that strikes the material from outside.  
3. Field emission: A strong external electric field pulls the electron out of 
the material.  
4. Photoelectric effect: Incident light (electromagnetic radiation) shining 
on the material transfers energy to the electrons, allowing them to escape. 
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Experimental Results
 

Incident light falling on the emitter ejects electrons. Some 
of the electrons travel toward the collector (also called the 
anode), where either a negative (retarding) or positive 
(accelerating) applied voltage V is imposed by the power 
supply. 


   3.6 Photoelectric Effect 103

1.  Thermionic emission: Application of heat allows electrons to gain enough 
energy to escape.

2.  Secondary emission: The electron gains enough energy by transfer from a 
high-speed particle that strikes the material from outside.

3.  Field emission: A strong external electric field pulls the electron out of 
the material.

4.  Photoelectric effect: Incident light (electromagnetic radiation) shining 
on the material transfers energy to the electrons, allowing them to escape.

It is not surprising that electromagnetic radiation interacts with electrons 
within metals and gives the electrons increased kinetic energy. Because elec-
trons in metals are weakly bound, we expect that light can give electrons enough 
extra kinetic energy to allow them to escape. We call the ejected electrons photo-
electrons. The minimum extra kinetic energy that allows electrons to escape the 
material is called the work function f. The work function is the minimum bind-
ing energy of the electron to the material (see Table 3.3 for work function values 
for several elements).

Experimental Results of Photoelectric Effect
Experiments carried out around 1900 showed that photoelectrons are produced 
when visible and/or ultraviolet light falls on clean metal surfaces. Photoelectricity 
was studied using an experimental apparatus shown schematically in Figure 3.11. 
Incident light falling on the emitter (also called the photocathode or cathode) 

Methods of electron 
emission

Photoelectrons

Work function

Element ! (eV) Element ! (eV) Element ! (eV)

 Ag 4.64 K 2.29 Pd 5.22
 Al 4.20 Li 2.93 Pt 5.64
 C 5.0 Na 2.36 W 4.63
 Cs 1.95 Nd 3.2 Zr 4.05
 Cu 4.48 Ni 5.22
 Fe 4.67 Pb 4.25

From Handbook of Chemistry and Physics, 90th ed. Boca Raton, Fla.: CRC Press (2009– 10), 
pp. 12-114.

Tab le  3 .3   Work Functions

Incident!
light

Ammeter

I

A

Collector

e!

Emitter

Vacuum tube

Power supply

(Voltage V )

Figure 3.11 Photoelectric ef-
fect. Electrons emitted when light 
shines on a surface are collected, 
and the photocurrent I is mea-
sured. A negative voltage, relative 
to that of the emitter, can be ap-
plied to the collector. When this 
retarding voltage is sufficiently 
large, the emitted electrons are 
repelled, and the current to the 
collector drops to zero.
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We call the ejected electrons photoelectrons. The minimum 
extra kinetic energy that allows electrons to escape the 
material is called the work function !. The work function is 
the minimum binding energy of the electron to the material 

   3.6 Photoelectric Effect 103

1.  Thermionic emission: Application of heat allows electrons to gain enough 
energy to escape.

2.  Secondary emission: The electron gains enough energy by transfer from a 
high-speed particle that strikes the material from outside.

3.  Field emission: A strong external electric field pulls the electron out of 
the material.

4.  Photoelectric effect: Incident light (electromagnetic radiation) shining 
on the material transfers energy to the electrons, allowing them to escape.

It is not surprising that electromagnetic radiation interacts with electrons 
within metals and gives the electrons increased kinetic energy. Because elec-
trons in metals are weakly bound, we expect that light can give electrons enough 
extra kinetic energy to allow them to escape. We call the ejected electrons photo-
electrons. The minimum extra kinetic energy that allows electrons to escape the 
material is called the work function f. The work function is the minimum bind-
ing energy of the electron to the material (see Table 3.3 for work function values 
for several elements).
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Experiments carried out around 1900 showed that photoelectrons are produced 
when visible and/or ultraviolet light falls on clean metal surfaces. Photoelectricity 
was studied using an experimental apparatus shown schematically in Figure 3.11. 
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fect. Electrons emitted when light 
shines on a surface are collected, 
and the photocurrent I is mea-
sured. A negative voltage, relative 
to that of the emitter, can be ap-
plied to the collector. When this 
retarding voltage is sufficiently 
large, the emitted electrons are 
repelled, and the current to the 
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Experimental Results
 

The pertinent experimental facts about the photoelectric 
effect are these: 

1. The kinetic energies of the photoelectrons are independent 
of the light intensity. 


104 Chapter 3 The Experimental Basis of Quantum Physics

ejects electrons. Some of the electrons travel toward the collector (also called the 
anode), where either a negative (retarding) or positive (accelerating) applied 
voltage V is imposed by the power supply. The current I measured in the am-
meter (photocurrent) arises from the flow of photoelectrons from emitter to 
collector.

The pertinent experimental facts about the photoelectric effect are these:

1.  The kinetic energies of the photoelectrons are independent of the light 
intensity. In other words, a stopping potential (applied voltage) of !V0 
is suf fi cient to stop all photoelectrons, no matter what the light intensity, as 
shown in Figure 3.12. For a given light intensity there is a maximum pho-
tocurrent, which is reached as the applied voltage increases from negative 
to positive values.

2.  The maximum kinetic energy of the photoelectrons, for a given emitting 
material, depends only on the frequency of the light. In other words, for 
light of different frequency (Figure 3.13) a different retarding potential 
!V0 is required to stop the most energetic photoelectrons. The value of 
V0 depends on the frequency f but not on the intensity (see Figure 3.12).

3.  The smaller the work function f of the emitter material, the lower is the 
threshold frequency of the light that can eject photoelectrons. No photo-
electrons are produced for frequencies below this threshold frequency, no 
matter what the intensity. Data similar to Millikan’s results (discussed later) 

Photoelectric experimental 
results

Figure 3.13 The photoelectric 
current I is shown as a function of 
applied voltage for three different 
light frequencies. The retarding 
potential !V0 is different for each 
f and is more negative for larger f.

Photoelectric!
current

f1 " f2 " f3

f1 f2 f3

Photon intensity I# constant

Applied voltage

I

!V01 !V02 !V03

V

Figure 3.12 The photoelectric current I is shown as a function of the voltage V applied between 
the emitter and collector for a given frequency f of light for three different light intensities. Notice 
that no current flows for a retarding potential more negative than !V0 and that the photocurrent 
is constant for potentials near or above zero (this assumes that the emitter and collector are closely 
spaced or in spherical geometry to avoid loss of photoelectrons).
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Experimental Results
 2. The maximum kinetic energy of the photoelectrons, for a 
given emitting material, depends only on the frequency of 
the light. 

104 Chapter 3 The Experimental Basis of Quantum Physics
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Experimental Results
 3. The smaller the work function # of the emitter material, 

the lower is the threshold frequency of the light that can 
eject photoelectrons. 

   3.6 Photoelectric Effect 105

are shown in Figure 3.14, where the threshold frequencies f0 are measured 
for three metals.

4.  When the photoelectrons are produced, however, their number is pro-
portional to the intensity of light as shown in Figure 3.15. That is, the 
maximum photocurrent is proportional to the light intensity.

5.  The photoelectrons are emitted almost instantly (!3 " 10#9 s) follow-
ing illumination of the photocathode, independent of the intensity of the 
light.

Except for result 5, these experimental facts were known in rudimentary form by 
1902, primarily due to the work of Philipp Lenard, who had been an assistant to 
Hertz in 1892 after Hertz had moved from Karlsruhe to Bonn. Lenard, who ex-
tensively studied the photoelectric effect, received the Nobel Prize in Physics in 
1905 for this and other research on the identification and behavior of 
electrons.

Classical Interpretation
As stated previously, classical theory allows electromagnetic radiation to eject 
photo electrons from matter. However, classical theory predicts that the total 
amount of energy in a light wave increases as the light intensity increases. There-
fore, according to classical theory, the electrons should have more kinetic energy 
if the light intensity is increased. However, according to experimental result 1 

f0

Retarding
potential
energy

Light frequency

Slope ! h

Intercept ! "f

Ag

Li
Cs

f

eV0

Figure 3.14 The retarding po-
tential energy eV0 (maximum 
electron kinetic energy) is plotted 
versus light frequency for three 
emitter materials.

Figure 3.15 The photoelectric 
current I is a linear function of 
the light intensity for a constant f 
and V.Light intensity

Light frequency f $ constant!
Voltage V $ constant

Photoelectric!
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Experimental Results
 4. When the photoelectrons are produced, however, their 

number is proportional to the intensity of light 

   3.6 Photoelectric Effect 105

are shown in Figure 3.14, where the threshold frequencies f0 are measured 
for three metals.

4.  When the photoelectrons are produced, however, their number is pro-
portional to the intensity of light as shown in Figure 3.15. That is, the 
maximum photocurrent is proportional to the light intensity.

5.  The photoelectrons are emitted almost instantly (!3 " 10#9 s) follow-
ing illumination of the photocathode, independent of the intensity of the 
light.

Except for result 5, these experimental facts were known in rudimentary form by 
1902, primarily due to the work of Philipp Lenard, who had been an assistant to 
Hertz in 1892 after Hertz had moved from Karlsruhe to Bonn. Lenard, who ex-
tensively studied the photoelectric effect, received the Nobel Prize in Physics in 
1905 for this and other research on the identification and behavior of 
electrons.

Classical Interpretation
As stated previously, classical theory allows electromagnetic radiation to eject 
photo electrons from matter. However, classical theory predicts that the total 
amount of energy in a light wave increases as the light intensity increases. There-
fore, according to classical theory, the electrons should have more kinetic energy 
if the light intensity is increased. However, according to experimental result 1 

f0

Retarding
potential
energy

Light frequency

Slope ! h

Intercept ! "f

Ag

Li
Cs

f

eV0

Figure 3.14 The retarding po-
tential energy eV0 (maximum 
electron kinetic energy) is plotted 
versus light frequency for three 
emitter materials.

Figure 3.15 The photoelectric 
current I is a linear function of 
the light intensity for a constant f 
and V.Light intensity
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Experimental Results
 5. The photoelectrons are emitted almost instantly ( 3*10-9s) 

following illumination of the photocathode, independent of 
the intensity of the light. 

Except for result 5, these experimental facts were known in 
rudimentary form by 1902, primarily due to the work of 
Philipp Lenard, who had been an assistant to Hertz in 1892 
after Hertz had moved from Karlsruhe to Bonn. 

Lenard, who extensively studied the photoelectric effect, 
received the Nobel Prize in Physics in 1905 for this and 
other research on the identification and behavior of 
electrons. 
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Classical Interpretation 

 1. Classical theory allows electromagnetic radiation to eject 
photoelectrons from matter. 


2. Classical theory predicts that the total amount of energy 
in a light wave increases as the light intensity increases.


3. Classical theory cannot explain that the maximum kinetic 
energy of the photoelectrons depends on the value of the 
light frequency $ and not on the intensity. 


4. The existence of a threshold frequency is completely 
inexplicable in classical theory.


5.  Classical theory does predict that the number of 
photoelectrons ejected will increase with intensity.
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Einstein’s Theory 
1. Albert Einstein was intrigued by Planck’s hypothesis that 

the electromagnetic radiation field must be absorbed and 
emitted in quantized amounts. 


2. Einstein took Planck’s idea one step further and suggested 
that the electromagnetic radiation field itself is quantized


3. We now call these energy quanta of light photons. 
According to Einstein each photon has the energy quantum


where $ is the frequency of the electromagnetic wave 
associated with the light, and h is Planck’s constant. 

E = h⌫
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Einstein’s Theory 
4.  Einstein proposed that in addition to its well-known           

wavelike aspect, amply exhibited in interference 
phenomena, light should also be considered to have a 
particle-like aspect. 


The conservation of energy requires that 

We want to experimentally detect the maximum value of

the kinetic energy. 

The retarding potentials are thus the opposing potentials

needed to stop the most energetic electrons. 

h⌫ = �+ Ek

h⌫ = �+
1

2
mv2max

eV0 =
1

2
mv2max
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Quantum Interpretation 
 The kinetic energy of the electrons depends only on the


light frequency and the work function of the material. 

which proposed by Einstein in 1905, predicts that the

stopping potential will be linearly proportional to the light 

frequency, The slope is independent of the metal used to 

construct the photocathode. This equation can be rewritten 

as

The frequency $0 represents the threshold frequency for 

the photoelectric effect. (when the kinetic energy of the 

electron is precisely zero). 

 


1

2
mv2max = eV0 = h⌫ � �

eV0 =
1

2
mv2max = h(⌫ � ⌫0)
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Quantum Interpretation 
 In 1916 Millikan reported data that confirmed Einstein’s 


prediction. 


108 Chapter 3 The Experimental Basis of Quantum Physics

the photoelectrons depend on the light frequency, but not the light intensity) 
can be explained. The kinetic energy of the electrons, K.E. (electron) ! hf " f 
[see Equation (3.29)], does not depend on the light intensity at all, but only on 
the light frequency and the work function of the material.

 1
2 mv 2

max ! eV0 ! hf " f (3.32)

A potential slightly more positive than "V0 will not be able to repel all the elec-
trons, and, for a close geometry of the emitter and collector, practically all the 
electrons will be collected when the retarding voltage is near zero. For very large 
positive potentials all the electrons will be collected, and the photocurrent levels  
off as shown in Figure 3.12. If the light intensity increases, there will be more 
photons per unit area, more electrons ejected, and therefore a higher photocur-
rent, as displayed in Figure 3.12.

If a different light frequency is used, say f2, then a different stopping potential 
is required to stop the most energetic electrons [see Equation (3.32)], eV02 ! hf2 " 
f. For a constant light intensity (more precisely, a constant number of photons/
area/time), a different stopping potential V0 is required for each f, but the maxi-
mum photocurrent will not change, because the number of photoelectrons 
ejected is constant (see Figure 3.13). The quantum theory easily explains Fig-
ure 3.15, because the number of photons increases linearly with the light inten-
sity, producing more photoelectrons and hence more photocurrent.

Equation (3.32), proposed by Einstein in 1905, predicts that the stopping 
potential will be linearly proportional to the light frequency, with a slope h/e, 
where h is the same constant found by Planck. The slope is independent of the metal 
used to construct the photocathode. Equation (3.32) can be rewritten

 eV0 ! 1
2 mv 2

max ! hf " hf0 ! h 1  f " f0 2  (3.33)

where f ! hf0 represents the negative of the y intercept. The frequency f0 repre-
sents the threshold frequency for the photoelectric effect (when the kinetic en-
ergy of the electron is precisely zero). The data available in 1905 were not suf fi-
ciently accurate either to prove or disprove Einstein’s theory, and even Planck 
himself, among others, viewed the theory with skepticism. R. A. Millikan, then at 
the University of Chicago, tried to show that Einstein was wrong by undertaking 
a series of elegant experiments that required almost 10 years to complete. In 
1916 Millikan reported data shown in Figure 3.16 that confirmed Einstein’s pre-
diction. Millikan found the value of h from the slope of the line in Figure 3.16 
to be 4.1 # 10"15 eV # s, in good agreement with the value of h determined for 
blackbody radiation by Planck. Einstein’s theory of the photoelectric effect was 
gradually accepted after 1916; finally in 1922 he received the Nobel Prize for the 
year 1921, primarily for his explanation of the photoelectric effect.*

We should summarize what we have learned about the quantization of the 
electromagnetic radiation field. First, electromagnetic radiation consists of pho-
tons, which are particle-like (or corpuscular), each consisting of energy

 E ! hf !
hc
l

 (3.34)

Quantization of electro-
magnetic radiation field

*R. A. Millikan also received the Nobel Prize in Physics in 1923, partly for his precise study of the 
photo electric effect and partly for measuring the charge of the electron. Millikan’s award was the last 
in a series of Nobel Prizes spanning 18 years that honored the fundamental efforts to measure and 
understand the photoelectric effect: Lenard, Einstein, and Millikan.

Figure 3.16 Millikan published 
data in 1916 for the photoelectric 
effect in which he shone light of 
varying frequency on a sodium 
electrode and measured the max-
imum kinetic energies of the 
photoelectrons. He found that no 
photoelectrons were emitted be-
low a frequency of 4.39 # 1014 Hz 
(or longer than a wavelength of 
683 nm). The results were inde-
pendent of light intensity, and the 
slope of a straight line drawn 
through the data produced a 
value of Planck’s constant in ex-
cellent agreement with Planck’s 
theory. Even though Millikan ad-
mitted his own data were suf fi-
cient proof of Einstein’s photo-
electric effect equation, Millikan 
was not convinced of the photon 
concept for light and its role in 
quantum theory.
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The Compton Effect 

where me ! electron mass; the combination of constants h/mec is called
the Compton wavelength of the electron and has a currently accepted
value of

Compton’s careful measurements completely confirmed the dependence of
"# on scattering angle $ and determined the Compton wavelength of the
electron to be 0.0242 Å, in excellent agreement with the currently accepted
value. It is fair to say that these results were the first to really convince most
American physicists of the basic validity of the quantum theory!

The unshifted peak at "0 in Figure 3.23 is caused by x-rays scattered from
electrons tightly bound to carbon atoms. This unshifted peak is actually pre-
dicted by Equation 3.27 if the electron mass is replaced by the mass of a car-
bon atom, which is about 23,000 times the mass of an electron.

Let us now turn to the derivation of Equation 3.27 assuming that the pho-
ton exhibits particle-like behavior and collides elastically like a billiard ball
with a free electron initially at rest. Figure 3.24 shows the photon–electron
collision for which energy and momentum are conserved. Because the elec-
tron typically recoils at high speed, we treat the collision relativistically. The
expression for conservation of energy gives

E % mec
2 ! E# % Ee (3.28)

where E is the energy of the incident photon, E# is the energy of the scattered
photon, mec2 is the rest energy of the electron, and Ee is the total relativistic
energy of the electron after the collision. Likewise, from momentum conserva-
tion we have

p ! p# cos $ % pe cos & (3.29)

h

mec
! 0.0243 Å ! 0.00243 nm

3.5 THE COMPTON EFFECT AND X-RAYS 91

Figure 3.23 (a) Schematic diagram of Compton’s apparatus. The wavelength was
measured with a rotating crystal spectrometer using graphite (carbon) as the target.
The intensity was determined by a movable ionization chamber that generated a cur-
rent proportional to the x-ray intensity. (b) Scattered x-ray intensity versus wavelength
of Compton scattering at $ ! 0', 45', 90', and 135'.
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The Compton effect was observed in 1923 by Arthur Holly

Compton. He demonstrated another experimental

observation toward the validation of the particle nature of 

light. 
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The Compton Effect 

of 45!, 90!, and 135!. The wavelength was measured with a rotating crystal
spectrometer, and the intensity was determined by an ionization chamber that
generated a current proportional to the x-ray intensity. Monochromatic x-rays
of wavelength "0 # 0.71 Å constituted the incident beam. A carbon target with
a low atomic number, Z # 12, was used because atoms with small Z have a
higher percentage of loosely bound electrons. The experimental intensity ver-
sus wavelength plots observed by Compton for scattering angles of 0!, 45!, 90!,
and 135! are shown in Figure 3.23b. They show two peaks, one at "0 and a
shifted peak at a longer wavelength "$. The shifted peak at "$ is caused by the
scattering of x-rays from nearly free electrons. Assuming that x-rays behave like
particles, "$ was predicted by Compton to depend on scattering angle as

(3.27)"$ % "0 #
h

mec
(1 % cos&)
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(a) Classical model

Electron

Electron motion
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(b) Quantum model

Figure 3.22 X-ray scattering from an electron: (a) the classical model, (b) the quan-
tum model.

Compton effect
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In particular, classical

theory predicted that 

incident radiation of 

frequency f0 should 

accelerate an electron in

the direction of 

propagation of the 

incident radiation, and 

that it should  cause 

forced oscillations of 

the electron and 

reradiation at frequency 

f’︎, where f’< ︎f0  
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The Compton Effect 
Also, according to classical theory, the frequency or 

wavelength of the scattered radiation should depend on the 

length of time.  The electron was exposed to the incident 

radiation as well as on the intensity of the incident 

radiation. 


p! sin " # pe sin $ (3.30)

where p is the momentum of the incident photon, p! is the momentum of the
scattered photon, and pe is the recoil momentum of the electron. Equations
3.29 and 3.30 may be solved simultaneously to eliminate $, the electron scat-
tering angle, to give the following expression for pe

2:

pe
2 # (p!)2 % p2 & 2pp! cos " (3.31)

At this point it is necessary, paradoxically, to use the wave nature of
light to explain the particle-like behavior of photons. We have already
seen that the energy of a photon and the frequency of the associated
light wave are related by E # hf. If we assume that a photon obeys the
relativistic expression E 2 # p2c2 % m2c4 and that a photon has a mass of
zero, we have

(3.32)

Here again we have a paradoxical situation; a particle property, the photon
momentum, is given in terms of a wave property, ', of an associated light wave.
If the relations E # hf and p # hf/c are substituted into Equations 3.28 and
3.31, these become respectively

Ee # hf & hf ! % mec
2 (3.33)

and

(3.34)

Because the Compton measurements do not concern the total energy
and momentum of the electron, we eliminate Ee and pe by substi-
tuting Equations 3.33 and 3.34 into the expression for the electron’s
relativistic energy,

pe
2 # ! hf !

c "
2

% ! hf

c "
2

&
2h2ff !

c2  cos "

pphoton #
E

c
#

hf

c
#

h

'
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θ

Figure 3.24 Diagram representing Compton scattering of a photon by an
electron. The scattered photon has less energy (or longer wavelength) than the
incident photon.
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The Compton Effect 
The expression for conservation of energy gives 


where me ! electron mass; the combination of constants h/mec is called
the Compton wavelength of the electron and has a currently accepted
value of

Compton’s careful measurements completely confirmed the dependence of
"# on scattering angle $ and determined the Compton wavelength of the
electron to be 0.0242 Å, in excellent agreement with the currently accepted
value. It is fair to say that these results were the first to really convince most
American physicists of the basic validity of the quantum theory!

The unshifted peak at "0 in Figure 3.23 is caused by x-rays scattered from
electrons tightly bound to carbon atoms. This unshifted peak is actually pre-
dicted by Equation 3.27 if the electron mass is replaced by the mass of a car-
bon atom, which is about 23,000 times the mass of an electron.

Let us now turn to the derivation of Equation 3.27 assuming that the pho-
ton exhibits particle-like behavior and collides elastically like a billiard ball
with a free electron initially at rest. Figure 3.24 shows the photon–electron
collision for which energy and momentum are conserved. Because the elec-
tron typically recoils at high speed, we treat the collision relativistically. The
expression for conservation of energy gives

E % mec
2 ! E# % Ee (3.28)

where E is the energy of the incident photon, E# is the energy of the scattered
photon, mec2 is the rest energy of the electron, and Ee is the total relativistic
energy of the electron after the collision. Likewise, from momentum conserva-
tion we have

p ! p# cos $ % pe cos & (3.29)

h

mec
! 0.0243 Å ! 0.00243 nm

3.5 THE COMPTON EFFECT AND X-RAYS 91

Figure 3.23 (a) Schematic diagram of Compton’s apparatus. The wavelength was
measured with a rotating crystal spectrometer using graphite (carbon) as the target.
The intensity was determined by a movable ionization chamber that generated a cur-
rent proportional to the x-ray intensity. (b) Scattered x-ray intensity versus wavelength
of Compton scattering at $ ! 0', 45', 90', and 135'.
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where E is the energy of the incident photon, E︎ is the energy 
of the scattered photon, mec2  is the rest energy of the 
electron, and Ee is the total relativistic energy of the electron 
after the collision. Likewise, from momentum conservation we 
have 


where me ! electron mass; the combination of constants h/mec is called
the Compton wavelength of the electron and has a currently accepted
value of

Compton’s careful measurements completely confirmed the dependence of
"# on scattering angle $ and determined the Compton wavelength of the
electron to be 0.0242 Å, in excellent agreement with the currently accepted
value. It is fair to say that these results were the first to really convince most
American physicists of the basic validity of the quantum theory!

The unshifted peak at "0 in Figure 3.23 is caused by x-rays scattered from
electrons tightly bound to carbon atoms. This unshifted peak is actually pre-
dicted by Equation 3.27 if the electron mass is replaced by the mass of a car-
bon atom, which is about 23,000 times the mass of an electron.

Let us now turn to the derivation of Equation 3.27 assuming that the pho-
ton exhibits particle-like behavior and collides elastically like a billiard ball
with a free electron initially at rest. Figure 3.24 shows the photon–electron
collision for which energy and momentum are conserved. Because the elec-
tron typically recoils at high speed, we treat the collision relativistically. The
expression for conservation of energy gives

E % mec
2 ! E# % Ee (3.28)

where E is the energy of the incident photon, E# is the energy of the scattered
photon, mec2 is the rest energy of the electron, and Ee is the total relativistic
energy of the electron after the collision. Likewise, from momentum conserva-
tion we have

p ! p# cos $ % pe cos & (3.29)

h

mec
! 0.0243 Å ! 0.00243 nm

3.5 THE COMPTON EFFECT AND X-RAYS 91

Figure 3.23 (a) Schematic diagram of Compton’s apparatus. The wavelength was
measured with a rotating crystal spectrometer using graphite (carbon) as the target.
The intensity was determined by a movable ionization chamber that generated a cur-
rent proportional to the x-ray intensity. (b) Scattered x-ray intensity versus wavelength
of Compton scattering at $ ! 0', 45', 90', and 135'.
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p! sin " # pe sin $ (3.30)

where p is the momentum of the incident photon, p! is the momentum of the
scattered photon, and pe is the recoil momentum of the electron. Equations
3.29 and 3.30 may be solved simultaneously to eliminate $, the electron scat-
tering angle, to give the following expression for pe

2:

pe
2 # (p!)2 % p2 & 2pp! cos " (3.31)

At this point it is necessary, paradoxically, to use the wave nature of
light to explain the particle-like behavior of photons. We have already
seen that the energy of a photon and the frequency of the associated
light wave are related by E # hf. If we assume that a photon obeys the
relativistic expression E 2 # p2c2 % m2c4 and that a photon has a mass of
zero, we have

(3.32)

Here again we have a paradoxical situation; a particle property, the photon
momentum, is given in terms of a wave property, ', of an associated light wave.
If the relations E # hf and p # hf/c are substituted into Equations 3.28 and
3.31, these become respectively

Ee # hf & hf ! % mec
2 (3.33)

and

(3.34)

Because the Compton measurements do not concern the total energy
and momentum of the electron, we eliminate Ee and pe by substi-
tuting Equations 3.33 and 3.34 into the expression for the electron’s
relativistic energy,

pe
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c "
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Figure 3.24 Diagram representing Compton scattering of a photon by an
electron. The scattered photon has less energy (or longer wavelength) than the
incident photon.
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where p is the momentum of the incident photon, p ︎’ is the 
momentum of the scattered photon, and pe is the recoil 
momentum of the electron. 
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The Compton Effect 
The momentum of electron is 


p! sin " # pe sin $ (3.30)

where p is the momentum of the incident photon, p! is the momentum of the
scattered photon, and pe is the recoil momentum of the electron. Equations
3.29 and 3.30 may be solved simultaneously to eliminate $, the electron scat-
tering angle, to give the following expression for pe

2:

pe
2 # (p!)2 % p2 & 2pp! cos " (3.31)

At this point it is necessary, paradoxically, to use the wave nature of
light to explain the particle-like behavior of photons. We have already
seen that the energy of a photon and the frequency of the associated
light wave are related by E # hf. If we assume that a photon obeys the
relativistic expression E 2 # p2c2 % m2c4 and that a photon has a mass of
zero, we have

(3.32)

Here again we have a paradoxical situation; a particle property, the photon
momentum, is given in terms of a wave property, ', of an associated light wave.
If the relations E # hf and p # hf/c are substituted into Equations 3.28 and
3.31, these become respectively

Ee # hf & hf ! % mec
2 (3.33)

and

(3.34)

Because the Compton measurements do not concern the total energy
and momentum of the electron, we eliminate Ee and pe by substi-
tuting Equations 3.33 and 3.34 into the expression for the electron’s
relativistic energy,
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Figure 3.24 Diagram representing Compton scattering of a photon by an
electron. The scattered photon has less energy (or longer wavelength) than the
incident photon.
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If we assume that a photon obeys the relativistic expression


and that a photon has a mass of zero, we have 


p! sin " # pe sin $ (3.30)

where p is the momentum of the incident photon, p! is the momentum of the
scattered photon, and pe is the recoil momentum of the electron. Equations
3.29 and 3.30 may be solved simultaneously to eliminate $, the electron scat-
tering angle, to give the following expression for pe

2:

pe
2 # (p!)2 % p2 & 2pp! cos " (3.31)

At this point it is necessary, paradoxically, to use the wave nature of
light to explain the particle-like behavior of photons. We have already
seen that the energy of a photon and the frequency of the associated
light wave are related by E # hf. If we assume that a photon obeys the
relativistic expression E 2 # p2c2 % m2c4 and that a photon has a mass of
zero, we have

(3.32)

Here again we have a paradoxical situation; a particle property, the photon
momentum, is given in terms of a wave property, ', of an associated light wave.
If the relations E # hf and p # hf/c are substituted into Equations 3.28 and
3.31, these become respectively

Ee # hf & hf ! % mec
2 (3.33)

and

(3.34)

Because the Compton measurements do not concern the total energy
and momentum of the electron, we eliminate Ee and pe by substi-
tuting Equations 3.33 and 3.34 into the expression for the electron’s
relativistic energy,
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Figure 3.24 Diagram representing Compton scattering of a photon by an
electron. The scattered photon has less energy (or longer wavelength) than the
incident photon.
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p! sin " # pe sin $ (3.30)

where p is the momentum of the incident photon, p! is the momentum of the
scattered photon, and pe is the recoil momentum of the electron. Equations
3.29 and 3.30 may be solved simultaneously to eliminate $, the electron scat-
tering angle, to give the following expression for pe

2:

pe
2 # (p!)2 % p2 & 2pp! cos " (3.31)

At this point it is necessary, paradoxically, to use the wave nature of
light to explain the particle-like behavior of photons. We have already
seen that the energy of a photon and the frequency of the associated
light wave are related by E # hf. If we assume that a photon obeys the
relativistic expression E 2 # p2c2 % m2c4 and that a photon has a mass of
zero, we have

(3.32)

Here again we have a paradoxical situation; a particle property, the photon
momentum, is given in terms of a wave property, ', of an associated light wave.
If the relations E # hf and p # hf/c are substituted into Equations 3.28 and
3.31, these become respectively

Ee # hf & hf ! % mec
2 (3.33)

and

(3.34)

Because the Compton measurements do not concern the total energy
and momentum of the electron, we eliminate Ee and pe by substi-
tuting Equations 3.33 and 3.34 into the expression for the electron’s
relativistic energy,
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Figure 3.24 Diagram representing Compton scattering of a photon by an
electron. The scattered photon has less energy (or longer wavelength) than the
incident photon.
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Therefore


p! sin " # pe sin $ (3.30)

where p is the momentum of the incident photon, p! is the momentum of the
scattered photon, and pe is the recoil momentum of the electron. Equations
3.29 and 3.30 may be solved simultaneously to eliminate $, the electron scat-
tering angle, to give the following expression for pe

2:

pe
2 # (p!)2 % p2 & 2pp! cos " (3.31)

At this point it is necessary, paradoxically, to use the wave nature of
light to explain the particle-like behavior of photons. We have already
seen that the energy of a photon and the frequency of the associated
light wave are related by E # hf. If we assume that a photon obeys the
relativistic expression E 2 # p2c2 % m2c4 and that a photon has a mass of
zero, we have

(3.32)

Here again we have a paradoxical situation; a particle property, the photon
momentum, is given in terms of a wave property, ', of an associated light wave.
If the relations E # hf and p # hf/c are substituted into Equations 3.28 and
3.31, these become respectively

Ee # hf & hf ! % mec
2 (3.33)

and

(3.34)

Because the Compton measurements do not concern the total energy
and momentum of the electron, we eliminate Ee and pe by substi-
tuting Equations 3.33 and 3.34 into the expression for the electron’s
relativistic energy,
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Figure 3.24 Diagram representing Compton scattering of a photon by an
electron. The scattered photon has less energy (or longer wavelength) than the
incident photon.
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E 2
e ! pe

2c2 " m2
ec4

After some algebra (see Problem 33), one obtains Compton’s result for the in-
crease in a photon’s wavelength when it is scattered through an angle #:

(3.27)$% & $0 !
h

mec
(1 & cos #)

3.5 THE COMPTON EFFECT AND X-RAYS 93

Visible light from mercury:

Because both incident and scattered wavelengths are
simultaneously present in the beam, they can be easily
resolved only if '$/$0 is a few percent or if $0 ( 1 Å.

(b) The so-called free electrons in carbon are actually
electrons with a binding energy of about 4 eV. Why
may this binding energy be ignored for x-rays with $0 !
0.712 Å?

Solution The energy of a photon with this wavelength
is

Therefore, the electron binding energy of 4 eV is negligi-
ble in comparison with the incident x-ray energy.

! 17 400 eVE ! hf !
hc

$
!

12 400 eV)Å

0.712 Å

'$

$0
!

0.0243 Å

5461 Å
! 4.45 * 10&6

EXAMPLE 3.8 X-ray Photons versus 
Visible Photons

(a) Why are x-ray photons used in the Compton experi-
ment, rather than visible-light photons? To answer this
question, we shall first calculate the Compton shift for
scattering at 90+ from graphite for the following cases:
(1) very high energy ,-rays from cobalt, $ ! 0.0106 Å;
(2) x-rays from molybdenum, $ ! 0.712 Å; and (3) green
light from a mercury lamp, $ ! 5461 Å.

Solution In all cases, the Compton shift formula gives
'$ ! $% & $0 ! (0.0243 Å)(1 & cos 90+) ! 0.0243 Å !
0.00243 nm. That is, regardless of the incident wave-
length, the same small shift is observed. However, the
fractional change in wavelength, '$/$0, is quite different
in each case:

,-rays from cobalt:

X-rays from molybdenum:

'$

$0
!

0.0243 Å

0.712 Å
! 0.0341

'$

$0
!

0.0243 Å

0.0106 Å
! 2.29

Hence, the wavelength of the scattered x-ray at this angle is

$ ! '$ " $0 ! 0.200711 nm

! 7.11 * 10&13 m ! 0.00071 nm

!
6.63 * 10&34 J)s

(9.11 * 10&31 kg)(3.00 * 108 m/s)
 (1 & cos 45.0+)

EXAMPLE 3.7 The Compton Shift for Carbon

X-rays of wavelength $ ! 0.200 nm are aimed at a block
of carbon. The scattered x-rays are observed at an angle
of 45.0+ to the incident beam. Calculate the increased
wavelength of the scattered x-rays at this angle.

Solution The shift in wavelength of the scattered x-rays
is given by Equation 3.27. Taking # ! 45.0+, we find

'$ !
h

mec
(1 & cos #)

Exercise 6 Find the fraction of energy lost by the photon in this collision.

Answer Fraction ! 'E/E ! 0.00355.
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Wave properties of matter 

1924, De Broglie established the wave properties of 

particles. His fundamental relationship is the prediction


� =
h

p
That is, the wavelength to be associated with a particle is 

given by Planck’s constant divided by the particle’s 

momentum.  For a photon in Einstein’s special theory of 

relativity 

E = pc
and quantum theory

E = h⌫

pc = h⌫ =
hc

�

so
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Wave properties of matter 

De Broglie extended this relation for photons to all 

particles. Particle waves were called matter waves by de 

Broglie, and the wavelength is now called the de Broglie 

wavelength of a particle. 

Example: Calculate the de Broglie wavelength of 

(a) a tennis ball of mass 57 g traveling 25 m/s and 

(b) an electron with kinetic energy 50 eV. 


  
Solution: 

(a) For the tennis ball


     (b) For the electron

� =
h

p
=

6.63⇥ 10�34

0.057⇥ 25
= 4.7⇥ 10�34m

� =
h

p
=

hcp
2mc2E

=
1240 ev · nmp

2⇥ 0.511⇥ 106 ⇥ 50 (eV)2
= 0.17nm
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Bohr’s Quantization Condition 

Represent the electron as a standing wave in an orbit 
around the proton. The condition for a standing wave in this 
configuration is that the entire length of the standing wave 
must just fit around the orbit’s circumference. 

n� = 2⇡r
where r is the radius of the orbit. Now we use the de 
Broglie relation for the wavelength and obtain 

n� = 2⇡r = n
h

p
The angular momentum of the electron in this orbit is L=rp, 
so we have, using the above relation, 

L = rp =
nh

2⇡
= n~

1.2 Atomic Spectra 9

nucleus is not screened by electrons, and we can take Ze as the actual charge
of the nucleus. For Z ≥ 10, the energy of a photon emitted in a transition from
n = 2 to n = 1 orbits is greater than 1 keV, and hence is in the X-ray spec-
trum. By measuring these X-ray energies, H. G. J. Moseley (1887–1915) was
able to find Z for a range of atoms from calcium to zinc. He discovered that,
within experimental uncertainty, Z is an integer, suggesting that the positive
charge of atomic nuclei is carried by particles of charge +e, much heavier than
the electron, to which Rutherford gave the name protons. Also, with just a few
exceptions, Z increased by one unit in going from any element to the element
with the next largest atomic weight A (roughly, the mass of the atom in units of
the hydrogen atom mass). But Z turned out to be not equal to A. For instance,
zinc has A = 60.37, and it turned out to have Z = 20.00. For some years it
was thought that the atomic weight was equal to the number of protons, with
the extra charge canceled by A − Z electrons. The discovery of the neutron by
James Chadwick (1891–1974) in 1932,5 found to have a mass close to that of the
hydrogen atom, showed that instead nuclei contain Z protons and approximately
A − Z neutrons.

Incidentally, Eqs. (1.2.9)–(1.2.11) also hold roughly for electrons in the outer-
most orbits in heavy atoms, where most of the charge of the nucleus is screened
by inner electrons, and Z can therefore be taken to be of order unity. This is
why the sizes of heavy atoms are not very much larger than those of light atoms,
and the frequency of light emitted in transitions of electrons in the outer orbits
of heavy atoms is comparable to the corresponding energies in hydrogen, and
hence in the visible range of the spectrum.

The Bohr theory applied only to circular orbits, but just as in the solar sys-
tem, the generic orbit of a particle in a Coulomb field is not a circle, but
an ellipse. A generalization of the Bohr quantization condition (1.2.4) was
proposed by Arnold Sommerfeld (1868–1951) in 1916,6 and used by him to
calculate the energies of electrons in elliptical orbits. Sommerfeld’s condition
was that in a system described by a Hamiltonian H(q, p), with several coordi-
nates qa and canonical conjugates pa satisfying the equations q̇a = ∂H/∂pa and
ṗa = −∂H/∂qa , if all qs and ps have a periodic time-dependence (as for closed
orbits), then for each a

∮
pa dqa = nah , (1.2.12)

(with na an integer), the integral taken over one period of the motion. For
instance, for an electron in a circular orbit we can take q as the angle traced
out by the line connecting the nucleus and the electron, and p as the angular
momentum mevr , in which case

∮
p dq = 2πmevr , and (1.2.12) is the same as

5 J. Chadwick, Nature, February 27, 1932).
6 A. Sommerfeld, Ann. d. Physik 51, 1(1916)
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Bohr’s Quantization Condition 

   5.2 De Broglie Waves 169

How can we show whether such objects as the tennis ball or the electron in the 
previous example exhibit wavelike properties? The best way is to pass the objects 
through a slit having a width of the same dimension as the object’s wavelength. We 
expect it to be virtually impossible to demonstrate interference or diffraction for 
the tennis ball, because we cannot find a slit as narrow as 10!34 m. It is unlikely we 
will ever be able to demonstrate the wave properties of the tennis ball. But the 
de Broglie wavelength of the 50-eV electron, about 0.2 nm, is large enough that 
we should be able to demonstrate its wave properties. Because of their small mass, 
electrons can have a small momentum and in turn a large wavelength (l " h/p). 
Electrons offer our best chance of observing effects due to matter waves.

Bohr’s Quantization Condition
One of Bohr’s assumptions concerning his hydrogen atom model was that the an-
gular momentum of the electron-nucleus system in a stationary state is an integral 
multiple of h/2p. Let’s now see if we can predict this result using de Broglie’s result. 
Represent the electron as a standing wave in an orbit around the proton. The con-
dition for a standing wave in this confi guration is that the entire length of the stand-
ing wave must just fi t around the orbit’s circumference. We show an example of this 
in Figure 5.8. In order for it to be a correct standing wave, we must have

 n l " 2pr

where r is the radius of the orbit. Now we use the de Broglie relation for the 
wavelength and obtain

 2pr " n l " n 
h
p

The angular momentum of the electron in this orbit is L " rp, so we have, using 
the above relation,

 L " r p "
nh
2p

" nU

We have arrived at Bohr’s quantization assumption by simply applying de 
 Broglie’s wavelength for an electron in a standing wave. This result seemed to 
justify Bohr’s assumption. De Broglie’s wavelength theory for particles was a 
crucial step toward the new quantum theory, but experimental proof was lack-
ing. As we will see in the next section, this was soon to come.

!

Figure 5.8 A schematic diagram 
of standing waves in an electron 
orbit around a nucleus. An inte-
gral number of wavelengths fits in 
the orbit. Note that the electron 
does not “wiggle” around the nu-
cleus. The displacement from the 
dashed line represents its wave 
amplitude.

Solution (a) For the tennis ball, m " 0.057 kg, so

 l "
h
p

"
6.63 # 10!34 J # s10.057 kg 2 125 m/s 2 " 4.7 # 10!34 m

(b) For the electron, it is more convenient to use eV units, 
so we rewrite the wavelength l as

 l "
h
p

"
h12mK 

"
hc221mc 2 2K

 l "
1240 eV # nm212 2 10.511 # 106 eV 2 150 eV 2 " 0.17 nm

Note that because the kinetic energy of the electron is so 
small, we have used a nonrelativistic calculation. Calcula-
tions in modern physics are normally done using eV units, 
both because it is easier and also because eV values are more 
appropriate for atoms and nuclei (MeV, GeV) than are 
joules. The values of hc and some masses can be found in-
side the front cover.
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Electron Scattering 

In 1925 a laboratory accident led to experimental proof for 
de Broglie’s wavelength hypothesis by C. Davisson and L. H. 
Germer. 


172 Chapter 5 Wave Properties of Matter and Quantum Mechanics I

5.3  Electron Scattering
In 1925 a laboratory accident led to experimental proof for de Broglie’s wave-
length hypothesis. C. Davisson and L. H. Germer of Bell Telephone Laboratories 
(now part of Alcatel-Lucent) were investigating the properties of metallic sur-
faces by scattering electrons from various materials when a liquid air bottle ex-
ploded near their apparatus. Because the nickel target they were currently using 
was at a high temperature when the accident occurred, the subsequent breakage 
of their vacuum system caused significant oxidation of the nickel. The target had 
been specially prepared and was rather expensive, so they tried to repair it by, 
among other procedures, prolonged heating at various high temperatures in 
hydrogen and under vacuum to deoxidize it.

A simple diagram of the Davisson-Germer apparatus is shown in Figure 5.9. 
Upon putting the refurbished target back in place and continuing the experi-
ments, Davisson and Germer found a striking change in the way electrons were 
scattering from the nickel surface. They had previously seen a smooth variation 
of intensity with scattering angle, but the new data showed large numbers of 
scattered electrons for certain energies at a given scattering angle. Davisson and 
Germer were so puzzled by their new data that after a few days, they cut open the 
tube to examine the nickel target. They found that the high temperature had 
modified the polycrystalline structure of the nickel. The many small crystals of 
the original target had been changed into a few large crystals as a result of the 
heat treatment. Davisson surmised it was this new crystal structure of nickel—
the arrangement of atoms in the crystals, not the structure of the atoms—that 
had caused the new intensity distributions. Some 1928 experimental results of 
Davisson and Germer for 54-eV electrons scattered from nickel are shown in 
Figure 5.10. The scattered peak occurs for f ! 50°.

The electrons were apparently being diffracted much like x rays, and 
 Davisson, being aware of de Broglie’s results, found that the Bragg law applied 
to their data as well. Davisson and Germer were able to vary the scattering angles 
for a given wavelength and vary the wavelength (by changing the electron ac-
celerating voltage and thus the momentum) for a given angle.

The relationship between the incident electron beam and the nickel crystal 
scattering planes is shown in Figure 5.11. In the Bragg law, 2u is the angle 
between the incident and exit beams. Therefore, f ! p " 2u ! 2a. Because 
sin u ! cos(f/2) ! cos a, we have for the Bragg condition, nl ! 2d cos a. 

Clinton J. Davisson (1881– 1958) 
is shown here in 1928 (right) 
looking at the electronic diffrac-
tion tube held by Lester H. 
Germer (1896– 1971). Davisson 
received his undergraduate de-
gree at the University of Chicago 
and his doctorate at Princeton. 
They performed their work at Bell 
Telephone Laboratory located in 
New York City. Davisson received 
the Nobel Prize in Physics in 
1937.

Filament

Movable
electron
detector

Electron
beam

Target

f

Scattered electrons

Figure 5.9 Schematic diagram 
of Davisson-Germer experiment. 
Electrons are produced by the 
hot filament, accelerated, and fo-
cused onto the target. Electrons 
are scattered at an angle f into a 
detector, which is movable. The 
distribution of electrons is mea-
sured as a function of f. The en-
tire apparatus is located in a 
vacuum.
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Electron Scattering 

The relationship between the incident electron beam and 
the nickel crystal scattering planes is shown 
   5.3 Electron Scattering 173

However, d is the lattice plane spacing and is related to the interatomic distance 
D by d ! D sin a so that

  nl ! 2d sin u ! 2d cos a ! 2D sin a cos a

 nl ! D sin 2a ! D sin f  (5.4)

or

 l !
D sin f

n  (5.5)

For nickel the interatomic distance is D ! 0.215 nm. If the peak found by 
 Davisson and Germer at 50° was n ! 1, then the electron wavelength should be

 l ! (0.215 nm)(sin 50°) ! 0.165 nm

Determine the de Broglie wavelength for a 54-eV electron 
used by Davisson and Germer.

Strategy We shall use the de Broglie wavelength Equation 
(5.2) to determine the wavelength l. We need to find the 
momentum of a 54-eV electron, but because the energy is so 
low, we can do a nonrelativistic calculation. We shall do a 

general calculation for the wavelength of any electron ac-
celerated by a voltage of V0.

Solution We write the kinetic energy K.E. in terms of the 
final momentum of the electron and the voltage V0 across 
which the electron is accelerated.

 
p 2

2m
! K .E. ! eV0 (5.6)

 EXAMPLE 5 .3

Intensity !

Peak
Data

50°!

44 eV
0

48 eV 54 eV 64 eV 68 eV

radial distance along dashed!
line to data at angle f

f

Figure 5.10 Davisson and Germer data for scattering of electrons from Ni. The peak f ! 50° 
builds dramatically as the energy of the electron nears 54 eV. From C. J. Davisson, Franklin Institute Journal 
205, 597– 623 (1928).

Figure 5.11 The scattering of 
electrons by lattice planes in a 
crystal. This figure is useful to 
compare the scattering relations 
nl ! 2d sin u and nl ! D sin f  
where u and f are the angles 
shown, D ! interatomic spacing, 
and d ! lattice plane spacing.

Scattered beam

Incident beam

2u

d

D

u

a

f

a

a
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Bragg Law 

The atoms of crystals like NaCl form lattice planes, called 
Bragg planes. It is possible to have many Bragg planes in a 
crystal, each with different densities of atoms. 


164 Chapter 5 Wave Properties of Matter and Quantum Mechanics I

Is x-ray scattering from atoms within crystals consistent with what we know 
from classical physics? From classical electromagnetic theory we know that the 
oscillating electric field of electromagnetic radiation polarizes an atom, causing 
the positively charged nucleus and negatively charged electrons to move in op-
posite directions. The result is an asymmetric charge distribution, or electric 
dipole. The electric dipole oscillates at the same frequency as the incident wave 
and in turn reradiates electromagnetic radiation at the same frequency but in 
the form of spherical waves. These spherical waves travel throughout the matter 
and, in the case of crystals, may constructively or destructively interfere as the 
waves pass through different directions in the crystal.

If we consider x rays scattered from a simple rock salt crystal (NaCl, shown 
in Figure 5.2), we can, by following the Bragg simplification, determine con-
ditions necessary for constructive interference. We study solids in Chapter 10, but 
for now note that the atoms of crystals like NaCl form lattice planes, called Bragg 
planes. We can see from Figure 5.3 that it is possible to have many Bragg planes 
in a crystal, each with different densities of atoms. Figure 5.4 shows an incident 

Photographic!
plate

Sample

Incident x rays

(a) (b)

Figure 5.1 (a) Schematic diagram of Laue diffraction transmission method. A wide range of x-ray 
wavelengths scatters from a crystal sample. The x rays constructively interfere from certain planes, 
producing dots. (b) One of the first results of Friedrich and Knipping in 1912 showing the sym metric 
placement of Laue dots of x-ray scattering from ZnS. The analysis of these results by Laue, although 
complex, convincingly proved that x rays are waves.

Figure 5.2 The crystal structure of NaCl (rock salt) showing two of the possible sets of lattice 
planes (Bragg planes).

William Lawrence Bragg (1890–
 1971) (left) and William Henry 
Bragg (1862– 1942) (right) were 
a son-father team, both of whom 
were educated at Cambridge. The 
father spent 22 years at the Uni-
versity of Adelaide in Australia, 
where his son was born. Both fa-
ther and son initially studied 
mathematics but eventually 
changed to physics. The father 
was a skilled experimen ter, and 
the son was able to conceptualize 
physical problems and express 
them mathematically. They did 
their important work on x-ray 
crystallography in 1912– 1914 
while the father was at the Uni-
versity of Leeds and the son was 
a graduate student at Cambridge 
working under J. J. Thomson. 
Both physicists had long and dis-
tinguished careers, with the son 
being director of the famous Cav-
endish Laboratory at Cambridge 
from 1938 to 1953. W. Lawrence 
Bragg received his Nobel Prize at 
age 25.
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   5.1 X-Ray Scattering 165

plane wave of monochromatic x rays of wavelength l scattering from two adja-
cent planes. There are two conditions for constructive interference of the scat-
tered x rays:

1.  The angle of incidence must equal the angle of reflection of the outgoing 
wave.

2.  The difference in path lengths (2d sin u) shown in Figure 5.4 must be an 
integral number of wavelengths.

We will not prove condition 1 but will assume it.* It is referred to as the law 
of reflection (uincidence ! ureflection), although the effect is actually due to diffraction 
and interference. Condition 2 will be met if

 nl ! 2d sin u  1n ! integer 2  (5.1)

as can be seen from Figure 5.4, where D is the interatomic spacing (distance 
between atoms) and d is the distance between lattice planes. Equation (5.1) was 
first presented by W. L. Bragg in 1912 after he learned of Laue’s results. The 
integer n is called the order of reflection, following the terminology of ruled diffrac-
tion gratings in optics. Equation (5.1) is known as Bragg’s law and is useful for 
determining either the wavelength of x rays or the interplanar spacing d of the 
crystal if l is already known.

W. H. Bragg and W. L. Bragg (who shared the 1915 Nobel Prize) constructed 
an apparatus similar to that shown in Figure 5.5 (page 166), called a Bragg spec-
trometer, and scattered x rays from several crystals. The intensity of the diffracted 
beam is determined as a function of scattering angle by rotating the crystal and 
the detector. The Braggs’ studies opened up a whole new area of research that 
continues today.

Conditions for constructive 
interference

Bragg’s law

d2

d3

d1 ! D

Cl

Na

d ! D

d sin u

2d sin u

b

a

u

u u

2u

Incident!
plane!
wave

  






Figure 5.3 Top view of NaCl 
(cubic crystal), indicating possible 
lattice planes. D is the interatomic 
spacing and the di are the dis-
tances between lattice planes.

Figure 5.4 Schematic diagram 
illustrating x-ray scattering from 
Bragg lattice planes. The path dif-
ference of the two waves illus-
trated is 2d sin u. Notice that the 
actual scattering angle from the 
incident wave is 2u.

*See L. R. B. Elton and D. F. Jackson, American Journal of Physics 34, 1036 (1966), for a proof.
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Bragg Law 

There are two conditions for constructive interference of 
the scattered matter wave of electron: 


1. The angle of incidence must equal the angle of 
reflection of the outgoing wave. 


2. The difference in path lengths (2d sin%) shown lower 
panel must be an integral number of wavelengths. 
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Conditions for constructive 
interference

Bragg’s law

d2

d3

d1 ! D

Cl

Na

d ! D

d sin u

2d sin u

b

a

u

u u

2u

Incident!
plane!
wave

  






Figure 5.3 Top view of NaCl 
(cubic crystal), indicating possible 
lattice planes. D is the interatomic 
spacing and the di are the dis-
tances between lattice planes.

Figure 5.4 Schematic diagram 
illustrating x-ray scattering from 
Bragg lattice planes. The path dif-
ference of the two waves illus-
trated is 2d sin u. Notice that the 
actual scattering angle from the 
incident wave is 2u.

*See L. R. B. Elton and D. F. Jackson, American Journal of Physics 34, 1036 (1966), for a proof.
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Bragg’s Law 

Bragg’s Law with condition 2

n� = 2d sin ✓

The integer n is called the order of reflection, following 
the terminology of ruled diffraction gratings in optics. 

   5.3 Electron Scattering 173

However, d is the lattice plane spacing and is related to the interatomic distance 
D by d ! D sin a so that

  nl ! 2d sin u ! 2d cos a ! 2D sin a cos a

 nl ! D sin 2a ! D sin f  (5.4)

or

 l !
D sin f

n  (5.5)

For nickel the interatomic distance is D ! 0.215 nm. If the peak found by 
 Davisson and Germer at 50° was n ! 1, then the electron wavelength should be

 l ! (0.215 nm)(sin 50°) ! 0.165 nm

Determine the de Broglie wavelength for a 54-eV electron 
used by Davisson and Germer.

Strategy We shall use the de Broglie wavelength Equation 
(5.2) to determine the wavelength l. We need to find the 
momentum of a 54-eV electron, but because the energy is so 
low, we can do a nonrelativistic calculation. We shall do a 

general calculation for the wavelength of any electron ac-
celerated by a voltage of V0.

Solution We write the kinetic energy K.E. in terms of the 
final momentum of the electron and the voltage V0 across 
which the electron is accelerated.

 
p 2

2m
! K .E. ! eV0 (5.6)

 EXAMPLE 5 .3

Intensity !

Peak
Data

50°!

44 eV
0

48 eV 54 eV 64 eV 68 eV

radial distance along dashed!
line to data at angle f

f

Figure 5.10 Davisson and Germer data for scattering of electrons from Ni. The peak f ! 50° 
builds dramatically as the energy of the electron nears 54 eV. From C. J. Davisson, Franklin Institute Journal 
205, 597– 623 (1928).

Figure 5.11 The scattering of 
electrons by lattice planes in a 
crystal. This figure is useful to 
compare the scattering relations 
nl ! 2d sin u and nl ! D sin f  
where u and f are the angles 
shown, D ! interatomic spacing, 
and d ! lattice plane spacing.

Scattered beam

Incident beam

2u

d

D

u

a

f

a

a
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In the Bragg law, 2% is the angle 

between the incident and exit beams. 

Therefore 

� = ⇡ � 2✓ = 2↵
So

n� = 2d cos↵ = 2D sin↵ cos↵

= D sin�
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Electron scattering
 For nickel the interatomic distance is D=0.215 nm. If the 
peak found by Davisson and Germer at 50° was n=1, then 
the electron wavelength should be 

� = 0.215 sin(50⇡/180) = 0.165 nm   5.4 Wave Motion 175

5.4  Wave Motion
Because particles exhibit wave behavior, as shown in the last section for electron 
diffraction, it must be possible to formulate a wave description of particle mo-
tion. This is an essential step in our progress toward understanding the behavior 
of matter—the quantum theory of physics. Our development of quantum theory 
will be based heavily on waves, so we now digress briefly to review the physics of 
wave motion, which we shall soon apply to particles.

In introductory physics, we study waves of several kinds, including sound 
waves and electromagnetic waves (including light). The simplest form of wave 
has a sinusoidal form; at a fixed time (say, t ! 0) its spatial variation looks like

 ° 1x, t 2 0 t!0 ! A sin a 2p
l

 x b  (5.10)

as shown in Figure 5.13 (p. 176). The function "(x, t) represents the instanta-
neous amplitude or displacement of the wave as a function of position x and time 
t. In the case of a traveling wave moving down a string, " is the displacement of 
the string from equilibrium; and in the case of electromagnetic radiation, " is 
the magnitude of the electric field E or magnetic field B. The maximum dis-
placement A is normally called the amplitude, but a better term for a harmonic 
wave such as we are considering may be harmonic amplitude.

As time increases, the position of the wave will change, so the general ex-
pression for the wave is

 ° 1x, t 2 ! A sin c 2p
l

 1x # vt 2 d  (5.11) Wave form

(a) (b)

Figure 5.12 Examples of transmission electron diffraction photographs. (a) Produced by scatter-
ing 120-keV electrons on the quasicrystal Al80Mn20. (b) Electron diffraction pattern on beryllium. 
Notice that the dots in (a) indicate that the sample was a crystal, whereas the rings in (b) indicate 
that a randomly oriented sample (or powder) was used.
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Wave motion
The simplest form of wave has a sinusoidal form; at a fixed 
time (say, t=0) its spatial variation looks like 


 (x, t)|t=0 = A sin

✓
2⇡

�
x

◆

The function &(x, t) represents the instantaneous amplitude 
or displacement of the wave as a function of position x and 
time t. 
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The position at time t ! t0 is also shown in Figure 5.13. The wavelength l is 
defined to be the distance between points in the wave with the same phase, for 
example, positive wave crests. The period T is the time required for a wave to 
travel a distance of one wavelength l. Because the velocity [actually phase veloc-
ity, see Equation (5.17)] of the wave is v, we have l ! vT. The frequency f  (! 
1/T ) of a harmonic wave is the number of times a crest passes a given point 
(a complete cycle) per second. A traveling wave of the type described by Equation 
(5.11) satisfies the wave equation*

 
02°
0x 2 !

1
v 2 

02°
0t 2  (5.12)

If we use l ! vT, we can rewrite Equation (5.11) as

 ° 1x, t 2 ! A sin c2p a x
l

"
t
T
b d  (5.13)

We can write Equation (5.13) more compactly by defining† the wave number k 
and angular frequency v by

 k !
2p
l
  and  v !

2p
T

 (5.14)

Equation (5.13) then becomes

 #(x, t) ! A sin(kx " vt) (5.15)

This is the mathematical description of a sine curve traveling in the positive x 
direction that has a displacement # ! 0 at x ! 0 and t ! 0. A similar wave travel-
ing in the negative x direction has the form

 #(x, t) ! A sin(kx $ vt) (5.16)

The phase velocity vph is the velocity of a point on the wave that has a given 
phase (for example, the crest) and is given by

 vph !
l

T
!
v

k
 (5.17)

If the wave does not have # ! 0 at x ! 0 and t ! 0, we can describe the wave 
using a phase constant !:

 #(x, t) ! A sin(kx " vt $ f) (5.18)

For example, if f ! p/2, Equation (5.18) can be written

 #(x, t) ! A cos(kx " vt) (5.19)

Observation of many kinds of waves has established the general result that 
when two or more waves traverse the same region, they act indepen dently of each 
other. According to the principle of superposition, we add the displacements of 

Wave number and angular 
frequency

Phase velocity

Phase constant

Principle of superposition

Figure 5.13 Wave form of a 
wave moving to the right at speed 
v shown at t ! 0 and t ! t0.

l
#(x,t)

vt0 t ! 0

x !

t ! t0

*The derivation of the wave equation is presented in most introductory physics textbooks for a wave 
on a string, although it is often an optional section and might have been skipped. It would be worth-
while for the student to review its derivation now, especially the use of the partial derivatives.

†The term “wave number” has two common usages. Spectroscopists often use “wave number” as the 
reciprocal of the wavelength (1/"), so that it’s simply the number of waves that fi t into a meter of 
length. The convention we adopt here (# ! 2$/") is also common and makes some of the formulas 
we use more compact and easier to use.
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Wave motion
As time increases, the position of the wave will change, so 
the general expression for the wave is 

 (x, t) = A sin


2⇡

�
(x� vt)

�

A traveling wave satisfies the wave equation 
@2 

@x2
=

1

v2
@2 

@t2

We can write wave function more compactly by defining† the 
wave number k and angular frequency " by 


k ⌘ 2⇡

�
=

2⇡

vT
, and, ! =

2⇡

T
as

 (x, t) = A sin [kx� !t+ �]
Phase 
constant
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Wave motion
According to the principle of superposition, we add the 
displacements of all waves present. 

   5.4 Wave Motion 177

all waves present. A familiar example is the superposition of two sound waves of 
nearly equal frequencies: The phenomenon of beats is  observed. Examples of 
superposition are shown in Figure 5.14. The net displacement  depends on the 
harmonic amplitude, the phase, and the frequency of each of the individual 
waves. When we add waves at a given position and time, we simply add their 
instantaneous displacements. This can lead to constructive and destructive inter-
ference effects like we saw in x-ray scattering in Section 5.1.

In quantum theory (or quantum mechanics as it is sometimes called to reflect 
its differences from classical mechanics), we will soon learn that we will use waves 
to represent a moving particle. How can we do that? In Figure 5.14 we see that 
when two waves are added together, we obtain regions of relatively large (and 
small) displacement. If we add many waves of different amplitudes and frequen-
cies in particular ways, it is possible to obtain what is called a wave packet. The 
important property of the wave packet is that its net amplitude differs from zero 

Wave packet

p!
20

p!
20

4u!
3

u!
3

u!
3

1!
2

1!
2

2.5

0

0

Sum ! sin u " sinau "     b

p 2p 3p 4p 5p 6p
#2.5

(a)

2.5

0

0

Sum ! sina   b "     sin(3u) #     sin(0.9u)

p 2p 3p 4p 5p 6p
#2.5

(e)

5.5

0

0

Sum ! sin u " 4 sin u

p 2p 3p 4p 5p 6p
#5.5

(c)

2.5

0

0

Sum ! sin(5u) " sin(7u)

p 2p
#2.5

Theta (u)Theta (u)

2.5

0

0 p 2p 3p 4p 5p 6p
#2.5

1.5

0

0

Sum ! sin u # sinau "     b

Sum ! sina     b " sina   b
p 2p 3p 4p 5p 6p

#1.5

(b)

(f)

(d)

Figure 5.14 Superposition of waves. The heavy blue line is the resulting wave. (a) Two waves of 
equal frequency and amplitude that are almost in phase. The result is a larger wave. (b) As in (a) 
but the two waves are almost out of phase. The result is a smaller wave. (c) Superposition of two 
waves with the same frequency, but different amplitudes. (d) Superposition of two waves of equal 
amplitude but different frequencies. (e) Superposition of three waves of different amplitudes and 
frequencies. (f) Superposition of two waves of almost the same frequency over many wavelengths, 
creating the phenomenon of beats. The blue dashed line indicates an envelope that denotes the 
maximum displacement of the combined waves.
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Wave motion
If we add many waves of different amplitudes and 
frequencies in particular ways, it is possible to obtain what 
is called a wave packet. 

The important property of the wave packet is that its net 
amplitude differs from zero only over a small region 'x 

178 Chapter 5 Wave Properties of Matter and Quantum Mechanics I

only over a small region !x as shown in Figure 5.15. We can localize the position 
of a particle in a particular region by using a wave packet description (see Prob-
lem 67 for a calculation of this effect).

Let us examine in detail the superposition of two waves. Assume both waves 
have the same harmonic amplitude A but different wave numbers (k1 and k2) and 
angular frequencies (v1 and v2). The superposition of the two waves is the sum

  ° 1x, t 2 " °11x, t 2 # °21x, t 2
  " A cos1k1x $ v1t 2 # A cos1k2x $ v2t 2
  " 2A cos c 1

2
 1k1 $ k2 2x $

1
2

 1v1 $ v2 2 t d cos c 1
2

 1k1 # k2 2x $
1
2

 1v1 # v2 2 t d
  " 2A cos a ¢k

2
 x $

¢v
2

 t b cos1kavx $ vavt 2  

where !k " k1 $ k2, !v " v1 $ v2, kav " (k1 # k2)/2, and vav " (v1 # v2)/2. We 
display similar waves in Figure 5.14a– d, where the heavy solid line indicates the 
sum of the two waves. In Figure 5.14f the blue dashed line indicates an envelope, 
which denotes the maximum displacement of the combined waves. The com-
bined (or summed) wave % oscillates within this envelope with the wave number 
kav and angular frequency vav. The envelope is described by the first cosine factor 
of  Equation (5.21), which has the wave number !k/2 and angular frequency 
!v/2. The individual waves %1 and %2 each move with their own phase velocity: 
v1/k1 and v2/k2. The combined wave has a phase velocity vav/kav. When combin-
ing many more than two waves, one obtains a pulse, or wave packet, which moves 
at the group velocity, as shown later. Only the group velocity, which describes the 
speed of the envelope (ugr " !v/!k), is important when dealing with wave 
packets.

In contrast to the pulse or wave packet, the combination of only two waves is 
not localized in space. However, for purposes of illustration, we can identify a “lo-
calized region” !x " x2 $ x1 where x1 and x2 represent two consecutive points where 
the envelope is zero (or maximum, see Figure 5.14f). The term !k # x/2 in Equation 
(5.21) must be different by a phase of p for the values x1 and x2, because x2 $ x1 
represents only one half of the wavelength of the envelope confining the wave.

  
1
2

 ¢k x2 $
1
2

 ¢k x1 " p

 ¢k 1x2 $ x1 2 " ¢k ¢x " 2p 
(5.22)

Similarly, for a given value of x we can determine the time !t over which the wave 
is localized and obtain

 ¢v ¢t " 2p (5.23)

The results of Equations (5.22) and (5.23) can be generalized for a case in which 
many waves form the wave packet (see Problem 67). The equations, !k !x " 2p 
and !v !t " 2p, are significant because they tell us that in order to know pre-
cisely the position of the wave packet envelope (!x small), we must have a large 
range of wave numbers (!k large). Similarly, to know precisely when the wave is 
at a given point (!t small), we must have a large range of frequencies (!v large). 
Equation (5.23) is the origin of the bandwidth relation, which is important in 
electronics. A particular circuit component must have a large bandwidth !v in 
order for its signal to respond in a short time !t.

!x

Figure 5.15 An idealized wave 
packet localized in space over a 
region !x is the superposition of 
many waves of different ampli-
tudes and frequencies. (5.20)

(5.21)
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We can localize the position of a particle in a particular 
region by using a wave packet description 
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Wave packet
Localized wave packets can be constructed by superposing, 
in the same region of space, waves of slightly different 
wavelengths, but with phases and amplitudes chosen to 
make the superposition constructive in the desired region 
and destructive outside it. Mathematically, we can carry out 
this superposition by means of Fourier transforms. 


We can construct the packet #(x,t) by superposing plane 
waves (propagating along the x -axis) of different 
frequencies (or wavelengths): 

1.8. WAVE PACKETS 39

mechanics and classical mechanics. The wave packet concept therefore represents a unifying
mathematical tool that can cope with and embody nature’s particle-like behavior and also its
wave-like behavior.

1.8.1 Localized Wave Packets
Localized wave packets can be constructed by superposing, in the same region of space, waves
of slightly different wavelengths, but with phases and amplitudes chosen to make the super-
position constructive in the desired region and destructive outside it. Mathematically, we can
carry out this superposition by means of Fourier transforms. For simplicity, we are going to
consider a one-dimensional wave packet; this packet is intended to describe a “classical” parti-
cle confined to a one-dimensional region, for instance, a particle moving along the x-axis. We
can construct the packet O�x� t� by superposing plane waves (propagating along the x-axis) of
different frequencies (or wavelengths):

O�x� t� � 1T
2H

= �*

�*
M�k�ei�kx��t�dk� (1.94)

M�k� is the amplitude of the wave packet.
In what follows we want to look at the form of the packet at a given time; we will deal

with the time evolution of wave packets later. Choosing this time to be t � 0 and abbreviating
O�x� 0� by O0�x�, we can reduce (1.94) to

O0�x� �
1T
2H

= �*

�*
M�k�eikxdk� (1.95)

where M�k� is the Fourier transform of O0�x�,

M�k� � 1T
2H

= �*

�*
O0�x�e�ikxdx � (1.96)

The relations (1.95) and (1.96) show that M�k� determines O0�x� and vice versa. The packet
(1.95), whose form is determined by the x-dependence of O0�x�, does indeed have the required
property of localization: �O0�x�� peaks at x � 0 and vanishes far away from x � 0. On the
one hand, as x � 0 we have eikx � 1; hence the waves of different frequencies interfere
constructively (i.e., the various k-integrations in (1.95) add constructively). On the other hand,
far away from x � 0 (i.e., �x � w 0) the phase eikx goes through many periods leading to violent
oscillations, thereby yielding destructive interference (i.e., the various k-integrations in (1.95)
add up to zero). This implies, in the language of Born’s probabilistic interpretation, that the
particle has a greater probability of being found near x � 0 and a scant chance of being found
far away from x � 0. The same comments apply to the amplitude M�k� as well: M�k� peaks at
k � 0 and vanishes far away. Figure 1.13 displays a typical wave packet that has the required
localization properties we have just discussed.
In summary, the particle is represented not by a single de Broglie wave of well-defined

frequency and wavelength, but by a wave packet that is obtained by adding a large number of
waves of different frequencies.
The physical interpretation of the wave packet is obvious: O0�x� is the wave function or

probability amplitude for finding the particle at position x ; hence �O0�x��2 gives the probability
density for finding the particle at x , and P�x� dx � �O0�x��2dx gives the probability of finding
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Wave packet
The simplest form of the angular frequency is when it is 
proportional to the wave number k; this case corresponds to 
a nondispersive propagation. 
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the lowest limit of Heisenberg’s inequality. As a result, the Gaussian wave packet is called the
minimum uncertainty wave packet. All other wave packets yield higher values for the product
of the x and p uncertainties: �x�p  �h�2; for an illustration see Problem 1.11. In conclusion,
the value of the uncertainties product�x�p varies with the choice of O , but the lowest bound,
�h�2, is provided by a Gaussian wave function. We have now seen how the wave packet concept
offers a heuristic way of deriving Heisenberg’s uncertainty relations; a more rigorous derivation
is given in Chapter 2.

1.8.3 Motion of Wave Packets
How do wave packets evolve in time? The answer is important, for it gives an idea not only
about the motion of a quantum particle in space but also about the connection between classical
and quantum mechanics. Besides studying how wave packets propagate in space, we will also
examine the conditions under which packets may or may not spread.
At issue here is, knowing the initial wave packet O0�x� or the amplitude M�k�, how do we

findO�x� t� at any later time t? This issue reduces to calculating the integral
5
M�k�ei�kx��t�dk

in (1.94). To calculate this integral, we need to specify the angular frequency � and the ampli-
tude M�k�. We will see that the spreading or nonspreading of the packet is dictated by the form
of the function ��k�.

1.8.3.1 Propagation of a Wave Packet without Distortion

The simplest form of the angular frequency � is when it is proportional to the wave number k;
this case corresponds to a nondispersive propagation. Since the constant of proportionality has
the dimension of a velocity14, which we denote by )0 (i.e., � � )0k), the wave packet (1.94)
becomes

O�x� t� � 1T
2H

= �*

�*
M�k�eik�x�)0t�dk� (1.115)

This relation has the same structure as (1.95), which suggests that O�x� t� is identical with
O0�x � )0t�:

O�x� t� � O0�x � )0t�� (1.116)

the form of the wave packet at time t is identical with the initial form. Therefore, when � is
proportional to k, so that � � )0k, the wave packet travels to the right with constant velocity
)0 without distortion.
However, since we are interested in wave packets that describe particles, we need to con-

sider the more general case of dispersive media which transmit harmonic waves of different
frequencies at different velocities. This means that � is a function of k: � � ��k�. The form
of ��k� is determined by the requirement that the wave packet O�x� t� describes the particle.
Assuming that the amplitude M�k� peaks at k � k0, then M�k� � g�k � k0� is appreciably
different from zero only in a narrow range �k � k � k0, and we can Taylor expand ��k� about
k0:

��k� � ��k0�� �k � k0�
d��k�
dk

nnnn
k�k0

� 1
2
�k � k0�2

d2��k�
dk2

nnnn
k�k0

� � � �

� ��k0�� �k � k0�)g � �k � k0�2: � � � � (1.117)

14For propagation of light in a vacuum this constant is equal to c, the speed of light.
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��k� � ��k0�� �k � k0�
d��k�
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� 1
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However, since we are interested in wave packets that 
describe particles, we need to consider the more general 
case of dispersive media which transmit harmonic waves of 
different frequencies at different velocities. This means that 
is a function of k:
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the lowest limit of Heisenberg’s inequality. As a result, the Gaussian wave packet is called the
minimum uncertainty wave packet. All other wave packets yield higher values for the product
of the x and p uncertainties: �x�p  �h�2; for an illustration see Problem 1.11. In conclusion,
the value of the uncertainties product�x�p varies with the choice of O , but the lowest bound,
�h�2, is provided by a Gaussian wave function. We have now seen how the wave packet concept
offers a heuristic way of deriving Heisenberg’s uncertainty relations; a more rigorous derivation
is given in Chapter 2.

1.8.3 Motion of Wave Packets
How do wave packets evolve in time? The answer is important, for it gives an idea not only
about the motion of a quantum particle in space but also about the connection between classical
and quantum mechanics. Besides studying how wave packets propagate in space, we will also
examine the conditions under which packets may or may not spread.
At issue here is, knowing the initial wave packet O0�x� or the amplitude M�k�, how do we

findO�x� t� at any later time t? This issue reduces to calculating the integral
5
M�k�ei�kx��t�dk

in (1.94). To calculate this integral, we need to specify the angular frequency � and the ampli-
tude M�k�. We will see that the spreading or nonspreading of the packet is dictated by the form
of the function ��k�.

1.8.3.1 Propagation of a Wave Packet without Distortion

The simplest form of the angular frequency � is when it is proportional to the wave number k;
this case corresponds to a nondispersive propagation. Since the constant of proportionality has
the dimension of a velocity14, which we denote by )0 (i.e., � � )0k), the wave packet (1.94)
becomes

O�x� t� � 1T
2H

= �*

�*
M�k�eik�x�)0t�dk� (1.115)

This relation has the same structure as (1.95), which suggests that O�x� t� is identical with
O0�x � )0t�:

O�x� t� � O0�x � )0t�� (1.116)

the form of the wave packet at time t is identical with the initial form. Therefore, when � is
proportional to k, so that � � )0k, the wave packet travels to the right with constant velocity
)0 without distortion.
However, since we are interested in wave packets that describe particles, we need to con-

sider the more general case of dispersive media which transmit harmonic waves of different
frequencies at different velocities. This means that � is a function of k: � � ��k�. The form
of ��k� is determined by the requirement that the wave packet O�x� t� describes the particle.
Assuming that the amplitude M�k� peaks at k � k0, then M�k� � g�k � k0� is appreciably
different from zero only in a narrow range �k � k � k0, and we can Taylor expand ��k� about
k0:
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d��k�
dk

nnnn
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2
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dk2
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� ��k0�� �k � k0�)g � �k � k0�2: � � � � (1.117)

14For propagation of light in a vacuum this constant is equal to c, the speed of light.
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Figure 1.14 The function Re O�x� t� of the wave packet (1.118), represented here by the solid
curve contained in the dashed-curve envelope, propagates with the group velocity )g along the
x axis; the individual waves (not drawn here), which add up to make the solid curve, move with
different phase velocities ) ph .
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Now, to determine O�x� t� we need simply to substitute (1.117) into (1.94) with M�k� �

g�k � k0�. This leads to

O�x� t� � 1T
2H
eik0�x�) ph t�

= �*

�*
g�k � k0�ei�k�k0��x�)gt�e�i�k�k0�

2:t����dk (1.118)

where15

)g �
d��k�
dk

� ) ph �
��k�
k
� (1.119)

) ph and )g are respectively the phase velocity and the group velocity. The phase velocity
denotes the velocity of propagation for the phase of a single harmonic wave, eik0�x�) ph t�, and
the group velocity represents the velocity of motion for the group of waves that make up the
packet. One should not confuse the phase velocity and the group velocity; in general they are
different. Only when � is proportional to k will they be equal, as can be inferred from (1.119).

Group and phase velocities
Let us take a short detour to explain the meanings of ) ph and )g. As mentioned above, when
we superimpose many waves of different amplitudes and frequencies, we can obtain a wave
packet or pulse which travels at the group velocity )g; the individual waves that constitute the
packet, however, move with different speeds; each wave moves with its own phase velocity
) ph . Figure 1.14 gives a qualitative illustration: the group velocity represents the velocity with
which the wave packet propagates as a whole, where the individual waves (located inside the
packet’s envelope) that add up to make the packet move with different phase velocities. As
shown in Figure 1.14, the wave packet has an appreciable magnitude only over a small region
and falls rapidly outside this region.
The difference between the group velocity and the phase velocity can be understood quan-

titatively by deriving a relationship between them. A differentiation of � � k) ph (see (1.119))
with respect to k yields d��dk � ) ph�k�d) ph�dk�, and since k � 2H�D, we have d) ph�dk �
15In these equations we have omitted k0 since they are valid for any choice of k0.

Therefore,

44 CHAPTER 1. ORIGINS OF QUANTUM PHYSICS

- x

6
Re O�x� t�

- )g

- ) ph

Figure 1.14 The function Re O�x� t� of the wave packet (1.118), represented here by the solid
curve contained in the dashed-curve envelope, propagates with the group velocity )g along the
x axis; the individual waves (not drawn here), which add up to make the solid curve, move with
different phase velocities ) ph .

where )g � d��k�
dk

nnn
k�k0

and : � 1
2
d2��k�
dk2

nnn
k�k0

.
Now, to determine O�x� t� we need simply to substitute (1.117) into (1.94) with M�k� �

g�k � k0�. This leads to

O�x� t� � 1T
2H
eik0�x�) ph t�

= �*

�*
g�k � k0�ei�k�k0��x�)gt�e�i�k�k0�

2:t����dk (1.118)

where15

)g �
d��k�
dk

� ) ph �
��k�
k
� (1.119)

) ph and )g are respectively the phase velocity and the group velocity. The phase velocity
denotes the velocity of propagation for the phase of a single harmonic wave, eik0�x�) ph t�, and
the group velocity represents the velocity of motion for the group of waves that make up the
packet. One should not confuse the phase velocity and the group velocity; in general they are
different. Only when � is proportional to k will they be equal, as can be inferred from (1.119).

Group and phase velocities
Let us take a short detour to explain the meanings of ) ph and )g. As mentioned above, when
we superimpose many waves of different amplitudes and frequencies, we can obtain a wave
packet or pulse which travels at the group velocity )g; the individual waves that constitute the
packet, however, move with different speeds; each wave moves with its own phase velocity
) ph . Figure 1.14 gives a qualitative illustration: the group velocity represents the velocity with
which the wave packet propagates as a whole, where the individual waves (located inside the
packet’s envelope) that add up to make the packet move with different phase velocities. As
shown in Figure 1.14, the wave packet has an appreciable magnitude only over a small region
and falls rapidly outside this region.
The difference between the group velocity and the phase velocity can be understood quan-

titatively by deriving a relationship between them. A differentiation of � � k) ph (see (1.119))
with respect to k yields d��dk � ) ph�k�d) ph�dk�, and since k � 2H�D, we have d) ph�dk �
15In these equations we have omitted k0 since they are valid for any choice of k0.

And

44 CHAPTER 1. ORIGINS OF QUANTUM PHYSICS

- x

6
Re O�x� t�

- )g

- ) ph

Figure 1.14 The function Re O�x� t� of the wave packet (1.118), represented here by the solid
curve contained in the dashed-curve envelope, propagates with the group velocity )g along the
x axis; the individual waves (not drawn here), which add up to make the solid curve, move with
different phase velocities ) ph .

where )g � d��k�
dk

nnn
k�k0

and : � 1
2
d2��k�
dk2

nnn
k�k0

.
Now, to determine O�x� t� we need simply to substitute (1.117) into (1.94) with M�k� �

g�k � k0�. This leads to

O�x� t� � 1T
2H
eik0�x�) ph t�

= �*

�*
g�k � k0�ei�k�k0��x�)gt�e�i�k�k0�

2:t����dk (1.118)

where15

)g �
d��k�
dk

� ) ph �
��k�
k
� (1.119)

) ph and )g are respectively the phase velocity and the group velocity. The phase velocity
denotes the velocity of propagation for the phase of a single harmonic wave, eik0�x�) ph t�, and
the group velocity represents the velocity of motion for the group of waves that make up the
packet. One should not confuse the phase velocity and the group velocity; in general they are
different. Only when � is proportional to k will they be equal, as can be inferred from (1.119).

Group and phase velocities
Let us take a short detour to explain the meanings of ) ph and )g. As mentioned above, when
we superimpose many waves of different amplitudes and frequencies, we can obtain a wave
packet or pulse which travels at the group velocity )g; the individual waves that constitute the
packet, however, move with different speeds; each wave moves with its own phase velocity
) ph . Figure 1.14 gives a qualitative illustration: the group velocity represents the velocity with
which the wave packet propagates as a whole, where the individual waves (located inside the
packet’s envelope) that add up to make the packet move with different phase velocities. As
shown in Figure 1.14, the wave packet has an appreciable magnitude only over a small region
and falls rapidly outside this region.
The difference between the group velocity and the phase velocity can be understood quan-

titatively by deriving a relationship between them. A differentiation of � � k) ph (see (1.119))
with respect to k yields d��dk � ) ph�k�d) ph�dk�, and since k � 2H�D, we have d) ph�dk �
15In these equations we have omitted k0 since they are valid for any choice of k0.

vph and vg are respectively the phase velocity and the group 
velocity. 
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which travels at the group velocity vg; the individual waves 
that constitute the packet, however, move with different 
speeds; each wave moves with its own phase velocity vph. 
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The difference between the group velocity and the phase 
velocity can be understood quantitatively by deriving a 
relationship between them. 
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�d) ph�dD��dD�dk� � ��2H�k2��d) ph�dD� or k�d) ph�dk� � �D�d) ph�dD�; combining these
relations, we obtain

)g �
d�
dk
� ) ph � k

d) ph
dk

� ) ph � D
d) ph
dD

� (1.120)

which we can also write as

)g � ) ph � p
d) ph
dp

� (1.121)

since k�d) ph�dk� � �p��h��d) ph�dp��dp�dk� � p�d) ph�dp� because k � p��h. Equations
(1.120) and (1.121) show that the group velocity may be larger or smaller than the phase veloc-
ity; it may also be equal to the phase velocity depending on the medium. If the phase velocity
does not depend on the wavelength—this occurs in nondispersive media—the group and phase
velocities are equal, since d) ph�dD � 0. But if ) ph depends on the wavelength—this occurs in
dispersive media—then d) ph�dD /� 0; hence the group velocity may be smaller or larger than
the phase velocity. An example of a nondispersive medium is an inextensible string; we would
expect )g � ) ph . Water waves offer a typical dispersive medium; in Problem 1.13 we show
that for deepwater waves we have )g � 1

2) ph and for surface waves we have )g � 3
2) ph ; see

(1.212) and (1.214).
Consider the case of a particle traveling in a constant potential V ; its total energy is

E�p� � p2��2m��V . Since the corpuscular features (energy and momentum) of a particle are
connected to its wave characteristics (wave frequency and number) by the relations E � �h�
and p � �hk, we can rewrite (1.119) as follows:

)g �
dE�p�
dp

� ) ph �
E�p�
p
� (1.122)

which, when combined with E�p� � p2
2m � V , yield

)g �
d
dp

t
p2

2m
� V

u
� p
m
� ) particle� ) ph �

1
p

t
p2

2m
� V

u
� p
2m

� V
p
� (1.123)

The group velocity of the wave packet is thus equal to the classical velocity of the particle,
)g � ) particle. This suggests we should view the “center” of the wave packet as traveling like
a classical particle that obeys the laws of classical mechanics: the center would then follow
the “classical trajectory” of the particle. We now see how the wave packet concept offers a
clear connection between the classical description of a particle and its quantum mechanical
description. In the case of a free particle, an insertion of V � 0 into (1.123) yields

)g �
p
m
� ) ph �

p
2m

� 1
2
)g� (1.124)

This shows that, while the group velocity of the wave packet corresponding to a free particle
is equal to the particle’s velocity, p�m, the phase velocity is half the group velocity. The
expression ) ph � 1

2)g is meaningless, for it states that the wave function travels at half the
speed of the particle it is intended to represent. This is unphysical indeed. The phase velocity
has in general no meaningful physical significance.

Consider the case of a particle traveling in a constant 
potential V; its total energy is E=p2/2m+V. We can obtain
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The group velocity of the wave packet is thus equal to the classical velocity of the particle,
)g � ) particle. This suggests we should view the “center” of the wave packet as traveling like
a classical particle that obeys the laws of classical mechanics: the center would then follow
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This shows that, while the group velocity of the wave packet corresponding to a free particle
is equal to the particle’s velocity, p�m, the phase velocity is half the group velocity. The
expression ) ph � 1

2)g is meaningless, for it states that the wave function travels at half the
speed of the particle it is intended to represent. This is unphysical indeed. The phase velocity
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The group velocity of the wave packet is thus equal to the 
classical velocity of the particle.
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Wave packet
In what follows we want to look at the form of the packet 
at a given time. Choosing this time to be t=0

1.8. WAVE PACKETS 39

mechanics and classical mechanics. The wave packet concept therefore represents a unifying
mathematical tool that can cope with and embody nature’s particle-like behavior and also its
wave-like behavior.

1.8.1 Localized Wave Packets
Localized wave packets can be constructed by superposing, in the same region of space, waves
of slightly different wavelengths, but with phases and amplitudes chosen to make the super-
position constructive in the desired region and destructive outside it. Mathematically, we can
carry out this superposition by means of Fourier transforms. For simplicity, we are going to
consider a one-dimensional wave packet; this packet is intended to describe a “classical” parti-
cle confined to a one-dimensional region, for instance, a particle moving along the x-axis. We
can construct the packet O�x� t� by superposing plane waves (propagating along the x-axis) of
different frequencies (or wavelengths):

O�x� t� � 1T
2H

= �*

�*
M�k�ei�kx��t�dk� (1.94)

M�k� is the amplitude of the wave packet.
In what follows we want to look at the form of the packet at a given time; we will deal

with the time evolution of wave packets later. Choosing this time to be t � 0 and abbreviating
O�x� 0� by O0�x�, we can reduce (1.94) to

O0�x� �
1T
2H

= �*

�*
M�k�eikxdk� (1.95)

where M�k� is the Fourier transform of O0�x�,

M�k� � 1T
2H

= �*

�*
O0�x�e�ikxdx � (1.96)

The relations (1.95) and (1.96) show that M�k� determines O0�x� and vice versa. The packet
(1.95), whose form is determined by the x-dependence of O0�x�, does indeed have the required
property of localization: �O0�x�� peaks at x � 0 and vanishes far away from x � 0. On the
one hand, as x � 0 we have eikx � 1; hence the waves of different frequencies interfere
constructively (i.e., the various k-integrations in (1.95) add constructively). On the other hand,
far away from x � 0 (i.e., �x � w 0) the phase eikx goes through many periods leading to violent
oscillations, thereby yielding destructive interference (i.e., the various k-integrations in (1.95)
add up to zero). This implies, in the language of Born’s probabilistic interpretation, that the
particle has a greater probability of being found near x � 0 and a scant chance of being found
far away from x � 0. The same comments apply to the amplitude M�k� as well: M�k� peaks at
k � 0 and vanishes far away. Figure 1.13 displays a typical wave packet that has the required
localization properties we have just discussed.
In summary, the particle is represented not by a single de Broglie wave of well-defined

frequency and wavelength, but by a wave packet that is obtained by adding a large number of
waves of different frequencies.
The physical interpretation of the wave packet is obvious: O0�x� is the wave function or

probability amplitude for finding the particle at position x ; hence �O0�x��2 gives the probability
density for finding the particle at x , and P�x� dx � �O0�x��2dx gives the probability of finding

For a Gaussian wave packet 
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where we have used the change of variable z � 2x�a.
(b) The normalization of O0�x� is straightforward:

1 �
= �*

�*
�O0�x��2dx � �A�2

= a

�a
e�ik0xeik0xdx � �A�2

= a

�a
dx � 2a�A�2� (1.108)

hence A � 1�
T
2a. The Fourier transform of O0�x� is

M�k� � 1T
2H

= �*

�*
O0�x�e�ikxdx �

1
2
T
Ha

= a

�a
eik0xe�ikxdx � 1T

Ha
sin [�k � k0�a]

k � k0
�

(1.109)

1.8.2 Wave Packets and the Uncertainty Relations
We want to show here that the width of a wave packet O0�x� and the width of its amplitude
M�k� are not independent; they are correlated by a reciprocal relationship. As it turns out, the
reciprocal relationship between the widths in the x and k spaces has a direct connection to
Heisenberg’s uncertainty relation.
For simplicity, let us illustrate the main ideas on the Gaussian wave packet treated in the

previous example (see (1.102) and (1.106)):

O0�x� �
t
2
Ha2

u1�4
e�x

2�a2eik0x � M�k� �
t
a2

2H

u1�4
e�a

2�k�k0�2�4� (1.110)

As displayed in Figure 1.13, �O0�x��2 and �M�k��2 are centered at x � 0 and k � k0, respec-
tively. It is convenient to define the half-widths�x and�k as corresponding to the half-maxima
of �O0�x��2 and �M�k��2. In this way, when x varies from 0 to ��x and k from k0 to k0 ��k,
the functions �O0�x��2 and �M�k��2 drop to e�1�2:

�O���x� 0��2
�O�0� 0��2

� e�1�2� �M�k0 ��k��2
�M�k0��2

� e�1�2� (1.111)

These equations, combined with (1.110), lead to e�2�x2�a2 � e�1�2 and e�a2�k2�2 � e�1�2,
respectively, or to

�x � a
2
� �k � 1

a
� (1.112)

hence
�x�k � 1

2
� (1.113)

Since �k � �p��h we have

�x�p � �h
2
� (1.114)

This relation shows that if the packet’s width is narrow in x-space, its width in momentum
space must be very broad, and vice versa.
A comparison of (1.114) with Heisenberg’s uncertainty relations (1.57) reveals that the

Gaussian wave packet yields an equality, not an inequality relation. In fact, equation (1.114) is

It is convenient to define the half-widths 'x and 'k as 
corresponding to the half-maxima of packet amplitudes
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This relation shows that if the packet’s width is narrow in x-space, its width in momentum
space must be very broad, and vice versa.
A comparison of (1.114) with Heisenberg’s uncertainty relations (1.57) reveals that the

Gaussian wave packet yields an equality, not an inequality relation. In fact, equation (1.114) is
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Figure 1.13 Two localized wave packets: O0�x� � �2�Ha2�1�4e�x2�a2eik0x and M�k� �
�a2�2H�1�4e�a2�k�k0�2�4; they peak at x � 0 and k � k0, respectively, and vanish far away.

the particle between x and x�dx . What about the physical interpretation of M�k�? From (1.95)
and (1.96) it follows that

= �*

�*
�O0�x��2dx �

= �*

�*
�M�k��2dk� (1.97)

then ifO�x� is normalized so is M�k�, and vice versa. Thus, the function M�k� can be interpreted
most naturally, like O0�x�, as a probability amplitude for measuring a wave vector k for a parti-
cle in the state M�k�. Moreover, while �M�k��2 represents the probability density for measuring k
as the particle’s wave vector, the quantity P�k� dk � �M�k��2dk gives the probability of finding
the particle’s wave vector between k and k � dk.
We can extract information about the particle’s motion by simply expressing its correspond-

ing matter wave in terms of the particle’s energy, E , and momentum, p. Using k � p��h,
dk � dp��h, E � �h� and redefining �M�p� � M�k��

T
�h, we can rewrite (1.94) to (1.96) as

follows:

O�x� t� � 1T
2H �h

= �*

�*
�M�p�ei�px�Et���hdp� (1.98)

O0�x� � 1T
2H �h

= �*

�*
�M�p�eipx��hdp� (1.99)

�M�p� � 1T
2H �h

= �*

�*
O0�x�e�ipx��hdx� (1.100)

where E�p� is the total energy of the particle described by the wave packet O�x� t� and �M�p� is
the momentum amplitude of the packet.
In what follows we are going to illustrate the basic ideas of wave packets on a simple,

instructive example: the Gaussian and square wave packets.

Example 1.8 (Gaussian and square wave packets)
(a) Find O�x� 0� for a Gaussian wave packet M�k� � A exp

d�a2�k � k0�2�4
e
, where A is

a normalization factor to be found. Calculate the probability of finding the particle in the region
�a�2 n x n a�2.
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where we have used the change of variable z � 2x�a.
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1.8.2 Wave Packets and the Uncertainty Relations
We want to show here that the width of a wave packet O0�x� and the width of its amplitude
M�k� are not independent; they are correlated by a reciprocal relationship. As it turns out, the
reciprocal relationship between the widths in the x and k spaces has a direct connection to
Heisenberg’s uncertainty relation.
For simplicity, let us illustrate the main ideas on the Gaussian wave packet treated in the

previous example (see (1.102) and (1.106)):
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As displayed in Figure 1.13, �O0�x��2 and �M�k��2 are centered at x � 0 and k � k0, respec-
tively. It is convenient to define the half-widths�x and�k as corresponding to the half-maxima
of �O0�x��2 and �M�k��2. In this way, when x varies from 0 to ��x and k from k0 to k0 ��k,
the functions �O0�x��2 and �M�k��2 drop to e�1�2:
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These equations, combined with (1.110), lead to e�2�x2�a2 � e�1�2 and e�a2�k2�2 � e�1�2,
respectively, or to
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hence
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Since �k � �p��h we have

�x�p � �h
2
� (1.114)

This relation shows that if the packet’s width is narrow in x-space, its width in momentum
space must be very broad, and vice versa.
A comparison of (1.114) with Heisenberg’s uncertainty relations (1.57) reveals that the

Gaussian wave packet yields an equality, not an inequality relation. In fact, equation (1.114) is
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1.8.2 Wave Packets and the Uncertainty Relations
We want to show here that the width of a wave packet O0�x� and the width of its amplitude
M�k� are not independent; they are correlated by a reciprocal relationship. As it turns out, the
reciprocal relationship between the widths in the x and k spaces has a direct connection to
Heisenberg’s uncertainty relation.
For simplicity, let us illustrate the main ideas on the Gaussian wave packet treated in the

previous example (see (1.102) and (1.106)):
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As displayed in Figure 1.13, �O0�x��2 and �M�k��2 are centered at x � 0 and k � k0, respec-
tively. It is convenient to define the half-widths�x and�k as corresponding to the half-maxima
of �O0�x��2 and �M�k��2. In this way, when x varies from 0 to ��x and k from k0 to k0 ��k,
the functions �O0�x��2 and �M�k��2 drop to e�1�2:

�O���x� 0��2
�O�0� 0��2

� e�1�2� �M�k0 ��k��2
�M�k0��2

� e�1�2� (1.111)

These equations, combined with (1.110), lead to e�2�x2�a2 � e�1�2 and e�a2�k2�2 � e�1�2,
respectively, or to
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This relation shows that if the packet’s width is narrow in x-space, its width in momentum
space must be very broad, and vice versa.
A comparison of (1.114) with Heisenberg’s uncertainty relations (1.57) reveals that the

Gaussian wave packet yields an equality, not an inequality relation. In fact, equation (1.114) is

This relation shows that if the packet’s width is narrow in 
x-space, its width in momentum space must be very broad, 
and vice versa. 
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Uncertainty Principle 

We learned that it is impossible to measure simultaneously, 
with no uncertainty, the precise values of k and x for the 
same particle. The wave number k may be rewritten as 


k =
p

~
in the case of the Gaussian wave packet, 

�p�x =
~
2

Heisenberg’s uncertainty principle can therefore be written 

�px�x � ~

2
It is possible to have a greater uncertainty in the values of 
px and x, but it is not possible to know them with more 
precision than allowed by the uncertainty principle. 
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Uncertainty Principle 
The Gaussian wave packet yields an equality, not an 
inequality relation. It is the lowest limit of Heisenberg’s 
inequality. As a result, the Gaussian wave packet is called 
the minimum uncertainty wave packet. All other wave packets 
yield higher values for the product of the x and p 
uncertainties: 

�px�x � ~
2

We have now seen how the wave packet concept offers a 
heuristic way of deriving Heisenberg’s uncertainty relations; 
a more rigorous derivation is given later.
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Uncertainty Principle 

Consider a particle for which the location is known within a 
width of l along the x axis. The uncertainty principle 
specifies that 'p is limited by 

the minimum value of the kinetic energy , 

Note that this equation indicates that if we are uncertain 
as to the exact position of a particle, for example, an 
electron somewhere inside an atom of diameter l, the 
particle can’t have zero kinetic energy. 


�p � ~
2�x

� ~
l

Emin =
p2min

2m
� (�p)2

2m
� ~2

2ml2
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Electron Double-Slit Experiment 

https://www.hitachi.com/rd/research/materials/quantum/doubleslit/index.html

In 1989, a team led by Akira Tonomura at Hitachi performed 
a double slit experiment. For this experiment, each single 
electron passed through a single slit one at a time and 
arrived at the screen of a detector as a single particle as a 
“dot.” 


https://www.hitachi.com/rd/research/materials/quantum/doubleslit/index.html
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Electron Double-Slit Experiment 
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Electron Double-Slit Experiment 

FIGURE 2.6 The above schematic illustrates the interference patterns of electron waves. The regions of max-
ima (light color) are the regions where electrons are most likely to arrive (strike the screen). The electrons arrives
in these regions and form interference pattern.

(a) (b)

(c) (d)

FIGURE 2.7 The above four images are obtained from Hitachi’s website http://www.hitachi.com/rd/portal-
/highlight/quantum/doubleslit/index.html with permission from Hitachi. (These images are from a journal
paper, A. Tonomura et al. American Journal of Physics, Vol. 57, No. 117, 1989.) These images demonstrate
the inference of the electron waves. The interference pattern of the electrons gradually builds up (a)–(d).
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Electron Double-Slit Experiment 
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Particle double-slit experiment
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-------

S S1

S2

---

I1

Only slit 1 is open

-------

S S1

S2 ---

I2

Only slit 2 is open

-------

S S1

S2

---
---

Both slits are open

I � I1 � I2

Figure 1.8 The double-slit experiment with particles: S is a source of bullets; I1 and I2 are
the intensities recorded on the screen, respectively, when only S1 is open and then when only
S2 is open. When both slits are open, the total intensity is I � I1 � I2.

1.4 Particles versus Waves

In this section we are going to study the properties of particles and waves within the contexts of
classical and quantum physics. The experimental setup to study these aspects is the double-slit
experiment, which consists of a source S (S can be a source of material particles or of waves),
a wall with two slits S1 and S2, and a back screen equipped with counters that record whatever
arrives at it from the slits.

1.4.1 Classical View of Particles and Waves

In classical physics, particles and waves are mutually exclusive; they exhibit completely differ-
ent behaviors. While the full description of a particle requires only one parameter, the position
vector ;r�t�, the complete description of a wave requires two, the amplitude and the phase. For
instance, three-dimensional plane waves can be described by wave functions O�;r � t�:

O�;r � t� � Aei�;k�;r��t� � AeiM� (1.52)

where A is the amplitude of the wave and M is its phase (;k is the wave vector and � is the
angular frequency). We may recall the physical meaning of O : the intensity of the wave is
given by I � �O �2.
(a) S is a source of streams of bullets
Consider three different experiments as displayed in Figure 1.8, in which a source S fires a
stream of bullets; the bullets are assumed to be indestructible and hence arrive on the screen
in identical lumps. In the first experiment, only slit S1 is open; let I1�y� be the corresponding
intensity collected on the screen (the number of bullets arriving per second at a given point y).
In the second experiment, let I2�y� be the intensity collected on the screen when only S2 is
open. In the third experiments, if S1 and S2 are both open, the total intensity collected on the
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1.4 Particles versus Waves

In this section we are going to study the properties of particles and waves within the contexts of
classical and quantum physics. The experimental setup to study these aspects is the double-slit
experiment, which consists of a source S (S can be a source of material particles or of waves),
a wall with two slits S1 and S2, and a back screen equipped with counters that record whatever
arrives at it from the slits.

1.4.1 Classical View of Particles and Waves

In classical physics, particles and waves are mutually exclusive; they exhibit completely differ-
ent behaviors. While the full description of a particle requires only one parameter, the position
vector ;r�t�, the complete description of a wave requires two, the amplitude and the phase. For
instance, three-dimensional plane waves can be described by wave functions O�;r � t�:

O�;r � t� � Aei�;k�;r��t� � AeiM� (1.52)

where A is the amplitude of the wave and M is its phase (;k is the wave vector and � is the
angular frequency). We may recall the physical meaning of O : the intensity of the wave is
given by I � �O �2.
(a) S is a source of streams of bullets
Consider three different experiments as displayed in Figure 1.8, in which a source S fires a
stream of bullets; the bullets are assumed to be indestructible and hence arrive on the screen
in identical lumps. In the first experiment, only slit S1 is open; let I1�y� be the corresponding
intensity collected on the screen (the number of bullets arriving per second at a given point y).
In the second experiment, let I2�y� be the intensity collected on the screen when only S2 is
open. In the third experiments, if S1 and S2 are both open, the total intensity collected on the
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Wave double-slit experiment
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ijk S1

S2

I1

Only slit 1 is open

ijk S1

S2

I2

Only slit 2 is open

ijk S1

S2

Both slits are open

I /� I1 � I2

Figure 1.9 The double-slit experiment: S is a source of waves, I1 and I2 are the intensities
recorded on the screen when only S1 is open, and then when only S2 is open, respectively. When
both slits are open, the total intensity is no longer equal to the sum of I1 and I2; an oscillating
term has to be added.

screen behind the two slits must be equal to the sum of I1 and I2:

I �y� � I1�y�� I2�y�� (1.53)

(b) S is a source of waves
Now, as depicted in Figure 1.9, S is a source of waves (e.g., light or water waves). Let I1 be
the intensity collected on the screen when only S1 is open and I2 be the intensity when only S2
is open. Recall that a wave is represented by a complex function O , and its intensity is propor-
tional to its amplitude (e.g., height of water or electric field) squared: I1 � �O1�2� I2 � �O2�2.
When both slits are open, the total intensity collected on the screen displays an interference
pattern; hence it cannot be equal to the sum of I1 and I2. The amplitudes, not the intensities,
must add: the total amplitude O is the sum of O1 and O2; hence the total intensity is given by

I � �O1 � O2�2 � �O1�2 � �O2�2 �
b
O`1O2 � O`2O1

c � I1 � I2 � 2Re�O`1O2�
� I1 � I2 � 2

S
I1 I2 cos =� (1.54)

where = is the phase difference between O1 and O2, and 2
T
I1 I2 cos = is an oscillating term,

which is responsible for the interference pattern (Figure 1.9). So the resulting intensity distrib-
ution cannot be predicted from I1 or from I2 alone, for it depends on the phase =, which cannot
be measured when only one slit is open (= can be calculated from the slits separation or from
the observed intensities I1, I2 and I ).
Conclusion: Classically, waves exhibit interference patterns, particles do not. When two non-
interacting streams of particles combine in the same region of space, their intensities add; when
waves combine, their amplitudes add but their intensities do not.

1.4.2 Quantum View of Particles and Waves
Let us now discuss the double-slit experiment with quantummaterial particles such as electrons.
Figure 1.10 shows three different experiments where the source S shoots a stream of electrons,
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electron passed through a single slit one at a time and arrived at the screen of a detector as a single
particle as a “dot.” The location of each dot is then recorded for each electron transit. Since each elec-
tron passes through the slit singularly, there is no way one electron can interfere with the other elec-
tron. The dots appearing on the screen means that electrons behave as particles when they are detected
at the screen. However, each electron arrives at the screen at a different location. After many more
electrons strike the screen, the interference pattern on the screen emerges, and maxima and minima
are observed. The regions on the screen where the highest concentration of electrons impinge is called
the maxima, and the regions where the least numbers of electrons arrive is called the minima. The
existence of these clear distinct regions demonstrate that each electron has interfered with itself to
produce such an interference pattern. This experiment is remarkable in a sense that it helps to illustrate
the quantummechanical features so closely and shows the distinctive nature of quantummechanics in
comparison to classical physics. The figure below illustrates such interference phenomenon for elec-
trons (Figures 2.6 and 2.7).

The figure above clearly shows the interference pattern, with clear distinct regions of maxima and
minima. Initially, with only a few electrons impinging on the screen, it is difficult to identify the inter-
ference pattern. As the number of electrons is increased, the interference pattern emerges more
clearly. There are several questions that can be asked regarding the interference pattern produced
by electrons. If only one electron passes through the slit at a time, then why do they arrive at different
locations on the screen? Since, according to classical physics, if each electron passes through a single
slit and arrives at the screen as a dot or particle then we must observe only two locations on the screen
where electrons are impinging.We do not observe these two spots, but rather a spread-out distribution
of electrons, because each electron interferes with itself. This interference causes the spreading of
electron distribution. What is the mechanism for an electron interfering with itself? If an electron
interferes with itself just like a wave, then why does it strike the screen as a dot (particle)? What hap-
pens to its wave nature at that point?

FIGURE 2.5 The interference of waves as they enter through a double slit.
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FIGURE 2.6 The above schematic illustrates the interference patterns of electron waves. The regions of max-
ima (light color) are the regions where electrons are most likely to arrive (strike the screen). The electrons arrives
in these regions and form interference pattern.

(a) (b)

(c) (d)

FIGURE 2.7 The above four images are obtained from Hitachi’s website http://www.hitachi.com/rd/portal-
/highlight/quantum/doubleslit/index.html with permission from Hitachi. (These images are from a journal
paper, A. Tonomura et al. American Journal of Physics, Vol. 57, No. 117, 1989.) These images demonstrate
the inference of the electron waves. The interference pattern of the electrons gradually builds up (a)–(d).
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Figure 1.11 The double-slit experiment: S is a source of electrons. A light source is placed
behind the wall containing S1 and S2. When both slits are open, the interference pattern is
destroyed and the total intensity is I � I1 � I2.

electrons. We find that the light scattered from the electrons, as they pass by, does not get
weaker; the same sized flash is seen, but only every once in a while. This means that, at low
brightness levels, we miss some electrons: we hear the click from the counter but see no flash
at all. At still lower brightness levels, we miss most of the electrons. We conclude, in this case,
that some electrons went through the slits without being seen, because there were no photons
around at the right moment to catch them. This process is important because it confirms that
light has particle properties: light also arrives in lumps (photons) at the screen.
Two distribution profiles are compiled from this dim light source experiment, one corre-

sponding to the electrons that were seen and the other to the electrons that were not seen (but
heard on the counter). The first distribution contains no interference (i.e., it is similar to classi-
cal bullets); but the second distribution displays an interference pattern. This results from the
fact that when the electrons are not seen, they display interference. When we do not see the
electron, no photon has disturbed it but when we see it, a photon has disturbed it.
For the electrons that display interference, it is impossible to identify the slit that each

electron had gone through. This experimental finding introduces a new fundamental concept:
the microphysical world is indeterministic. Unlike classical physics, where we can follow
accurately the particles along their trajectories, we cannot follow a microscopic particle along
its motion nor can we determine its path. It is technically impossible to perform such detailed
tracing of the particle’s motion. Such results inspired Heisenberg to postulate the uncertainty
principle, which states that it is impossible to design an apparatus which allows us to determine
the slit that the electron went through without disturbing the electron enough to destroy the
interference pattern (we shall return to this principle later).
The interference pattern obtained from the double-slit experiment indicates that electrons

display both particle and wave properties. When electrons are observed or detected one by one,
they behave like particles, but when they are detected after many measurements (distribution
of the detected electrons), they behave like waves of wavelength D � h�p and display an
interference pattern.

It is impossible to design an apparatus which allows us to 
determine the slit that the electron went through without 
disturbing the electron enough to destroy the interference 
pattern. 
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Consider the interference of classic waves, for a wave 
entering slit 1, the mathematical function that describes such 
a wave is: 

To understand the double-slit experiment and the interference of waves in a little more detail, it is
useful to review the conclusions of classical physics.

Consider Figure 2.5, for a wave entering slit 1, the mathematical function that describes such a
wave is:

f1(r, t) = A1ei(k1r−ωt+ϕ1) (2.17)

where A1 is the amplitude of the wave and ω is the angular frequency, k1 is the wave vector. Similarly,
the wave entering through slit 2 can be described as:

f2(r, t) = A2ei(k2r−ωt+ϕ2) (2.18)

The corresponding intensities of the two waves are the absolute squares of the above functions,
and thus:

I1 = |A1|2, I2 = |A2|2 (2.19)

After entering slit 1 and slit 2, these two waves superpose on each other:

f (r, t) = A1ei(k1r−ωt+ϕ1) + A2ei(k2r−ωt+ϕ2) (2.20)

and as a result their intensities sum as follows:

I12 = |f (r, t)|2 = |A1|2 + |A2|2 + 2A1A2 cos θ (2.21)

where:

θ = (k1 − k2) · r + (ϕ1 − ϕ2) (2.22)

Such that:

I12 = I1 + I2 (2.23)

The total intensity reaches maxima of constructive interference, when:

θ = 0, +2π, +4π, . . . . . . (2.24)

and reaches minima of destructive interference, when:

θ = +π, +3π, +5π, . . . . . . (2.25)

The pattern of maxima and minima is produced on a screen due to the third term in Equation (2.21)
which is called the “interference term.” Interference vanishes if this term is removed from the above
equation and two intense spots would be observed as shown in the Figure 2.8.

With this understanding let us turn to an understanding of quantum mechanical interference.
Consider Figure 2.6, in which an electron gun emits electrons such that each electron either enters
through slit 1 or slit 2 at a given time. The wave function of an electron that has matter wave asso-
ciated with it is a complex function and very similar to the function in Equation (2.17). The electron
wave function can be described as:

ψ1(r, t) = B1ei(k1r−ωt+ϕ1) (2.26)
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The above equation describes the wave function of the 
electron entering through slit 1. Here B1 is not the amplitude 
of the intensity of the matter wave of the electron, but 
rather is referred to as the “probability amplitude.” 
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We used a function &(r, t) named as wave function to 
denote the superposition of many waves to describe the 
wave packet.  The quantity  


is called the probability density and represents the 
probability of finding the particle in a given unit volume at 
a given instant of time 


The above equation describes the wave function of the electron entering through slit 1. Here B1 is
not the amplitude of the intensity of the matter wave of the electron, but rather is referred to as the
“probability amplitude.” The matter wave of a particle can also be referred to as a “probability
wave.” The absolute square of the wave function is termed the ‘probability density’ as listed below
in Equation (2.27),

P1(r) = | ψ1(r, t)|2 (2.27)

P1(r)dr is the probability that an electron entering slit-1 can be found between r and r+ dr.
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However, if the probability densities add up in this way 
then there will be no observation of the interference of 
the probability distribution. In such a scenario, only two 
spots would be observed on the screen with no interference 
pattern. This is the same pattern that described above for 
particles. 


Since the specific slit through which the electron has 
entered is not known, the wave function of the electron 
entering through the double slit will be the sum of the 
functions above. The superimposed wave function is: 


However, if the probability densities add up in this way then there will be no observation of the
interference of the probability distribution. In such a scenario, only two spots would be observed
on the screen with no interference pattern. This is the same pattern that described above for particles.

Since the specific slit through which the electron has entered is not known, the wave function of the
electron entering through the double slit will be the sum of the functions above. The superimposed
wave function is:

Ψ (r) = ψ1(r)+ ψ2(r) (2.32)

and the probability densities of the electron add up in the same manner as waves as defined by the
following relation:

|Ψ (r)|2 = |ψ1 + ψ2|2 = |B1|2 + |B2|2 + 2 |B1||B2| cos θ (2.33)

Equation (2.33) describes the probability distribution of the electron on the screen, and the third
term is very similar to the interference term of Equation (2.21). This term causes uncertainty about
where the electron will arrive on the screen. The probability distribution of the electrons has the inter-
ference pattern of maxima and minima as a result of this term. The electrons arrive on the screen as
particles or dots, however their probability distribution on the screen behaves similarly to the intensity
distribution pattern of waves.

Conceptual Question 5: Explain the mathematical similarity between the intensities of the
superposed waves of light and the probability densities of the superposed probability waves
associated with a particle?

Conceptual Question 6: Is matter wave same as probability wave? Explain.

PROBLEMS

2.6 Derive Equation (2.21) using Equation (2.20). Confirm that for monochromatic waves moving
through the same medium, the spatial dependence in the phase factor (Equation 2.22) vanishes.

2.7 List brief descriptions for all the experiments discussed above together with their
interpretations.

2.4 UNCERTAINTY PRINCIPLE

After this discussion of the wave properties of matter, it is appropriate to approach the most funda-
mental principle of quantum mechanics, the Uncertainty Principle. According to this principle, no
matter how accurately the variables of a quantum mechanical system are determined, a fundamental
uncertainty concern their actual magnitude will always remain. It is not possible to gain absolute
deterministic information concerning a quantum system. This principle provides an absolute limita-
tion on a determination of the value of a given quantum variable.

For example, consider the double slit experiment. In order to determine which slit the
electron passes through, let us place a detector at slit 1 that shines a light or any other radiation on
the electron to determine whether the electron passes through the slit (position of electron), as shown
in Figure 2.9.

32 Quantum Mechanics
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This equation describes the probability distribution of the 
electron on the screen, and the third term is very similar 
to the interference term of wave. This term causes 
uncertainty about where the electron will arrive on the 
screen. The probability distribution of the electrons has the 
interference pattern of maxima and minima as a result of 
this term.
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Consider the motion of a free particle along the x-axis with 
momentum p. According to de Broglie’s hypothesis, a wave of 
λ =h/p is associated with the particle and hence we can 

assume a wave function ψ(x,t) given by: 

The Schrödinger Equation from wave

The hypotheses of Planck and de Broglie suggest that E = 
hν = ℏω and p =h/$=ℏk . Therefore: 


ψ(x, t) = Ae(kx−ωt)

ψ(x, t) = Ae i
ℏ (px−Et)
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The Schrödinger Equation from wave

On partial differentiation of above equation with respect to 
x and t, we obtain: 


They suggest that


For a non-relativistic free particle, we get 


which is the Schrödinger equation for a free particle 
moving along the x-axis. 


∂ψ (x, t)
∂x

= ip
ℏ ψ (x, t) ⟶ [ ∂

∂x
− ip

ℏ ] ψ (x, t) = 0

∂ψ (x, t)
∂t

= −iE
ℏ ψ (x, t) ⟶ [ ∂

∂t
+ iE

ℏ ] ψ (x, t) = 0

p = − iℏ ∂
∂x

E = iℏ ∂
∂t

− ℏ2

2m
∂2ψ (x, t)

∂x2 = iℏ ∂ψ (x, t)
∂t
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The Schrödinger Equation from wave

For a free particle moving along an arbitrary direction, the 
Schrödinger equation can be generalized to: 

For a particle moving under the influence of a field 
characterized by potential energy, V(r) , the Schrödinger 
equation is 

− ℏ2

2m [ ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 ] ψ (x, t) = iℏ ∂ψ (x, t)
∂t

⟶ − ℏ2

2m
∇2ψ(x, t) = iℏ ∂ψ(x, t)

∂t

[− ℏ2

2m
∇2 + V(r)] ψ (x, t) = iℏ ∂ψ (x, t)

∂t
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The Schrödinger Equation from wave

Therefore: 


It means group of waves having different k-values. The 
group of waves is known as a wave packet. Each k 
corresponds to a wave and in principle, k can take any value 
in between −∞ and ∞. 


9Introduction to Quantum Mechanics

ii. For a particle moving under the in!uence of a "eld characterized by potential 

energy, ( )V r , the total energy of the particle is = +
2

( )
2

E
p
m

V r  and therefore Eqn. (1.15) 
becomes:

 
m

V t i
t

t
( ) ( ) ( )− ∇ +






ψ = ∂ψ

∂
?

?r r
r

2
,

,2
2  (1.16)

iii. It is important to note that Eqn. (1.14) has been obtained by assuming the wave 
function given by Eqn. (1.10). However, several solutions like Eqn. (1.10) and their 
linear combination will also be the solutions of Eqn. (1.14). Therefore:

 ∫ ( )( )ψ = ( )−ω,x t A k e dki kx t
 (1.17)

will also be the solution of Eqn. (1.14). Equation (1.17) represents a group of waves 
having different -values.k  The group of waves is known as a wave packet. Each k  
corresponds to a wave and in principle, k  can take any value in between −∞  and ∞ .  

However, for practical cases it varies over a certain range. The ωd
dk

 and ω
k

 have dimen-

sions of velocity. With the use of E h= ν and h
p

λ = , we can write d
dk

k
m

vω = =? , which is  

the velocity for a freely moving particle. Therefore, 
ωd

dk
 is termed group velocity and  

it is represented by vg , while ω
k

, which is the velocity of an individual wave, is known 
as phase velocity.

1.8 Born Interpretation of Wave Function

As stated above, it became clear that matter must be considered to have wave-like prop-
erties to explain experimental data. In 1926, Max Born formulated a physical law of 
quantum mechanics, which gives the probability of getting the given results from a 
measurement on the quantum system. The Born law, which is one of the key principles 
of quantum mechanics, states that the probability density of "nding a particle at a given 
point of time is proportional to the square of the magnitude of the wave function of the 
particle at that point. Thus, the wave function itself has no physical signi"cance, but the 
square of its absolute magnitude has signi"cance when evaluated at a point.

The probability of "nding a particle between a and b at time t is given by:

 ∫ ( )ψ ,
2

x t dx
a

b

 (1.18)

where ( ) ( ) ( )ψ = ψ ψ, ,   ,
2 *x t x t x t  is a complex square. At any given time:

 ∫ ( )ψ =, 1
2

x t dx  (1.19)

The linear combination of the wave function will also be the 
solution of Schrödinger equation
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Hamilton-Jacobi equation

The Schrödinger Equation from action

2.1.2 Action Waves and Hamilton-Jacobi Theory

! On the outset the wave functions we have postulated to describe particles do not at all
resemble classical mechanics with its well-defined motions. We can turn around this question and
ask whether there is a formulation of classical mechanics which is based on waves. This is of
course the case. In fact the Hamilton-Jacobi theory of classical mechanics is well established. In
this subsection we give a brief review. More details can be found in [5] or any good mechanics
book.
! Recall that

∂S

∂t
+H(q, p, t) = 0 (2.3)

with pi = ∂S/∂qi, i = 1, . . . s, is a non-linear, first order partial differential equation for the action
variable S(q, t) of a mechanical system with s generalized coordinates q = (qi)si=1. To be more
precise, S is the action with variable endpoint

S(q, t) =

∫ t

t0

L(q̃, ˙̃q, t̃)dt̃ (2.4)

and fixed initial time t0 where q = q̃(t) is the final point of the motion q̃ at a final time t and L
is the Lagrange function of the system. As usual

H(q, p, t) =
∑

i

q̇i
∂L

∂q̇i
− L(q, q̇, t) (2.5)

is the classical Hamilton function of the system.
! Recall, for systems with constant energy E we can separate the time t from the coordinates
q in the action as

S(q, t) = W (q)− Et . (2.6)

From now on we look at a single particle in R3 in cartesian coordinates and q = "r. The spatial
part of the action defines hypersurfaces in coordinate space through the condition W (q) =const.
S = W − Et =const. then defines the motion of these hypersurfaces through coordinate space.
These moving wave fronts are called action waves.1

! Recall that the velocity of the action wave is

"u =
E

p
p̂ (2.7)

where E is the particle energy and "p = ∇S = ∇W is the momentum vector. Obviously this is
different from the particle velocity "v = "p/m, but in fact this is the same expression as the phase
velocity of a wave packet of free particles with the same “average” momentum "p. This is our first
lead. The classcial action S could be related to the phase of a wave function ψ.
! Recall that S(q, t) has all the information about a classical system. As a very simple example
we solve here the problem for a free particle in 1-D. The Hamilton-Jacobi equation in that case is

1

2m

(

∂S

∂x

)2

= −
∂S

∂t
. (2.8)

1Recall that these “waves” often do not resemble our intuitive picture of an oscillating wave. E.g. for a free
particle simply S = !r · !p− Et.
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A separation ansatz with 

A separation ansatz with S = W (x)− Et gives

(

∂W

∂x

)2

= α2 = const. (2.9)

−2mE = α2 (2.10)

with a constant α which (from the last equation) can obviously be chosen to be the momentum p
of the particle. From the first equation we get

S = px−
p2

2m
t+ const. (2.11)

We can solve for the motion by imposing ∂S/∂α = β = const. which implies

q =
p

m
t+ const. (2.12)

and the last constant can be fixed by the initial condition for x.
! Without further proof we generalize the result to free particles in 3-D. The action in this case
is

S = $p · $r − Et . (2.13)

Hence we could write the plane wave for the same particles in quantum mechanics as

ei(
!k·!r−ωt) = e

i

!
S(!r,t) . (2.14)

! As a result of our considerations we postulate that the equation of motion of quantum me-
chanics should reduce in a suitable limit (the “classical limit”) to the Hamilton-Jacobi equation
for the phase S. We will see that this leads to the correct Schrödinger Equation, and in fact this
limit corresponds to the eikonal approximation of wave optics which yields geometric optics.

2.1.3 Constraints from the Probabilistic Interpretation

! For a conserved quantity with spatial density ρ($r, t) the conservation law

∫

V

ρ d3r = const. (2.15)

for a co-moving volume V implies the general conservation law

∂ρ

∂t
+∇$j = 0 (2.16)

where $j is a suitably defined current density associated with ρ. (2.16) is called the continuity
equation.
! If ρ is a density associated with a distribution of particles (or of particular properties of
particles like electric charge), and if those particles move collectively, i.e. described by a common
velocity field $v($r, t) (e.g. electrons in a wire following the electric field), then the current density
is

$j = ρ$v . (2.17)
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Without further proof we generalize the result to free 
particles in 3 dimension. The action in this case is 
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Therefore, Schrödinger assume that the wave function of 
matter wave is 

or

ψ = exp
[

S

K

]

(8.4)

where K is a real constant, which, like h, has the dimensions of action. This ansatz is the
same as the fundamental postulate II of Feynman’s formulation of quantum mechanics, for
the spatially-dependent part of the path amplitude, on making the replacement K → −ih̄.

Using (8.2) and (8.3) and following the same chain of arguments from which the
time-dependent Schrödinger equation (4.8) is derived from the H-J equation (4.7) and
Feynman’s postulate (4.2) instead of (8.3), yields the equation:

"∇2ψ −
2me

K2
(E − V )ψ = 0 (8.5)

which resembles the time-independent Schrödinger equation (7.27) except that h̄ is re-
placed by K and the second term on the left side has a minus sign instead of a plus sign.
Now (8.5) is a necessary mathematical consequence of (8.2) and (8.3) when H has the
form of the non-relativistic Hamiltonian of Eq. (4.7), but (8.5) is not the time-independent
Schrödinger equation, and would not, if solved, give the correct bound state wavefunc-
tions and energies of the hydrogen atom. In order to derive the correct equation (7.27)
starting from (8.2), (8.3) and the Hamiltonian of Eq. (2.7) Schrödinger had to introduce
a further ansatz concerning the wavefunction ψ. Differentiating (8.3) to obtain equations
analogous to (4.3) and substituting for ∂S/∂xi in (8.2) gives the equation

(

∂ψ

∂x

)2

+

(

∂ψ

∂y

)2

+

(

∂ψ

∂z

)2

−
2me

K2
(E − V )ψ2 = 0 (8.6)

The quantity:

J ≡
∫ ∫ ∫





(

∂ψ

∂x

)2

+

(

∂ψ

∂y

)2

+

(

∂ψ

∂z

)2

−
2me

K2
(E − V )ψ2



 dxdydz (8.7)

is now introduced and the condition is imposed that J should be stationary for arbitary
variations of the wave function ψ : δJ = 0. Now

δ

(

∂ψ

∂x

)2

= 2
∂ψ

∂x

∂(δψ)

∂x
(8.8)

Integrating by parts:

∫ xU

xL

δ

(

∂ψ

∂x

)2

dx = 2

[

∂ψ

∂x
δψ

]xU

xL

− 2
∫ xU

xL

∂2ψ

∂x2
δψdx (8.9)

also
δ(ψ)2 = 2ψδψ (8.10)

Substituting (8.9) and similar formulae for the y and z coordinates, and (8.10), into the
expression for δJ and assuming that δψ vanishes at the limits of integration in the first
term on the right side of (8.9) and the similar formulae for the other spatial coordinates,
gives:

δJ

2
= −

∫ ∫ ∫

dxdydz
[

"∇2ψ +
2me

K2
(E − V )ψ

]

δψ = 0 (8.11)

22

and

or

ψ = exp
[

S

K

]

(8.4)

where K is a real constant, which, like h, has the dimensions of action. This ansatz is the
same as the fundamental postulate II of Feynman’s formulation of quantum mechanics, for
the spatially-dependent part of the path amplitude, on making the replacement K → −ih̄.

Using (8.2) and (8.3) and following the same chain of arguments from which the
time-dependent Schrödinger equation (4.8) is derived from the H-J equation (4.7) and
Feynman’s postulate (4.2) instead of (8.3), yields the equation:

"∇2ψ −
2me

K2
(E − V )ψ = 0 (8.5)

which resembles the time-independent Schrödinger equation (7.27) except that h̄ is re-
placed by K and the second term on the left side has a minus sign instead of a plus sign.
Now (8.5) is a necessary mathematical consequence of (8.2) and (8.3) when H has the
form of the non-relativistic Hamiltonian of Eq. (4.7), but (8.5) is not the time-independent
Schrödinger equation, and would not, if solved, give the correct bound state wavefunc-
tions and energies of the hydrogen atom. In order to derive the correct equation (7.27)
starting from (8.2), (8.3) and the Hamiltonian of Eq. (2.7) Schrödinger had to introduce
a further ansatz concerning the wavefunction ψ. Differentiating (8.3) to obtain equations
analogous to (4.3) and substituting for ∂S/∂xi in (8.2) gives the equation

(

∂ψ

∂x

)2

+

(

∂ψ

∂y

)2

+

(

∂ψ

∂z

)2

−
2me

K2
(E − V )ψ2 = 0 (8.6)

The quantity:

J ≡
∫ ∫ ∫





(

∂ψ

∂x

)2

+

(

∂ψ

∂y

)2

+

(

∂ψ

∂z

)2

−
2me

K2
(E − V )ψ2



 dxdydz (8.7)

is now introduced and the condition is imposed that J should be stationary for arbitary
variations of the wave function ψ : δJ = 0. Now

δ

(

∂ψ

∂x

)2

= 2
∂ψ

∂x

∂(δψ)

∂x
(8.8)

Integrating by parts:

∫ xU

xL

δ

(

∂ψ

∂x

)2

dx = 2

[

∂ψ

∂x
δψ

]xU

xL

− 2
∫ xU

xL

∂2ψ

∂x2
δψdx (8.9)

also
δ(ψ)2 = 2ψδψ (8.10)

Substituting (8.9) and similar formulae for the y and z coordinates, and (8.10), into the
expression for δJ and assuming that δψ vanishes at the limits of integration in the first
term on the right side of (8.9) and the similar formulae for the other spatial coordinates,
gives:

δJ

2
= −

∫ ∫ ∫

dxdydz
[

"∇2ψ +
2me

K2
(E − V )ψ

]

δψ = 0 (8.11)

22

or

ψ = exp
[

S

K

]

(8.4)

where K is a real constant, which, like h, has the dimensions of action. This ansatz is the
same as the fundamental postulate II of Feynman’s formulation of quantum mechanics, for
the spatially-dependent part of the path amplitude, on making the replacement K → −ih̄.

Using (8.2) and (8.3) and following the same chain of arguments from which the
time-dependent Schrödinger equation (4.8) is derived from the H-J equation (4.7) and
Feynman’s postulate (4.2) instead of (8.3), yields the equation:

"∇2ψ −
2me

K2
(E − V )ψ = 0 (8.5)

which resembles the time-independent Schrödinger equation (7.27) except that h̄ is re-
placed by K and the second term on the left side has a minus sign instead of a plus sign.
Now (8.5) is a necessary mathematical consequence of (8.2) and (8.3) when H has the
form of the non-relativistic Hamiltonian of Eq. (4.7), but (8.5) is not the time-independent
Schrödinger equation, and would not, if solved, give the correct bound state wavefunc-
tions and energies of the hydrogen atom. In order to derive the correct equation (7.27)
starting from (8.2), (8.3) and the Hamiltonian of Eq. (2.7) Schrödinger had to introduce
a further ansatz concerning the wavefunction ψ. Differentiating (8.3) to obtain equations
analogous to (4.3) and substituting for ∂S/∂xi in (8.2) gives the equation

(

∂ψ

∂x

)2

+

(

∂ψ

∂y

)2

+

(

∂ψ

∂z

)2

−
2me

K2
(E − V )ψ2 = 0 (8.6)

The quantity:

J ≡
∫ ∫ ∫





(

∂ψ

∂x

)2

+

(

∂ψ

∂y

)2

+

(

∂ψ

∂z

)2

−
2me

K2
(E − V )ψ2



 dxdydz (8.7)

is now introduced and the condition is imposed that J should be stationary for arbitary
variations of the wave function ψ : δJ = 0. Now

δ
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∂ψ
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∂(δψ)
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Integrating by parts:
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− 2
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also
δ(ψ)2 = 2ψδψ (8.10)

Substituting (8.9) and similar formulae for the y and z coordinates, and (8.10), into the
expression for δJ and assuming that δψ vanishes at the limits of integration in the first
term on the right side of (8.9) and the similar formulae for the other spatial coordinates,
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2
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"∇2ψ +
2me

K2
(E − V )ψ
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δψ = 0 (8.11)
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The Schrödinger Wave

The time-dependent Schrödinger equation, for a particle 
moving under the influence of a field defined by potential 
energy, V(r), is given 
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2
Wave Mechanics and Its Simple Applications

As stated in Chapter 1, Schrödinger developed quantum wave mechanics as a con-
tinuation of de Broglie’s hypothesis. He formulated a second-order differential equa-
tion to explain the wave nature of matter and the particle associated to the wave. The 
Schrödinger equation assumes that a particle behaves as a wave and yields a solution 
in terms of wave function and the energy of the particle under consideration. Once the 
wave function is known, then everything about the particle can be deduced from the 
wave function.

2.1 Schrödinger Equation

This equation is used in two forms. In one of the forms, time explicitly appears to 
describe how the wave function of a particle evolves in time. This equation is referred 
to as the time-dependent Schrödinger equation. The other is the equation in which the 
time dependence has been dropped and the equation describes, among other things, 
what are allowed values of energies and hence it is known as the time-independent 
Schrödinger equation. However, these are not two independent equations. The time-
independent equation can be derived readily from the time-dependent equation (except 
if the potentials are time dependent). A simple derivation of the time-dependent 
Schrödinger equation is presented in Section 1.7 and the time-dependent Schrödinger 
equation, for a particle moving under the in!uence of a "eld de"ned by potential energy, 
V ( )r , is given by Eqn. (1.16):

 − ∇ +





ψ = ∂ψ

∂2
( ) ( , ) ( , )2

2

m
V t i t

t
r r

r?
?  (2.1)

In the Schrödinger representation of quantum mechanics, the Hamiltonian, H
m

= − ∇ +?
2

2
2  

V r( )  and other operators are time independent. The time independence of the Hamiltonian 
allows one to factorize the wave function into space- and time-dependent parts. Time 
dependence enters to wave function via a complex exponential factor, − /e iEt ? , and hence the 
time-dependent wave function is written as:

 ( ) ( )ψ = ψ −, /t e iEtr r ?  (2.2)

In the Schrödinger representation of quantum mechanics, 
the Hamiltonian, 
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Therefore, the Schrödinger equation can be written as
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or con!ned to a limited region of space by an attractive potential, we obtain wave func-
tions that satisfy the above boundary condition Eqn. (2.4), and their energies are quantized.

When a particle is not bound by any attractive potential or it is repelled by a repul-
sive potential, it is free to move as far as it likes in space. For such cases, we !nd that the 
wave function does not vanish at in!nity, and its energy is not quantized. The problem 
then arises of how to reconcile this situation with the normalization condition, and the 
probability interpretation of the wave function. When wave function does not diverge 
or remains !nite at in!nity, a physical meaning can be assigned to such states as being 
idealized mathematical limiting cases which can still be dealt with in the same way as the 
bound state wave functions, provided some care is taken with the physical interpretation.

2.3 Probability Density, Probability Current, and Expectation Value

Current density related to a wave function ψ( , )tr  can be calculated, as ψ( , )tr  evolves with 
time in accordance with the Schrödinger equation:

 ∂ψ
∂

= ψ( , ) ( , )i t
t

H tr
r?  (2.5)

The complex conjugation of Eqn. (2.5) is:

 − ∂ψ
∂

= ψ( , ) ( , )
*

* *i
t

t
H tr

r?  (2.6)

Probability density is de!ned as ( )= ψ ,
2

P tr  and then charge density is given by ρ = qP , 
where q is charge on the particle. We have:

 ( )∂
∂

=
∂ ψ

∂
= ∂

∂
ψ ψ = ∂ψ

∂
ψ + ψ ∂ψ

∂

2
*

*
*P

t t t t t
 (2.7)

With the use of Eqns. (2.5) and (2.6), Eqn. (2.7) can be rewritten as:

 ∂
∂

= ψ ψ − ψ ψ 
1 ( ) ( )* *P

t i
H H

?
 (2.8)

where ( )= − ∇ + =
2

2
2 *H

m
V Hr

? , if ( )V r  is real. We then get:

 

( ) ( )

( ) ( )

∂
∂

= −ψ ∇ ψ + ψ ψ + ∇ ψ ψ − ψ ψ







= −ψ ∇ ψ + ∇ ψ ψ







= − ∇ ψ∇ψ − ψ ∇ψ 

1
2

( )
2
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1
2 2

2
.

*
2

2 *
2

2 * *

*
2

2
2

2 *

* *

P
t i m

V
m

V

i m m

i
m

r r
?

? ?

?
? ?

?

 (2.9)

Postulate 2:

The time-dependent Schrödinger equation governs the time 
evolution of a quantum mechanical system
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The Probability Density 

Probability density is defined as 
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Then charge density is given by ρ = qP, where q is charge 
on the particle. We have: 
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The complex conjugation of Schrödinger equation is
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Therefore
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The Probability Density 

If V(r) is real, we then get: 
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which yields: 
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which yields:
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* *i

m
S

?  (2.10)

S is called probability current, describing the !ow of probability. This also implies:

 ∂ρ ∂ + ∇ =/ . 0t J  (2.11)

Here, we have de"ned current density = qJ S . Eqn. (2.11) is a well-known continuity 
equation.

To understand more about Eqn. (2.10), let us consider a system completely con"ned to a 
volume V so that nothing is going in and out at the surface. On integrating both terms of 
the equation over the entire volume, we get:
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where, we used the Gauss theorem to convert volume integration to surface integration. 
ds is surface element de"ned outwards and integrated over the surface of the volume V. In 
this case, because we con"ned to system completely in the volume, there is nothing at the 

surface and therefore ∫ =.   0dS sx . On interchanging the order of the volume integral and 

the time derivative over P, we write;

 ∫∂
∂

= 03

t
Pd rx  (2.12b)

which states that ∫ 3Pd rx  = constant or a conserved quantity. If the volume does not con"ne 

the full system, the amount in ∫ 3Pd rx  is given by amount of !ow out of volume, as is seen 

from Eqn. (2.12a). This means that ( )S r  and ( )P r  are the current and density, respectively, 
of a conserved quantity.

The de"nition of probability density allows us to calculate expectation value of an 
observable (operator), .A  When a large number of measurements on A  of a particle are 
made in a particular state, the average of different measured values is the expectation 
value. The ψ( , ) 2tr  represents the probability of measurement on A  of a particle at position 
vector r and time t. The expectation value (average of measurements) of A  is de"ned by 
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S is called probability current, describing the flow of 
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where, we used the Gauss theorem to convert volume integration to surface integration. 
ds is surface element de"ned outwards and integrated over the surface of the volume V. In 
this case, because we con"ned to system completely in the volume, there is nothing at the 
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where, we used the Gauss theorem to convert volume integration to surface integration. 
ds is surface element de"ned outwards and integrated over the surface of the volume V. In 
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which states that ∫ 3Pd rx  = constant or a conserved quantity. If the volume does not con"ne 

the full system, the amount in ∫ 3Pd rx  is given by amount of !ow out of volume, as is seen 

from Eqn. (2.12a). This means that ( )S r  and ( )P r  are the current and density, respectively, 
of a conserved quantity.

The de"nition of probability density allows us to calculate expectation value of an 
observable (operator), .A  When a large number of measurements on A  of a particle are 
made in a particular state, the average of different measured values is the expectation 
value. The ψ( , ) 2tr  represents the probability of measurement on A  of a particle at position 
vector r and time t. The expectation value (average of measurements) of A  is de"ned by 

Here, we have defined current density J=S. This equation 
is a well-known continuity equation. 


To understand more about probability current, let us 
consider a system completely confined to a volume V so 
that nothing is going in and out at the surface.
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On integrating both terms of the equation over the entire 
volume, we get: 
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made in a particular state, the average of different measured values is the expectation 
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the full system, the amount in ∫ 3Pd rx  is given by amount of !ow out of volume, as is seen 

from Eqn. (2.12a). This means that ( )S r  and ( )P r  are the current and density, respectively, 
of a conserved quantity.

The de"nition of probability density allows us to calculate expectation value of an 
observable (operator), .A  When a large number of measurements on A  of a particle are 
made in a particular state, the average of different measured values is the expectation 
value. The ψ( , ) 2tr  represents the probability of measurement on A  of a particle at position 
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The de"nition of probability density allows us to calculate expectation value of an 
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where, we used the Gauss theorem to convert volume integration to surface integration. 
ds is surface element de"ned outwards and integrated over the surface of the volume V. In 
this case, because we con"ned to system completely in the volume, there is nothing at the 
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which states that ∫ 3Pd rx  = constant or a conserved quantity. If the volume does not con"ne 

the full system, the amount in ∫ 3Pd rx  is given by amount of !ow out of volume, as is seen 

from Eqn. (2.12a). This means that ( )S r  and ( )P r  are the current and density, respectively, 
of a conserved quantity.

The de"nition of probability density allows us to calculate expectation value of an 
observable (operator), .A  When a large number of measurements on A  of a particle are 
made in a particular state, the average of different measured values is the expectation 
value. The ψ( , ) 2tr  represents the probability of measurement on A  of a particle at position 
vector r and time t. The expectation value (average of measurements) of A  is de"ned by 

is constant or a conserved quantity. Actually, S(r) and P(r) 
are the current and density, respectively, of a conserved 
quantity. 


The definition of probability density allows us to calculate 
expectation value of an observable (operator).
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1. According to displacement law, the wavelength of 
maximum thermal energy from a body at temperature “T” is 
mathematically described as, �max T = 2.898×10-3 m.K. For a 
human body at a temperature of about 21 ℃, the 
wavelength of the thermal radiation emitted: 
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Exercises

1. According to displacement law, the wavelength of 
maximum thermal energy from a body at temperature “T” is 
mathematically described as, �max T = 2.898×103 m.K. For a 
human body at a temperature of about 21 ℃, the 
wavelength of the thermal radiation emitted: 


EXAMPLE 1.1

According to displacement law, the wavelength of maximum thermal energy from a body at tem-
perature “T” is mathematically described as, λmax T= 2.898! 10"3 m.K. For a human body at a
temperature of about 70#F, the wavelength of the thermal radiation emitted:

λmax ¼
2:898! 10"3 m:K

294K
(1:18)

λmax ¼ 10:0! 10"6 m

Thus, the wavelength of thermal radiation emitted by human body is about 10 microns.

PROBLEMS

1.1 Can a charged particle moving with a constant velocity produces an electromagnetic wave?
Why or Why not?

1.2 Give a brief description of all the experiments discussed previously. Explain the observation of
the experiments that cannot be explained by the theory of classical physics.

1.3 What is a black body? Give examples.
1.4 What is the black-body paradox? Explain. Describe the difficulties faced by classical electro-

magnetic theory in describing the properties of black-body radiation.
1.5 Why did Planck introduce discontinuities for the energy of the radiation? Explain Planck’s

hypothesis for explaining the black-body radiation paradox.
1.6 What would be the energy of radiation emitted by an oscillating atom when it transitions from

higher energy state E3→ E1? Assume the frequency of oscillation to be 1012 Hz.

FIGURE 1.6 A schematic showing the differences in the classical and quantum mechanical view of radiation.
According to classical electromagnetism, an oscillating charged particle, such as electron oscillating with some
frequency, emits an electromagnetic wave of the same frequency continuously, moving with the speed of light in
a vacuum, whereas according to Planck, an oscillating charged particle emits radiation discontinuously. It emits
radiation only when it transitions from a higher energy state to a lower energy state. The frequency of the radi-
ation it emits depends on the energy difference between the higher and lower energy levels.

10 Quantum Mechanics

Thus, the wavelength of thermal radiation emitted by 
human body is about 10 microns. 
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2. A light with a wavelength of about 10-7m strikes a 
potassium metal plate (whose work functions is 2.2 eV). 
Determine the velocity of the photoelectrons released from 
the plate. 
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Exercises

2. A light with a wavelength of about 10-7 m strikes a 
potassium metal plate (whose work functions is 2.2 eV). 
Determine the velocity of the photoelectrons released from 
the plate. 

EXAMPLE 1.2

A light with a wavelength of about 10!7 m strikes a potassium metal plate. Determine the velocity
of the photoelectrons released from the plate.

From Equation (1.20), we obtain:

1
2
mev2e ¼ hc

λ
! ϕ

ve ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
me

hc
λ
! ϕ

" #s

(1:22)

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

0:91# 10!30 kg
6:63# 3# 10!26 m:J

10!7 m
! 2:2# 1:6# 10!19 J

" #s

(1:23)

) ve ¼ 19# 105 m=s

PROBLEMS

1.7 What wavelength of light is necessary to produce electrons, also called photoelectrons,
from a sodium metal plate moving with a speed of about 0.001c (c= the velocity of
light)?

1.8 How many photons are released per second from a laser whose wavelength is 680 nm and has
an operating power of about 10 mW?

1.9 Light of 350 nm strikes a metal plate, and photoelectrons are produced, moving as fast as
2.0× 105 m/s. Determine the work function of the metal plate.

1.10 Using Table 1.1, determine the wavelength of incident light for which no electrons will be
released from the zinc metal plate.

1.5 THE COMPTON EFFECT

The Compton effect was observed in 1923 by Arthur Holly Compton. He demonstrated another
experimental observation toward the validation of the particle nature of light. The experiment con-
sisted of directing radiation of high frequency such as X-rays on free electrons. The interaction
between the X-rays and the free electrons lead to deflection of the X-rays with reduced frequency.

TABLE 1.1
Values of Work Functions of Different Metals

Metal Work Function (eV)
Tungsten 4.5

Chromium 4.4

Zinc 4.3

Magnesium 3.7

Sodium 2.3

Potassium 2.2

Cesium 1.9

14 Quantum Mechanics
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3. An X-ray photon of wavelength 0.0300 nm strikes a free, 
stationary electron, and a scattered photon is deflected at 
90o  from the initial position. Determine the momentum of 
the incident and scattered photon. 
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3. An X-ray photon of wavelength 0.0300 nm strikes a free, 
stationary electron, and a scattered photon is deflected at 
90o  from the initial position. Determine the momentum of 
the incident and scattered photon. 

Exercises

For the incident photon: 


EXAMPLE 1.3

An X-ray photon of wavelength 0.0300 nm strikes a free, stationary electron, and a scattered
photon is deflected at 90! from the initial position. Determine the momentum of the incident
and scattered photon.

For the incident photon:

pi ¼
h
λ
¼ 6:63# 10$34 J:s

0:0300# 10$9 m
¼ 2:21# 10$23kg:m=s (1:26)

The momentum of the deflected photon can be obtained by using Equation (1.25)

λ0 $ λ ¼ h
mec

(1$ cos θ) (1:27)

λ0 ¼ λþ h
mec

(1$ cos 90) (1:28)

¼ 3:0# 10$11 þ 6:63# 10$34 J:s
9:1# 3# (10$31þ8) kg:m=s

! 3:24# 10$11

The momentum of the scattered photon:

psc ¼
h
λ
¼ 6:63# 10$34 J:s

0:0324# 10$9 m
¼ 2:04# 10$23 kg:m=s (1:29)

PROBLEMS

1.11 Calculate the energy of a photon of an electromagnetic radiation of frequency 1017 Hz. Also,
determine the momentum carried by the photon.

1.12 Calculate the change in frequency of radiation that is incident upon an electron and deflected at
angle of 30◦. If the frequency of the incident photon is 1021 Hz, what would be the frequency
of the deflected photon?

1.13 What would be the momentum carried by X-ray photons if the frequency of the X-rays is
2× 1018 Hz.

16 Quantum Mechanics
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determine the momentum carried by the photon.

1.12 Calculate the change in frequency of radiation that is incident upon an electron and deflected at
angle of 30◦. If the frequency of the incident photon is 1021 Hz, what would be the frequency
of the deflected photon?

1.13 What would be the momentum carried by X-ray photons if the frequency of the X-rays is
2× 1018 Hz.
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