Quantum mechanics

Chapter II Algebraic Formulation of
Quantum Mechanics
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Linear Vector Spaces

Let us start by defining a linear vector space and listing
out its properties. In general, a linear vector space consists
of a set of elements v, ¢, x,.. (called vectors) and a set of

numbers a, b, ¢, . . . (called scalars), a set of rules each for
the addition and multiplication of vectors.

Definition: A linear vector space V is a set of elements y, o,

X, called vectors, for which the following properties hold:

1.V is closed under addition. This means that if two vectors
y and ¢ belong to V then their sum, written as v + ¢ , also

belongs toV .
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Linear Vector Spaces

2. A vector y can be multiplied by a scalar a to yield a

new, well-defined vector ay that belongs toV ,
3. The addition of vectors is commutative, that is, y+¢ =¢

+y.
4. The addition of vectors is associative, that is, y+(p+y) =
(w+o)+x.

5. There exists a unique element called O that satisfies y +
0 = y for every element yeV.

6. There exists an identity element, E, in V such that Ey =y

for every element yeV .
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Linear Vector Spaces

7. The multiplication of a vector by scalars is associative,
that is, (ab)y = a(by).

8. The multiplication of a vector by a scalar is linear, that
is, a(y+9) = ay + a9 , y(a+b) = ay +by.

9. For each y in V , there exists a unique additive inverse
(—y) such that y+(-y) = 0.

If the vectors and the scalars associated with a given
vector space are real, we say that we are working with a
real vector space. On the other hand, if the vectors and
the scalars are complex, then we say that we are working
with a complex vector space.
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Linear Vector Spaces

Linear independence of vectors: Consider a set of n vectors,
{p., ¢., &.,.., d.}, and their linear combination a,¢, +a.¢, +a.¢.

+...+a,9,, where a;= 1,2,3,...,n are all constants. The vectors

of this set are said to be linearly independent if the
equation

a 91 +axp +azs+...+a, 0, =0

Consider hold only if a,=a,=...=a,=0. If this condition is not
met, we say that the set is linearly dependent.
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Linear Vector Spaces

Note that if a set of vectors is linearly dependent, one of
the vectors can be expressed as a linear combination of the
others. For instance, assume that

ay+bo+...+cy =0,
where not all of the scalars are zero. Then one of the

vectors can be expressed in terms of the other vectors as
follows. Let a be non-zero. Then, we have

V=po+...+qx,

and

é C

pP=—— ..., =——.
a a
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Linear Vector Spaces

A linear vector space, V , is said to have dimension n, if the
maximum number of linearly independent vectors in V
equals n.

If this number n is finite, the linear vector space is called
finite. On the other hand, if it is possible to find any
number (as large as possible) of linearly independent
vectors in it, then it is called infinite.

Basis: Any set of n linearly independent vectors, {¢}, i = 1,

2, 3,...,n, belonging to the n-dimensional linear vector space,
V , is called its basis. The elements, ¢., ¢., ¢,, . . ., of this

set are called the basis vectors.
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Linear Vector Spaces

Moreover, a basis is said to be complete if it spans the
entire space; that is, there is no need to introduce any
additional basis vector.

It also means that every vector y of a linear vector space

V, with a complete basis, can be written as a unique linear
combination of the basis vectors:

V=ci01+c201+c3¢03+ ...+ ¢, 0y,

where the expansion coefficients ¢, i=1,2,3,..., nare
called the components of the vector y in the basis {¢}.
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Hilbert Space

In quantum mechanics, the linear vector spaces are, as a
rule, infinite-dimensional. The so-called Hilbert space plays
an exceptional role among all the infinite-dimensional linear
vector spaces.

A Hilbert space is equipped with an inner product that is
essentially positive and allows to introduce metric
relationship among various quantities.

In this sense, a Hilbert space is a natural generalization of
Euclidean spaces to infinite-dimensional spaces.
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Hilbert Space

A Hilbert space H is a collection of vectors, v, ¢, x,... and
scalars, a, b, c,... that satisfies the following properties.

1. H is an infinite-dimensional linear vector space, that
is, it has infinite dimensions and possesses all the
properties of a linear vector space discussed earlier.

2. There exists in H a real inner product which is finite
and satisfies all the aforementioned properties.

3. H is separable. v —wy,| <e.

4. His complete.  lim [y,—yp| =0 lim[ly—y,l=0.
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Square-Integrable Functions

A In the case of function spaces, a “vector” element is
given by a complex function and the scalar product by integrals.
That is, the scalar product of two functions y(x) and ¢(x) is

iven b
° ¢ (w, ¢)=/w*(x)¢(x)dx.

If this integral diverges, the scalar product does not exist. As
a result, if we want the function space to possess a scalar
product, we must select only those functions for which
(w.,9) is finite. In particular, a function y(x)is said to be

square integrable if the scalar product of y with itself,
(v, w)=/|w(X)I2dx,

is finite
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Dirac Notation

We have already stated that vector spaces in quantum

mechanics are complex. Therefore, we assume the elements
of our n-dimensional linear vector space to be complex. We
also assume the vector space to have a fixed basis {9}, i=

1, 2, 3,...,n.

Dirac notation: We introduce the notation ly) for a vector y

belonging to an n-dimensional linear vector space V, and we
call it a ket vector or simply a ket.

In fixed basis {¢}, i =1, 2, 3,..., n, a ket will be

characterized by its complex components y;, i =1, 2, 3,...,n.
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Dirac Notation

It is convenient to arrange these components in to a column
vector and write a ket as a column vector:

(1/11\
Y2

Y3

<
||

\ v /
Dual vector: The familiar notion of a “scalar product” is

incorporated by introducing a dual vector, written as (yl,

for each of the vectors, ly), of V.
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Dirac Notation

In Dirac’s language, it is called a bra vector. The bra (yl
dual to a ket ly) is constructed by transposing the ket

(that is, we write it as a row vector) followed by complex
conjugation. In other words:

(‘lfl\
['5)
Y3
If [y)y=| . |, then (wl=(vi v vi . . . wyi).

\ v /
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Dirac Notation

This method of complex conjugation is known as hermitian
conjugation or dagger toperation: (yl = (ly))t .

There is a one-to-one correspondence between bras
(constructed in this manner) and kets, that is, for a given
ket ly), there is a unique bra (yl. In addition, the following

relations hold good:
(@) If [A) = o), then (A| = o (u|.

(b) If|A) = |ap)+ B[v), then (A| = o (u[+ B*(V|.
The set of bras, dual to the kets of V , also forms a linear
vector space, which is called the dual (to V)vector space.

It is denoted as V*.
W



Dirac Notation

The inner (or, scalar) product: The inner product (also called
the scalar product) of two vectors ly) and |¢) (written as

(ply)) is defined by the following expression:
Vi
( Y2 \

Y3
Wlvi=(or 6 97 - - . 9 )| -

\ v/

= (v + v+ O3y o+ Grun) = ) O W
i=1
We call (ply) a ‘bracket’.

@ | v) = / &GOt dr
W



Dirac Notation

Properties of the inner product:
Aly) = (ylA)" = (ylap)” = (a(ylu))” = a™(ylu)" = o™ (u|y).
(vl (a]9)+Blo)) = aly|¢)+B(¢|w),
((ay|+(Bol)|¢) = " (y]§) +B" (®]9),

(vly) > 0.
If the inner product between two vectors is zero, (¢ly) = O,

we say that the vectors are orthogonal.

Norm of a vector: The square root of the inner product of a
vector with itself is called the norm, and is written as:

lyll = v (vly).
W



Dirac Notation

A vector ly) is said to be normalized if its norm is equal to

1:
[yl =V (yly) =1.

Orthonormal and complete basis: An orthonormal basis
consists of the basis vectors {l¢.>},i=1,2,3,...,n,

which have a unit norm and are pairwise orthogonal:
(il0j) = 0ijs  [|9ill = v/ (9i[¢3) = L,

Let us first assume the basis to be discrete. An arbitrary
vector, ly), belonging to the linear vector space can be

expanded in this basis as
V) = Zci 9i),
W



Dirac Notation

where the expansion coefficients ¢ = (¢ily) are called the
components of the vector v in the basis {I¢)}. Note that if |
y) is normalized to unity, i.e., (yly) =1 then

(yly) ZZ Oilc; cjl @) ZZC?CJ<¢i‘¢j>
= ZZC cj0ij = Z’|c,|2 = 1.

and

Y leil =Lt = Y vl (0lv) = (Zm @) —1.

Completeness condition

Z\¢i><¢i’ =1I.
W



Dirac Notation

In the case of a continuous basis in which the vector
functions depend on a continuous parameter «, the closure

[ dalg(a)(o(@) =1

Finally, let us note that in an or’rhonormal basis {¢}.i =

relation reads:

1,2,3,...,n, an arbitrary ket, ly) (belonging to the vector

space) is represented by a column matrix

[ (oily) \ ( c1 )
(02|¥) C2
(03|w) C3
ly) = =
\ @lv) ) \ e )
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Schwarz inequality

For any two states ly) and |¢) of the Hilbert space, we can
show that
{w @) < (w | w)g]| ).

If ly) and |¢) are linearly dependent (i.e., proportional: |y)
=a |¢), where is a scalar), this relation becomes an equality.

The Schwarz inequality is analogous to the following
relation of the real Euclidean space

A-B> <| 41> BJ.
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Triangle inequality

Viv+élw+e) < Jwlw) + Vgl ).
If ly) and |¢) are linearly dependent and if the

proportionality scalar is real and positive, the triangle
inequality becomes an equality. The counterpart of this
inequality in Euclidean space is given by

|4+ Bl < |4] +1Bl.
ly) and |¢p) are said to be orthonormal if they are

orthogonal and if each one of them has a unit norm:
(wl¢) =0, (yly)=1 (pl¢) =1
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Observables and Operators

The measurable physical characteristics of a system, such as
position, momentum, energy etc, are called observables and
are represented by operators.

Mathematically, an operator, O, can be defined as a map O :
V — V that takes a vector, belonging to a vector space V, to
another vector also belonging to V.

In general, an operator is characterized by its action on the
basis vectors of V and hence, in a chosen basis, it is
represented by a matrix.
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Observables and Operators

The action of an arbitrary operator A on a ket ly) € V is

written as:

Aly) =19).
The product of an operator A and a number (complex) a is
an operator aA, which takes a vector ly) € V into the

tora(Ay)) ev: i
vector a(Ay)) € (aA)|y) = a(Aly).

The sum, C, of two operators A and B is defined as
Cly) = (A+B)|y) =Aly)+Bly).
The operators in quantum mechanics are linear.

Alocly)+B o)) = aA|y)+BA|9).
W



Observables and Operators

Consider an operator A acting in V

¢) =Aly).
Let us introduce an operator A' which acts in dual space V-
by taking the bra (i,

N

(9] = (wlA".
Therefore,
(WIAT[x)" = (x|Aly).
Outer product: The outer product between a ket and a bra
is written as

) (9.
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Operators

Unity operator: it leaves any ket unchanged
I'ly)=1y).

The gradient operator:

V() = @ () /ox)i + @ () /0y)] + @y (F)/02)k.

The linear momentum operator:
Py () = —ihVy ().

The Laplacian operator:

V2 () = 0%y (F)/ox* + 82w (F)/0y* + 82w (r)/0z*.
The parity operator:

Py (F) = y(=r).
R 00 DO I T —



Products of operators

The product of two operators is generally not commutative:
AB # BA.
The product of operators is, however, associative:
ABC = A(BC) = (4B)C.
We may also write

AN AM An+m

A A = A
and

AB | y) = AB | y)).
The expectation or mean value of an operator A with respect

to a state A
A A
<A>:<wl v
(v | w)
W




Hermitian Adjoint

The Hermitian adjoint, or simply the adjoint, AT , of an
operator A is defined by this relation:

wid 1g)=g141m"
To obtain the Hermitian adjoint of any expression, we must
cyclically reverse the order of the factors and make three
replacements:

*

Replace constants by their complex conjugates: ol =a,

Replace kets (bras) by the corresponding bras (kets):
()T = (w land ((w DT =] w).
Replace operators by their adjoints.
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Hermitian Adjoint

Following these rules, we can write

dht = 4,
@t = il
dnt = 'y,
A+brcaDt = i +atyef+nt
dpepyt = pretatal,
(ABCD | wnt = (w | DICTBT AT,

The Hermitian adjoint of the outer product is given by

() DT =)y |-
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Hermitian Adjoint

and

widlgy = y1g) = w1 dg.
An operator A is said to be Hermitian if it is equal to its
adjoint AT

A=Al or wldlg) = @14l w

On the other hand, an operator B is said to be skew-

Hermitian or anti-Hermitian if

A A A

Bl=—B or (y|Bl¢)=—p|B|y)
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The Projection Operator

An operator P is said to be a projection operator if it is
hermitian and equal to its own square

p=pT, P=p
Clearly, the unit operator I satisfies these properties and is
an example of a projection operator.

Consider an operator, A, equal to the outer product of a
ket and its corresponding bra:

A=[9)(8].
By definition it acts on a ket |{) through the rule

Aly) = (|0)(8]) [w) = [6) ($]w).
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The Projection Operator

The claim is that if |) is normalized to unity, the operator

A is a projection operator.

Consider the sum of two projection operators P,and P,

It is quite clear from the aforementioned equations that P
will satisfy the required properties for being a projection
operator only if P,and P, commute. It is also clear that, if P,
and P.commute, P does satisfy the required properties for
being a projection operator.
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Commutator Algebra

The commutator of two operators A and B, denoted by [A, B],
is defined by

A, B1= 4B - B4

and the anticommutator {A, B} is defined by
{A, B} = AB+ BA.

Two operators are said to commute if their commutator is
equal to zero and hence AB=BA. Any operator commutes

with itself: o
[A, A] = 0.

Note that if two operators are Hermitian and their product
is also Hermitian, these operators commute

byt =814 = 34,
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Commutator Algebra

We can establish the following properties about the
commutator.

Antisymmetry: [4,
Linearity: (A, B+C+D+--1=[4, B1+[4, C1+[4, D]+

Hermitian conjugate of a commutator: [4, BT =87, /IT]

Distributivity: [A, BCl=1[A, BIC + B[A, C]

[4B, C]=A[B, C]+[4, C]B
Jacobi identity: [4,[B, CN1+[B, [C, A1+ [C, [4, B]]=0
Operators commute with scalars:  [4, 5] =0

23/09/2022 Jinniu Hu =



Uncertainty Relation

An interesting application of the commutator algebra is to
derive a general relation giving the uncertainties product
of two operators, A and B.

Let A and B denote the expectation values of two Hermitian
operators A and B with respect to a normalized state vector

(A) = (y | 4] w) By = (w | B |y
Introducing the operators
Ad =4 — (A), AB =B — (B),
and
(AA)? = A7 = 2404) + (4)? (AB)? = B2 —2B(B) + (B)2,
Therefore
W I (AD? | y) = (AD?) = (40— (D2 (AR = (B%) — (B2,
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Uncertainty Relation

where,

(A =y 1 4w (B%) = (y | B% | w).
The uncertainties AA and AB are defined by

Ad = \[{((AA)?) = \/</12> —(4)2,  AB=,/((AB)?) = /<é2> —{

Let us write the action of the AA operators on any state as

o>

)2,

follows:
)= ady) = (A= (D) 1w, 1¢) =aBlw) = (B-(B)1w.

The Schwarz inequality for these states

x| o) = x| ).
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Uncertainty Relation

Since operators A and B are Hermitian, AA and AB must also

be Hermitian:

e\

adl = 4T = (A = A—(A)=AA
ABT =B — (B)=AB.
Thus, we can show the following three relations:

1) =y | (AD?* | w),
(¢ | ¢) = (w | (AB)* | w),
(x | d) =y | AAAB | y).

The Schwarz inequality leads

(AAPNABY) = |(adak)|

23/09/2022 Jinniu Hu =



Uncertainty Relation

Notice that the last term AAAB of this equation can be

written as

1

. a1 . AU I
AANB = [AA, MBI+ S(AA, ABY =14, B]+ (A4, AB),

(\®)

Since [A B] is anti-Hermitian and [AA AB] is Hermitian and
since the expectation value of a Hermitian operator is real
and that the expectation value of an anti-Hermitian
operator is imaginary. Therefore

2 1| . o
=3l

VA&AE>
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UNI[,&

Uncertainty Relation ﬂ< % 4l /’

lg\q

Since the last term is a positive real number, we can mfer

the following relation:

A~ A 12
kAAAB)

Finally

. .
AAAB > 3 ‘([A, B])‘.

This uncertainty relation plays an important role in the
formalism of quantum mechanics for position and momentum
operators

.

h
AxAp, > —, AyApy, > > AzAp, >

DO | S
DO | S

A VoY A A Vo oY oY

Since (X, Pl =ihl, [Y, P,] =ik, [Z, P, =ihl,
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Functions of Operators 4% %z £ %7

Let F(A) be a function of an operator A. If Ais a linear
operator, we can Taylor expand F(A) in a power series of A:

o0

FA) =S ayd",

n=0
where a,is just an expansion coefficient. As an illustration
of an operator function, consider exp(aA) where ais a
scalar which can be complex or real. We can expand it as
follows:

0.0 n 2 3
aﬁ_ a_/\n_/\ A a_/\z a_/\3
e _Eon!A _I—I—aA—I-z!A —|—3! +
n—
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Functions of Operators

If A commutes with another operator B, then B commutes
with any operator function that depends on A:

[A, B]=0 = [B, F(A)]=0;
in particular, F(A) commutes with A and with any other
function, G(A), of A:
[4, F()]=0, [4', F()]=0, [F(4), G(AD]=0.
The adjoint of F(A) is given by
(P = (A,
Note that if Ais Hermitian, F(A) is not necessarily

Hermitian; F(A) will be Hermitian only if Fis a real function
and A is Hermitian.
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Inverse and Unitary Operators

Inverse of an operator: Assuming it exists the inverse A-! of
a linear operator A is defined by the relation

A—l A A A —

A A=44 =1,
where I is the unit operator, the operator that leaves any

state unchanged.

Quotient of two operators: Dividing an operator A by
another operator B (provided that the inverse B-!1exists) is
equivalent to multiplying A by B-1:

A /\A_l
[ o B o [

The side on which the quotient is taken matters:
A 1 . [~ A
~=A==AB"" and —A4=B7"4
B B B
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Inverse and Unitary Operators

We may mention here the following properties about the

inverse of opergtors: 1 » o
(ﬁééb) =D ICTB7 A, (/I”) = (/I‘ ) .
Unitary operators: A linear operator U is said to be unitary

if its inverse U-! is equal to its adjoint U T:
0T =0~ Cor oot =0to=1. .
The product of two unitary operators is also unitary, since
. OO =@NHTTOHY =0@FiHoT =007 =1,
This result can be generalized to any number of operators;

the product of a number of unitary operators is also
unitary, since

A A A A

(ABCD..y(ABCD--oT = aBepe.optetatal = ipephetstil
f
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Eigenvalues and Eigenvectors

A state vector ly) is said to be an eigenvector (also called an

eigenket or eigenstate) of an operator A if the application of
A to ly) gives

Al y) =aly),
where a is a complex number, called an eigenvalue of A. This
equation is known as the eigenvalue equation, or eigenvalue
problem, of the operator A. Its solutions yield the
eigenvalues and eigenvectors of A.

A simple example is the eigenvalue problem for the unity
operator I :

I'y)=|w).
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Eigenvalues and Eigenvectors

This means that all vectors are eigenvectors of I with one
eigenvalue, 1. Note that

Aly)=aly) = A" |y) =a"|y) and F(A)|y)=F@)]|y).
For instance, we have

Aly)y=aly) = 'ly) =y
For a Hermitian operator, all of its eigenvalues are real and

the eigenvectors corresponding to different eigenvalues are
orthogonal.
If /IT = /I, A | ) = a, | ) — a, = real number, and (¢, | ¢n) = Oun-

Since A ¢y = an | dp) =  (Im | A|dn) = anldm | Jn),

(b | AT = @i | = (S | AT | ) = @y (m | bn)-

(a” _a;:a)<¢m |¢n> = 0.
W



Eigenvalues and Eigenvectors

The eigenstates of a Hermitian operator define a complete
set of mutually orthonormal basis states. The operator is
diagonal in this eigenbasis with its diagonal elements equal
to the eigenvalues. This basis set is unique if the operator
has no degenerate eigenvalues and not unique (in fact it is
infinite) if there is any degeneracy.

If two Hermitian operators, A and B, commute and if A has
no degenerate eigenvalue, then each eigenvector of A is
also an eigenvector of B. In addition, we can construct a
common orthonormal basis that is made of the joint

eigenvectors of A and B.
W



Eigenvalues and Eigenvectors

The eigenvalues of an anti-Hermitian operator are either
purely imaginary or equal to zero.

The eigenvalues of a unitary operator are complex numbers
of moduli equal to one; the eigenvectors of a unitary
operator that has no degenerate eigenvalues are mutually
orthogonal.

We can write L
(b | UV | b)) = aan (b | bn).

Since U TU=I this equation can be rewritten as
(@man — D{gm | ¢n) =0,
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Matrix Representation of Kets, Bras _

Consider a discrete, complete, and orthonormal basis which
is made of an infiniteset of kets ¢, ¢., ¢,,...,¢. and denote it

by {l¢.)}. Let us now examine how to represent the vector
within the context of the basis {|¢.’}. The completeness

property of this basis enables us to expand any state vector
ly) in terms of |¢,)

lw) =1]y) = (Z|¢n><¢n |)| w) = D an | ¢n),
n=1 n=1

So, within the basis {|¢.)}, the ket is represented by the set

of its components, a, a,, a,, along ¢,, ¢., ¢,,.., respectively.
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Matrix Representation of Kets, Bras _

Hence |y) can be represented by a column vector which has a

countably infinite number of components:

/

\

(1| w)
(P2 | w)

Bn | )

\

dn

/

|

[«
aj

\

/

The bra <yl can be represented by a row vector:

(v |— (v | ¢1) (v | ¢P2)

= (D1 lwy)" (2| w)

= @@ ai -

ar ..

oy L @) )
g ) )
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Matrix Representation of Kets, Bras _

Using this representation, we see that a bra-ket is a complex
number equal to the matrix product

E

(wl|¢)=(@a} a} - a* )| : =Za;§bn,
by, n

\

where b,= <¢.| ¢). We see that, within this representation,

the matrices representing and are Hermitian adjoints of
each other.
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Matrix Representation of Opera’rors

4 4l k F

For each linear operator A, we can write

A=14l = (Zwbn ($n )A(Z|¢m><¢m |)=2Anm|¢n><¢m f
m=1 nm

where A,.is the nm matrix element of the operator A:
Aum = (n | 4| dm).

We see that the operator A is represented, within the basis
{9}, by a square matrix A

/ A1 A Az - \
Ax1 Az Az
A=\ A3 A3 A - |>

U
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Matrix Representation of Operators (% %z £ %7

For instance, the unit operator Iis represented by the unit
matrix; when the unit matrix is multiplied with another

matrix, it leaves that unchanged:

[
Y

In summary, Kets are represented by column vectors, bras by
row vectors, and operators by square matrices.

OO =
o = O
_0 O

___—

I =
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Hermitian and Unitary Operators

Let us see how do we get the hermitian conjugate of an
operator in practice. Let the matrix A = (A;), where i stands
for the number of rows and j for the number of columns,
represent an operator A in a linear vector space.

The first step is to find the matrix AT which is transposed of
the matrix A.

T
Al A Ags A Ay Az
Al = | Ay Ap Axp = A Axn Az |.

Az Aszp  Aszz A1z Az Az
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The second and the final step is to find the matrix complex
conjugate to the matrix A.

*

Al A Az Al Al Al
Ayt Axn Az | =| Ay Ay An
Az Az Ass Ay A3 A

Thus, for any operator F, the corresponding hermitian
conjugate operator, F¥, is given by
Fl*l F2*1 F3*1
F'=| F n o
F1*3 F2*3 F3*3
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Trace of an operator

The trace Tr(A)of an operator A is given, within an
orthonormal basis {l¢.’}, by the expression

Tr(A) =D (n | A1 $n) = D Auns

n

we will see later that the trace of an operator does not
depend on the basis. The trace of a matrix is equal to the
sum of its diagonal elements:

A1 A Ais
Az Az Az :
Tr A31 Azp Azz - = A1+ Ay + A3z + - --.

We can ascertain that
Tr(d") = (Tr(d))",
Tr(@Ad + BB +yC+---) =aTr(A) + BTe(B) + y Tr(C) + - - -,
300 20 T T —



Matrix Representation

Matrix representation of

. [ ¢) =4 y)
can be written as

(Z | ) (b |) | #) =(Z | ) (b |)fi(z | Bm)(Pm |)| w)

therefore

an | dn) = zam | &n){Pn | //1\ | &m) = ZamAnm | &n),

nm

where b, = (¢ | @), Aum = (@ | A | ), and am = (P | w).

Hence , P
4
AN R Y
by | = | 431 Az A3z - as

) U J0)
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Matrix Representation

Matrix representation of

(1Al w)
we have

(@14 (¢ | TAI | y) = (| (Z | ) (n |)/I(Z | fm) (D |) | y)
n=1 m=1

= D AP 1 budidn | A1 Pm)igm | W)

nm
*
m

This is a complex number; its matrix representation goes as

follows: )
1n A Az - aj
. L. / Ay A Az - \ / a \
(@l A|ly)— (b] by by ---) Az Azp Azz - -- as :
\ : : S ) K : )
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Matrix Representation 1% %z £ %

Properties of a Matrix A

Realif 4= A4%or 4y, = 4,,,
Imaginary it 4 = —A* or A, = —A4;,,
Symmetric if 4 = AT or Ay = Apm

or A, = —A,, with A, = 0

Antisymmetric if 4 = —A4
Hermitian if 4 = AT or Apn = 45,

Anti-Hermitian if 4 = —AT or Apn = —4,,,

Orthogonal if A7 = A vor 44T =T or (AA)n = Omn

Unitary if AT = 4=V or 44T =T or (AAT)mn = Omn
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Unitary Transformations

One can choose one or the other set of basis vectors in the
Hilbert space H of states of a quantum mechanical system
to represent the state vectors and the operators belonging
foH.

Therefore, it is important to ascertain that the change in
basis is done in such a way that the basic physical
consequences remain unchanged.

Evidently, for this to be the case, the norm of the state
vector in the new basis must not change.
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Unitary Transformations

Let {|¢.)} and {ld’.)} be two bases in H . Assume that we
change from the so-called original (old) basis {l¢.)} to the
new basis {l¢’)}. We can expand each ket |¢, of the old

basis in terms of the new basis |¢’,) as follows:

where

The matrix U, providing the transformation from the old
basis |¢.) to the new basis |¢’,), is given by
( (@] 1 1) (P | d2) (P71 | #3) )
U =

(5 1 d1) (P51 d2) (P51 @3)
(@5 1 1) (D5 | ) (d5 | #3)
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Unitary Transformations

Let us prove that the matrix U is indeed a unitary matrix.
We have

G | 00T | g) = (| U(Z | 1) (1 |) OV 1) = D U,
where l l

Ui = (m ULty US = (& 10T [ g0) = (60 1 U | )"

Therefore

D UmUp =D | d0)idi | 8) = (b | B1) = mn-
[

[
We can infer

<¢m|ﬁUT|¢n>:5mn,0rUUT f
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Unitary Transformations 4% %z £ %7

The matrix elements A, of an operator A in the new basis
can be expressed in terms of the old matrix elements,

Ay = () | (Z | i) |)/I(Z | 1) (e |) | $) =D UnjdjiUy;
J [ jl
that is,
/linew = lA]A’ZioldlA]]L or /liold = 0T//I\newﬁ
We may summarize the results of the change of basis in
the following relations:

| Vnew) = (A]l Wold) (Wnew | = (Wola | UT, //inew — U/,ioldUT,
or,

| Woia) = UT | Wnew), (Woid | = (Wnew | Ua /Iold = 0T/jnew0~
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Unitary Transformations

The transformation matrix U is unitary. The components
<¢’ ly> of a state vector ly> in a new basis |¢’.) can be

expressed in terms of the components <¢,|ly>of ly> in an
old basis |¢,> as follows:

(G L W) = (B | 11 y) = (¢, |(Z|¢n><¢n |) W) =D Unnldn | w).

This relation, along with its complex conjugate, can be
generalized into

| View) = Ul Wold) (Wnew | = (Word | UT
Let us now examine how operators transform when we

change from one basis to another.
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Matrix Representation of the
Eigenvalue Problem

Inserting the unit operator between A and and multiplying

by <¢.|, we can cast the eigenvalue equation in the form

(¢ | /I(Z | ) (n |)| w) = algm | (Z | Bn) (bn |)| w)

or

D Awnpn | w) = aD (¢n | ¥)oum,

which can be rewritten as

Z[Amn— ] | w) =0,

with
Apn = (bm | A | bn).
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Matrix Representation of the %
. NGl e
Eigenvalue Problem &7

il k2

This system of equations can have nonzero solutions only if
its determinant vanishes:
det (Apmn — adum) = 0.

The problem that arises here is that this determinant
corresponds to a matrix with an infinite number of columns
and rows. To solve above equation, we need to truncate the
basis and assume that it contains only N terms,

A1 —a A1 A1z Ain
A Ay —a A3 X Ao
A3 A3y Az—a -+ A3y —0.
AN An2 An3 o+ ANN —a

23/09/2022 Jinniu Hu =



Matrix Representation of the
Eigenvalue Problem

This is known as the secular or characteristic equation. The

solutions of this equation yield the N eigenvalues a,, a,, a,, , a,,
since it is an Nth order equation in a. The set of these N
eigenvalues is called the spectrum of A.

Knowing the set of eigenvalues a, a., as, ... , ayv, we can easily
determine the corresponding set of cigenvectors, ¢, ¢., ¢,

If a number of different eigenvectors have the same
eigenvalue, this eigenvalue is said to be degenerate. The order
of degeneracy is determined by the number of linearly
independent eigenvectors that have the same eigenvalue.
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Matrix Representation of the
Eigenvalue Problem

In the case where the set of eigenvectors ¢.of Ais complete

and orthonormal, this set can be used as a basis. In this basi:
the matrix representing the operator A is diagonal,

ar 0 O
O a O .
A: O O a3 . e

the diagonal elements being the eigenvalues a,of A, since

(Pm |/i | $n) = an{dm | Pu) = anomn.
Note that the trace and determinant of a matrix are given,

respectively, by the sum and product of the eigenvalues:

TI'(A) = Zan:a1+a2+a3+"',
n

det(4) = Han =ajaraz - -.
n
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Matrix Representation of the %
Eigenvalue Problem o *74 £ %7

Some theorems pertaining to the eigenvalue problem

1. The eigenvalues of a symmetric matrix are real; the eigenvectors form
an orthonormal basis.

2. The eigenvalues of an antisymmetric matrix are purely imaginary or
zero.

3. The eigenvalues of a Hermitian matrix are real; the eigenvectors form
an orthonormal basis.

4. The eigenvalues of a skew-Hermitian matrix are purely imaginary or
zero.

5. The eigenvalues of a unitary matrix have absolute value equal to one.
If the eigenvalues of a square matrix are not degenerate (distinct),
the corresponding eigenvectors form a basis (i.e., they form a linearly
independent set).
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Representations

The orthonormality condition of the base kets of the

continuous basis |y, is expressed Dirac’s continuous delta
function:

ok | ) = ok = k),
where k and k’ are continuous parameters and where 5(k,k’)
is the Dirac delta function which is defined by

1 [t
S(x) = — / e dk.

27 J_oo

As for the completeness condition of this continuous basis,
by an integral over the continuous variable

+00 R
/ dk | 70 e | = 1,
—00

23/09/2022 Jinniu Hu =



Representations

Before dealing with the representation of kets, bras, and
operators, let us make a short detour to list some of the
most important properties of the Dirac delta function

o(x) =0, for x #0,
/bf(x)é(x — X0) dx = { f(xo) if a <xo<b,

elsewhere,

d"o(x — d"
/ f() ()C a)d _( l)n f(x) ,

X=d

0F —rN)=0x—x")o@y —y")o(z—-2z) = o(r —r"Ho@ — 0)Hd(p — ¢').

72 qin
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Representations

The representation of kets, bras, and operators can be
easily inferred from the study that was carried out in the
previous section, for the case of a discrete basis.

| v) — (xe | y)

Operators are represented by square continuous matrices
whose rows and columns have continuous and infinite
numbers of components:

. oo Ak, KD

\." -
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Position Representation

In the position representation, the basis consists of an
infinite set of vectors Ir) which are eigenkets to the position

operator R: .
R|F) =r]|F),
where r (without a hat), the position vector, is the eigenvalue
of the operator R. The orthonormality and completeness
conditions are respectively given by

Flr)y=0o¢—-7") = o(x—x)o(y -y -2,

/d3r|?><;7| = I,

since, the three-dimensional delta function is given by

o= 1 ik-(F =7
0F —71") = (27[)3/d3kek( ).
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Position Representation

So every state vector can be expanded as follows:

| y) = /d3r|?><7| ) = /d3rw(?)li7>,
where
(Flw) = w@).
This is known as the wave function for the state vector. The
scalar product between two state vectors, can be expressed

in this form:
Glv) = (&) (/d3r )7 |) ) =/d3r¢*(7)w(?)-

Therefore
FIR"M P =F"6G —71).

and )
GI1R|y) = /d3r?<¢l7><7|w>=[/d3r7<wl7><7l¢>]

— (y| R
W



Momentum Representation

The basis |p) of the momentum representation is obtained
from the eigenkets of the momentum operator P:

PIp)=plp)
The orthonormality and completeness conditions of the
momentum space basis |p) are given by

B1p)=0G-p) and [ &pIpGI=1
Expanding the vector state in this basis, we obtain
|w>=/d3p | B){p | w>=/d3p‘i’(ﬁ)lﬁ>,

where the expansion coefficient ¥(p) represents the

momentum space wave function.
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Connecting the R and P Representations

To find the expression for the transformation function <rip>,
let us establish a connection between the position and
momentum representations of the state vector :

Fly) = <7|(/d3p | p)(p |)|w> =/d3p 7 | Y (p);
that is
ve) = [0 1Y)
Similarly, we can write
Y(p) = (ply) = (P /d3r|?><?| v) = /d3r<ﬁ|7>w(:7).
The last two relations imply that y(r) and ¥(p)are to be
viewed as Fourier transforms of each other.
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Connecting the R and P Representations

In quantum mechanics the Fourier transform of a function
f(r) is given by

£ = —

Qrh)3/?

/d3p P g(p);

notice the presence of Planck’s constant. Hence the function
<rlp> is given by

1 iaﬁ
- - L pl"/h
<7" |p> - (27Th)3/2e .

This function transforms from the momentum to the
position representation. The function corresponding to the
inverse transformation is given by

1 l.—>—>
- 4 G Sk _pr/h
<p|l"> - <7"|p> - (271'/1’2)3/28
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Connecting the R and P Representations

If the position wave function
] s
[ &permuy
is normalized, its Fourier transform

- 1 —l_)lj -
Y(p) = T /d3re Pry )

must also be normalized, since

oy o S 1 g .
/d3p‘1’*(p)‘1’(p) = /d3p‘1’*(p)[(2nh)3/2/d3”e ”"’"/hw(r)]

- 1 x/2N —IipF
—_ /a’3r l//(r)[(znh)3/2/d3p‘}’ (p)e P /h]
_ / Py @yt @)
= 1.
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Connecting the R and P Representations * % %z k£ D4
.. 4 A g

The form of the position operator R in the momentum

representation can be easily inferred from the

representation of Pin the position space. In momentum

space the position opera'ror can be written as follows:
zha— (J=x,y,2)

The commutator [R, P] in 'rhe position representation

A A

[Rj, Pl =ihdjk,  [Rj,R]=0, [P, P]=0  (j, k=x,y,2)

and — " — -
(X", Pl = ihnX""!, [X, P"] = ihn P!
oL L df(X) S TP
), Pl=in= s = [P, F(R)|=—inVF(R)),
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Exercise

1. Show that the vectors

5 1 7
vi=| 3 |, w=| 2|, wyp=| 7
4 3 10

are linearly dependent.
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Exercise

1. Show that the vectors

5 1 7
vi=| 3 |, w=| 2|, wyp=| 7
4 3 10

are linearly dependent.

Solution
5 1 7 Sa+b+Ic 0
al 3 +b| 2 +c| 7 = 3a+2b+c = 0 |.
4 3 10 4a+3b+ 10c 0

For instance, it is satisfied for a = 1,b = 2 and ¢ = -1, which
shows that |.is a linear combination of the other two

vectors: {,= ¢, + 2¢,.
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Exercise

2. Suppose that |¢,) , |$.) , lp;> constitute an (Pl =3..
Consider the following kets given in this basis:
W) =3i|¢1) +2|¢2) +i|¢3),
0) =21¢1) —=3[¢2) +5[¢3).
(a) Find Yl and <¢l.
(b) Compute the inner product (¢l}) and show that (pl)) =

Wlg) .
(c) Let a=2+3i and compute |ay).
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Exercise

2. Suppose that |¢,) , |$.) , lp;> constitute an (Pl =3..
Consider the following kets given in this basis:
W) =3i|¢1) +2|¢2) +i|¢3),
0) =21¢1) —=3[¢2) +5[¢3).
(@) Find | and (@l.
(b) Compute the inner product (¢l}) and show that (plP)* =

Wlg) .
(c) Let a=2+3i and compute |ay).

Solution: (Wl = (3i)" (¢ +2 (2| + (0)"93) = —=3i (¢1]| +2 (| —i (93]

(O] = 2(P1]| — 3 (2| +4(¢3].
W



Exercise

(b)  (olw) = (200113 (o] +4(9s]) (3i[01) +2[2) +i[93))
= 60 (P1|01) +4(01]02) +2i (P1|P3) — i (P2|P1) —6(P2|) — 3i (P2|03)
+ 12i (¢3|01) + 8 (P3]¢2) + 4i (P3]¢3)

—6i—6+4i=—-6+10i.
(Wlo) = (=3il¢1) +2|d2) —i|d3)) (2(P1] —3 (2| +4(03])

= —6i (¢1]01) + 9i (¢1]¢2) — 12i (¢1]¢3) +4($a|d1) — 6 (2| P2) + 8 (¢a|3)

—2i(¢3]¢1) + 3i(P3|¢2) — 4i {P3]93)
= —6i—6—4i=—-6—-10i = ((/)‘l//>*

lay) = (2+3i)(3i[¢1) +2|¢2) +i|d3)) = 6i[¢1) +4|¢2) +2i[¢3)
—9(01) +6i|¢) —3|93) = (—9+6i)[d1) + (4+6i) [¢2) — (3 —2i) |¢3).
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Exercise

3. Let the Hamiltonian for a system be given by:

-(25)
E &
Find the eigenvalues and the corresponding eigenvectors of

H and, thus, set up the basis in the state space of the
system.
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Exercise

3. Let the Hamiltonian for a system be given by:

-(25)
E &
Find the eigenvalues and the corresponding eigenvectors of

H and, thus, set up the basis in the state space of the
system.

Solution: det(H — A1) = det ( & -4 & ) — 0.
& & — A

The solutions to this equation yield the eigenvalues of H:

M=¢€+8&, A =€ —8&.
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Exercise

Let o) — ( Z )

be the eigenvector corresponding to A\,. We have

(2 2)(5)-t@re( )

This equation leads to
gla+&b= (g +&)a,

ea+eb= (e +&)b,

As a result,

Therefore, ) = % ( }) o) — % (_11 )
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