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Chapter 7 Nuclear Physics
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Nuclear structure
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Nuclear physics application
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N l  Im inNuclear Imaging

Blood flow with radiopharmaceuticals Imaging software and analysis

Gamma Camera
SPEC & PEP
Isotopes & Isomers
ParmaceuticalsParmaceuticals

Tumor mapping & visualization by 
radioactive isotope accumulation. Imaging system development

Nuclear physics application
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The history of nuclear physics

✓ 1896: Henri Becquerel–discovery of radioactivity

      


      Photographic plates blackened when placed near 


      certain minerals (uranium salts). Radioactivity could 


      not be explained by e-m (or gravity), and was one 


      of the unsolved problems. 


✓ 1898: Maria and Pierre Curie– discovery of 

           Polonium and Radium 

           (much more radioactive than uranium) 


Becquerel and the Curies shared the Nobel Prize in Physics in 1903.  

Later, Marie Curie isolates metallic radium and receives the Nobel Price in Chemistry in 1911.  

                                                                     Radioactivity Unit: Bacquerel and Curie
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The history of nuclear physics

Ernest Rutherford – “the father of nuclear physics”


✓ 1899: Rutherford shows 2 types of radiation exits 

           and calls them named α and β.

✓ 1900: Villard gives evidence for a 3rd type of radiation 

           coming from radium and calls it γ

✓ 1902: Curies show that β radiation is electrons

✓ 1904: Rutherford shows α particles are helium


Ernest Rutherford was awarded the Nobel Prize in Chemistry in 1908 "for his investigations 
into the disintegration of the elements, and the chemistry of radioactive substances". 

“I have dealt with many different transformations with various periods of time, but the 
quickest that I have met was my own transformation in one moment from a physicist to a 
chemist.” E. Rutherford (Nobel banquet 1908).
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The history of nuclear physics

✓ 1911: Rutherford proposed the existence of a massive nucleus 

          as a small central part of an atom


Nuclear Physics – History (3) 
Ernest Rutherford – “the father of nuclear physics” 
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a massive nucleus as a small central part of 
an atom  

J.J. Thompson’s  
Plum Pudding Model (1904)  

Rutherford’s  
Planetary Model (1911) 
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Nuclear Physics – History (5) 
 
!  1932:  Nobel Prize in Physics for James 

Chadwick for a discovery of the neutron 

Nucleus = protons + neutrons 
 (short range nuclear force) 
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James Chadwick for a discovery

 of the neutron

Nucleus = protons + neutrons 
(short range nuclear force)

The history of nuclear physics
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Nuclear Physics – History (5) 
Chadwick’s discovery made it possible to create elements heavier than Uranium in the lab.  
Later,  Enrico Fermi discovered nuclear reactions (slow neutrons) which led to a 
revolutionary discovery of nuclear fission (Otto Hanh and Fritz Strassmann). 
 
Chadwick's discovery was crucial for the fission of uranium 235. Unlike α particles, neutrons 
do not need to overcome Coulomb barrier and thus can penetrate and split the nuclei of  the 
heaviest elements. The release of neutrons sustains the fission reaction. 
 
These discoveries led to a development of nuclear weapons and nuclear power. 
 
 neutron 

neutrons 

Uranium-235 has the distinction of being the only 
naturally occurring fissile isotope. 
 
Uranium-238 cannot fission with low energy neutrons 
(stable nuclear shell structure)   
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✓1914: J. Chadwick shows spectrum of β radiation is 

   continuous, contrary to the fundamental principle of 

   energy conservation


✓1930:W.Pauli proposed a neutrino to explain the 

  continuous spectrum of β decay.


“I have done a terrible thing, I have postulated a particle that cannot be detected.”  
 W. Pauli 

Wolfgang Pauli was awarded the Nobel Prize in Physics in 1945 "for the discovery of the Exclusion 
Principle, also called the Pauli Principle”. 

The history of nuclear physics
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✓ 1933: E. Fermi used the neutrino to 

    explain neutron β decay 

    (model of weak interactions)

Nuclear Physics – History (8) 

!  1933: E. Fermi used the neutrino to explain 
neutron β decay (model of weak interactions) 

 

Enrico Fermi was aworded the Nobel Prize in Physics in 1938 "for his demonstrations 
of the existence of new radioactive elements produced by neutron irradiation, and for 
his related discovery of nuclear reactions brought about by slow neutrons". 
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✓ 1956: F. Reines and C. Cowan detection     

  of a neutrino via inverse beta decay 

  reaction 
     

  

From then on Reines dedicated his career to the study of the neutrino’s properties 
and interactions, including the discovery of neutrinos emitted from SN1987A by the 
Irvine-Michigan-Brookhaven Collaboration. This discovery helped to inaugurate the 
field of neutrino astronomy.


F. Reines was awarded the Nobel Prize in Physics in 1995 for his co-detection of 
the neutrino with Clyde Cowan in the neutrino experiment”

Nuclear Physics – History (9) 
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The history of nuclear physics
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Nuclear Physics – History (10)  
 
!  1957: Lee and Yang – proposed the concept 

of parity violation in weak interactions  
     (Nobel Prize in Physics) 

Implications: if parity is not conserved in weak interactions, it means that  
                     the Universe sometimes distinguishes between left and right"

26 

 
!  1958: C.S. Wu  experimentally confirmed parity 

violation in weak interactions (β decay of polarized 
cobalt-60 nuclei) 
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opposite to the nuclear spin.

  "
 C.S. Wu  at al studied β decay of polarized cobalt-60 nuclei: 
 
 
 Observed electrons emitted preferentially in direction opposite to to applied field: 

If parity were conserved, expect  equal rate of electrons in directions along 
and opposite to the nuclear spin. 
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Nuclear Physics – History (11) 
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✓1935: Hideki Yukawa proposed the force 

   between nucleons arises from meson exchange.


    Awarded the Nobel Prize in Physics in 1947 "for his prediction of the  
    existence of mesons on the basis of theoretical work on nuclear forces”. 

The meson-exchange concept (where hadrons are treated as elementary 
particles) continues to represent the best working model for a quantitative 
NN potential.

Nuclear Physics – History (6) 
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1963 Mayer and  Jensen are awarded Nobel prize in physics
 "for their discoveries concerning nuclear shell structure".

✓ 1949: M. Meyer and J. Jensen used shell model 

    with spin-orbit interaction to explain magic

    number

The history of nuclear physics
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The Nobel Prize in Physics 1975 was awarded jointly to Aage Niels Bohr, Ben 
Roy Mottelson and Leo James Rainwater "for the discovery of the connection 
between collective motion and particle motion in atomic nuclei and the 
development of the theory of the structure of the atomic nucleus based on this 
connection".

✓ 1951: Collective model 

   (Bohr, Mottelson, Rainwater)


The history of nuclear physics
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✓ 1957: Nuclear superfluidity  

   (Bohr, Mottelson)


The history of nuclear physics

9 Nuclear pairing 99
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Figure 9.2: Upper panels: odd-Z pairing gaps. Lower panels: even-Z pairing gaps.
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The contents of theoretical nuclear physics

✓ Nuclear reaction

    decay, fusion, fission, heavy ion collision, ...... 


✓ Nuclear structure

    nuclear basic properties:

    nuclear size, nuclear binding, nuclear shape 


✓ Models of nuclear structure theory 

   Collective models

     The degrees of freedom are some bulk property of nucleus as a whole

    Microscopic models

     The degrees of freedom are those of the constituent particles of the 

       nucleus 
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Present nuclear physics
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Hot topics in nuclear structure theory

Limit o
f existence�

Limit of existence�

J Erler et al. Nature 486, 509 (2012) 

r-process path�

Element abundance� Supernovae� Neutron star� Superheavy nuclei�

Shape transition�

High spin�

collective 
excitation�

Halo�
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Some nomenclature10.0: Introduction: Some nomenclature

A
ZXN Isotope notation
X Chemical symbol, e.g. Ca, Pb
A Atomic mass number (sum of n’s and p’s in the nucleus)
Z Atomic number (or, proton number), the number of p’s in the nucleus
N Neutron number, the number of n’s in the nucleus

Examples 3
2He1,

40
20Ca20,

208
82 Pb126

Variants 40Ca, Calcium-40, Ca-40

Note that, once X (which encodes Z) and A are given, the rest of the information is
redundant, since A = Z +N . The full form is usually used only for emphasis.

isotope Same Z, different N e.g. 40Ca and 41Ca
Mnemonic: From Greek isos (same) topos (place) (coined by F. Soddy 1913)

i.e. same place in the periodic table

isotone Different Z, same N , e.g. 13C and 12B
Mnemonic: isotoPe and isotoNe (coined by K. Guggenheimer 1934)

isobar Different Z, and N , but same A, e.g. 12C and 12B
Mnemonic: From Greek isos (same) baros (weight)

Nuclear Engineering and Radiological Sciences NERS 312: Lecture 10, Slide # 10:10.0
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Nuclear Radii

➢ A nucleons with hard spheres of radius r 

R ⇡ r0A
1/3

4

3
⇡R3 ⇡ A

4

3
⇡r3

so,
R

r

r0 ⇠ 1.20� 1.25 fm

PA322 Lecture 11 21 

Nuclear sizes, mass and charge distribution 

•  Implication of electron scattering results: 
–  central charge density ≈ constant 

⇒ ρ =Z/(4/3πR3) = constant 
as A ≈ 2Z!

⇒ density of nucleons ~ constant 
and  R = R0 A1/3!

•  Direct measurement of R (actually rms 
radius) from electron scattering 
experiments with wide range of 
elements show relationship holds. 

•  Experimentally R0=1.23 fm  … 
and nuclear density is enormous 

ρnucleus ~ 1012 x normal matter!

2 RMS CHARGE RADII 28
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Figure 2: The rms charge radii for 687 nuclei plotted as a function of the
atomic number A. The dashed line is the liquid-drop model with a sharp surface
R = roA1/3 with ro = 1.20 fm.
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Figure 3: The rms proton radii for 687 nuclei plotted as a function of the
atomic number A. The dashed line is the liquid-drop model with a sharp surface
R = roA1/3 with ro = 1.185 fm. The solid line uses the form of Eq. (2.7) which
takes into account the diffuseness.
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Nuclear radii and density
✓ Nuclear density72 I. Angeli, K.P. Marinova / Atomic Data and Nuclear Data Tables 99 (2013) 69–95
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Fig. 1. Development of the experimental values of the proton radius during the
years: Hand, 1963 [33], Simon, 1980 [34], Melnikov, 2000 [35], Sick, 2003 [36],
Borisyuk, 2010 [37] and Pohl, 2010 [38].

For light nuclei, the contribution of higher order moments, the
so called higher moments correction (HM), is vanishingly small,
usually less than the experimental errors, and therefore � ⇡
�hr2i. For the heaviest nuclei the radial moments higher than
�hr2i contribute almost 10%. A well developed procedure has been
applied [13,14] to convert the experimental � into �hr2i. This is
done for all isotopes with Z � 36.

Traditionally, F has been evaluated from atomic electron shell
data using either semi-empirical procedures and/or Hartree–Fock
methods for calculating the relevant electronic density at the site
of the nucleus. The normal mass shift constant, given by N = ⌫me,
is calculated with the transition frequency ⌫ and the electronic
mass me. The specific mass shift constant, S, accounting for the
correlations of the electronic motion, can be calculated reliably
only for very light elements. In all cases of medium mass and
heavy elements, different kinds of semi-empirical methods have
been used. These methods of F and MS evaluation have yielded
very consistent sets of �hr2iA0,A-values [5] all over the nuclear
chart and even for very long isotopic chains. They didn’t produce
(e.g., unreasonable crossings of the isotopic course of nuclear
radii between different elements). More importantly, the results
could be interpreted in quantitative agreement with other well
established experimental facts of nuclear structure. For extracting
the nuclear parameter � from OIS, the semi-empirical approach
using optical information was preferred whenever possible (see
Table 2 and the corresponding references).

When more than one data set on OIS is available, generally the
most precise value that has been published was used. In many
cases it was necessary to compile data from different sources and
to reanalyze them.

3.2. Radii differences between isotopes from K↵ isotope shifts

Most of the 89 K↵ X-ray IS data are from Table II of Ref. [4],
which is an extended version of Ref. [24]. Original papers have
also been taken into account [25–27]. Two modifications were
performed in Table II of Ref. [4]: (1) For uranium the correct mass
interval is 233–238U instead of 235–238U (see Ref. [28]). (2) Regarding
the results of a �2/n0 test [29], the shift for 121–123Sb [30] was
omitted and some errors increased. In the table and papers referred
above, energy shifts �ECoul are given, which can be expressed in
terms of even moments of the charge distribution: �ECoul = C1�,
where the nuclear parameter � contains the information on the
size of the nucleus. Exploiting the wealth of �R data from e�

and µ� experiments, it was possible to compare the theoretically

Fig. 2. Isotopic behaviour of rms charge radii for light elements from 2He to 35Br.
For the sake of completeness the R-values obtained by non-opticalmethods are also
shown. The error bars include the total, statistical and systematic uncertainties of
the input data. The dashed vertical lines denote the conventional shell closures,
while the small-dashed lines indicate the appearance of non-traditional magic
numbers (see Ref. [7]).

calculated C1 value to experiment in a wide range of atomic
numbers, and to perform a small (0.965) correction on it. For more
details see Section 2.5 of Ref. [13].

3.3. rms radii from e� and µ� experiments

The main source for the R values is the table of Ref. [15] which
summarizes data from a large number of e� and µ� experiments,
explaines in detail the sources and selection of these data, as well
as the statistical procedure of the combined treatment of both
data types. Here we briefly mention only the changes. Change in
the evaluation: for the absolute R data from e� and µ� methods,
the simpler and more transparent averaging formulae were used
(EXCEL) instead of the lengthy (FORTRAN) procedure (see Chapter
4 in Ref. [15]). This resulted in small changes in the mean R values.
New data: for the stable isotopes of 9 elements, the table [15]
contains rms radius values evaluated model independently by
combining electron scattering, muonic atoms X-ray and optical
isotope shifts. These are: Ca, Kr, Sr, Zr, Mo, Sn, Sm, Gd and Pb.
In the first step of the present updated version of combined
treatment, the R values for these isotopes are recalculated using
only e� and µ� data sources and then, in a second step, two
different procedures [12,13] of combined analysiswithOIS data are
performed. The radii of U and Th isotopes are also recalculated in
view of critical remarks from Kozhedub [31].

Special attention deserves the new value for the radius of 6Li
obtained by analysis of electronic scattering experiments data and

✓ Nuclear radii
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Fig. 11. Same as Fig. 9 for 2°8pb where we used the data of Refs. [12,13]. The number of coefficients 
used in the fits are 12 and 11 for the FB and the Hermite basis, respectively. Full and dashed lines show the 
distributions given by the FB paramertrization in Ref. [ 15 ]. The full lines have been obtained with the 11 FB 
coefficients parametrization, the dashed lines with the 17 FB coefficients parametrization. 

localized in q space, as it is shown in Fig. 1, and it is spread in the coordinate space. 
The Hermite basis, used for the first time in this context, has analogous characteristics 
in both q and r space, the Fourier transform of a Hermite function is still a Hermite 
function. Fig. 1 shows that the contribution of  each term of the Hermite expansion is 
not localized around a specific value of  q. 

We found few advantages in using the Hermite basis with respect to the FB ones. The 
Hermite expansion seems to be more stable and usually it requires a smaller number 
of  expansion terms to obtain fits of  the same quality (see Figs. 3 and 4). In addition, 
while with FB one should impose that the distribution should be zero after a certain 
radius, the Hermite expansion is not requiring any hypothesis on the shape of  the charge 
density. 

In any case the aim of  our work was not the proposal of  a new expansion basis to 
be used in model independent method, but rather the investigation of  the uncertainties 
related to the method in itself. We found that in both the expansion bases it is not 
possible to increase at will the number of  expansion terms. There is an upper limit 
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Fig. 10. Same as Fig. 9 for 4°Ca. The experimental data are from Ref. [ 11 ] and we used 10 coefficients for 
both FB and Hermite basis. As in Fig. 9 the full lines give the FB density of Ref. [ 15]. 

differences between the FB and the Hermite densities bands are compatible with zero. 
Looking in detail, however, we found that they are not always equally spaced around the 
zero, contrary to the result we have obtained with the pseudodata. This, together with 
the relatively low values of the confidence levels shown in Table 3, can be an indication 
of the fact that the set of data we have used are not a good statistical sample. 

4. Conclusions 

The work we have presented in this paper has been addressed to the study of the the- 
oretical uncertainties in the procedure of extracting the charge distributions from elastic 
electron scattering cross sections. We have worked within the direct scattering approach 
to investigate the uncertainties of the the so-called model independent techniques con- 
sisting in expanding the charge distributions on a orthonormal basis and finding the 
coefficients of the expansion to obtain the best fit to the data. 

In order to obtain information independent from the choice of the expansion basis 
we have used two bases with different analytical properties. The FB basis is rather 
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Nuclear density

➢ Woods-Saxon distribution

Nuclear density

Fermi distribution

Function which approximates well true nuclear density distribution is

the Fermi function

⇢(r) = ⇢0
1

1 + exp

⇣
r�R1/2

a

⌘ (9)

The radius R1/2 corresponds to a point at which density drops to half

of that in the centre. Indeed

⇢(R1/2) = ⇢0
1

1 + exp

⇣
R1/2�R1/2

a

⌘ = ⇢0
1

1 + 1
=

1

2
⇢0 (10)

Experiments indicate that R1/2 = 1.12A
1
3 fm.

Note that there is no sharp cut o↵ on the surface, on the contrary,

the density distribution extends to infinity!
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➢ nuclear radii
Nuclear density

Fermi distribution
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Nuclear density

Fermi distribution

Charge and matter radii are not the same for true nuclear density

distributions, especially far from stability.

NUCS 342 (Lecture 1) January 12, 2011 19 / 33
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Form factor

➢ A uniform charge distribution

In spherical case

10.1.1: F (!q) for spherical charge distributions

For spherical charge distributions (the usual case), ρp(!x) = ρp(r), (10.7) can be further
reduced. We start with:

F (!q) =

∫

d!x ρp(!x)e
i!q·!x

Now, we convert (x, y, z) −→ (r, θ,φ) and align !q −→ qẑ.
Since the charge distribution is spherically symmetric, we can choose any axis to align !q
with, and the ẑ-axis is the most convenient.

F (q) =

∫ 2π

0
dφ

∫ ∞

0
r2dr ρp(r)

∫ π

0
sin θ dθ eiqr cos θ [note F (!q) −→ F (q)] (10.8)

= 2π

∫ ∞

0
r2dr ρp(r)

∫ π

0
sin θ dθ eiqr cos θ [did the integral over φ]

= 2π

∫ ∞

0
r2dr ρp(r)

∫ 1

−1
dµ eiqrµ [change of variable µ = cos θ]

= 2π

∫ ∞

0
rdr ρp(r)

(

2

q

)

sin qr [did the integral over µ]

=
4π

q

∫ ∞

0
rdr ρp(r) sin qr [in final form] (10.9)
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Form factor

➢ A uniform charge distribution

➢ Form factor from in uniform charge distribution

10.1.1: Example |F (!q)|2 from a uniform charge distribution

In this case, the normalized proton density takes the form:

ρp(r) =
3

4πR3
N

Θ(RN − r) . (10.11)

Thus, combining (10.9) and (10.11), gives, after some reorganization:

F (q) =
3

(qRN)3

∫ (qRN )

0
dz z sin z , (10.12)

which is easily evaluated to be,

F (q) =
3[sin(qRN)− qRN cos(qRN)]

(qRN)3
, (10.13)

for which F (0) = 1, as expected.

Technical side note:
The following Mathematica code was useful in deriving the above relations.

(* Here Z == q*R_N: *)

(3/Z^3)*Integrate[z Sin[z], {z,0,Z}]

Series[3*(Sin[Z] - Z*Cos[Z])/Z^3,{Z,0,2}]
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10.1.1: ...Example |F (!q)|2 from a uniform charge distribution...

Note the minima when tan(qRN) = qRN . Measurements do not have such deep minima,
because: 1) the nuclear edge is blurred, not sharp, 2) the projectiles are polyenergetic,
3) the detectors have imperfect resolution.
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Figure 10.8: Graphical output corresponding to (10.13).
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➢ A uniform charge distribution

➢ Form factor from in uniform charge distribution
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Form factor

➢ A delta charge distribution

➢ Form factor from in delta charge distribution

10.1.1: Another example (this one is not in the book)

Just for practice, we will try another example . . . . . . . . . . . . . . . ρp(r) = δ(RN − r)/4πR2
N

Following the same procedure as the previous example . . . . . . . . . .F (q) = sin(qRN)/qRN
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Form factor for a spherical shell
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Nuclear mass

➢ Mass excess

1 NUCLEAR MASSES 6

1 Nuclear masses

1.1 Masses and binding energies

A basic quantity which can be measured for the ground states of nuclei is the atomic
mass M(N, Z) of the neutral atom with atomic mass number A and charge Z. Atomic
masses are usually tabulated in terms of the mass excess defined by

∆(N, Z) ≡ M(N, Z) − uA, (1.1)

where u is the Atomic Mass Unit defined by u = M(12C)/12 = 931.49386 MeV/c2.
1 I will use the data from the 2003 compilation of Audi, Wapstra and Thibault [1].
Fig. (1.1) shows the position on the nuclear chart for these measured masses together
with the experimental error. There are 2127 nuclei measured with an accuracy of 0.2
MeV or better and 101 nuclei measured with an accuracy of greater than 0.2 MeV.
For heavy nuclei one observes several chains of nuclei with a constant N − Z value
whose masses are obtained from the alpha-decay Q values.

Nuclear binding energy is defined as the energy required to break up a given
nucleus into its constituent parts of N neutrons and Z protons. In terms of the
atomic masses M(N, Z) the binding energy B(N, Z) 2 is defined by:

B(N, Z) = ZMHc2 + NMnc
2 − M(N, Z)c2, (1.2)

where MH is the mass of the hydrogen atom and Mn is the mass of the neutron.3 In
terms of the mass excess the binding energy is given by:

B(N, Z) = Z∆Hc2 + N∆nc2 − ∆(N, Z)c2, (1.3)

where ∆Hc2 = 7.2890 MeV and ∆nc2 = 8.0713 MeV.

How do we know that nuclei are made up of protons and neutrons? In the 1920’s
when it was observed that nuclei decay by the emission of alpha particles, protons and
electrons one tried to make nuclear models out of constituent protons and electrons.
4 However, after the discovery of the neutron in 1932, it was observed that the

1This and other constants can be found on the website:
http://physics.nist.gov/cuu/Constants/index.html

2The binding energy will also be denoted by BE.
3This binding energy also includes contribution from the Coulomb interaction between electrons

which is approximately given by −1.43x10−5 Z2.39 MeV. On the scale of nuclear binding this can
usually be ignored. It is most important for heavy nuclei where, for example, for Z = 120 the
electronic contribution is −1.34 MeV.

4“Just because barks come out of dogs does not mean that dogs are made of barks.” (Denys
Wilkinson).
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Nuclei with measured masses

Pr
ot

on
 N

um
be

r

Neutron Number

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140 160

0
0.2
0.4
0.6
0.8
>1.0 MeV error

Figure 1: Nuclei with measured masses. The solid line is for N = Z. The
dashed lines indicate the locations of the magic numbers 8, 20, 28, 40, 50, 82
and 126

atomic masses can be qualitatively understood by the contribution of the masses of
the individual protons and neutrons which make up the nucleus. To emphasize this
point the ratio

M(N, Z) − [ZMH + NMn]

[ZMH + NMn]

is plotted in Fig. (1.2) as a function of mass. The largest deviation is found near
A = 60 where the total mass is only about one percent smaller than expected from
the sum of nucleon masses. The intrinsic properties of neutrons and protons inside
the nucleus are essentially the same as those of the free nucleons. Nuclear properties
are a result of these nucleons interacting with each other through the exchange of
mesons. At some level we will need to include small admixtures of other baryons.

We are interested in understanding the binding energy as a function of N and
Z. The total BE are shown in Fig. (1.3) as a function of A. One observes an overall
linear increase with A reaching a maximum value of about 2 GeV for the heaviest
nuclei. One can bring out more detail by plotting BE/A as in Figs. (1.4) and (1.5)
[Note that Fig. (1.4) is the inverse Fig. (1.2)]. The maximum as a function of A in
Fig. (1.4) are shown separately in the bottom of Fig. (1.6). These represent the nuclei
which are most stable and the most abundant in nature. An expanded portion for
the experimental for light nuclei is shown in Fig. (1.7). These are the nuclei at the
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Nuclear binding energy

➢ Nuclear binding energy

10.3: ...Nuclear binding energy (con’t)...

By analogy, the formula for the nuclear binding energy, BN(Z,A), for atom X , with
atomic mass m(AX) is

BN(Z,A) =
{

Zmp +Nmn −
[

m(AX)− Zme

]}

c2 , (10.34)

or,

BN(Z,A) =
[

Z(mp +me) +Nmn −m(AX)
]

c2 ,

Using mp +me ≈ m(1H), (10.34) −→

BN(Z,A) = [Zm(1H) +Nmn −m(AX)]c2 . (10.35)

Note, with electron binding energy, (10.34) −→

BN(Z,A) = [Z(mp +me) +Nm
N
−m(AX)]c2 −Be(Z,A) .

Atomic masses usually quoted in atomic mass unit, u, uc2 = 931.494028(23) MeV
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Figure 2: Deviation of the atomic masses from that expected from the sum of
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Nuclear binding energy

➢ Binding energy per nucleon
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Nuclear mass table

19/03/2015 Jinniu Hu
Although chemists do not doubt that this mass loss actually occurs, at present there are no

instruments of sufficient sensitivity to measure such small changes.

The energy changes in nuclear reactions are much larger. This can be seen if we use

the relationship between electron volts and joules (or calories) in Appendix IV, and

Table 4.1 Atomic masses and binding energies

Element Z N A
Atomic mass
MA (u)

Mass
excess
MA ! A (μu)

Mass
defect
DMA (μu)

Binding
energy
EB (MeV)

EB/A
(MeV/A)

n 0 1 1 1.008665 8665 0 e e
H 1 0 1 1.007825 7825 0 e e
D 1 1 2 2.014102 14102 !2388 2.22 1.11
T 1 2 3 3.016049 16049 !9106 8.48 2.83
He 2 1 3 3.016029 16029 !8286 7.72 2.57
He 2 2 4 4.002603 2603 !30377 28.30 7.07
He 2 4 6 6.018886 18886 !31424 29.27 4.88
Li 3 3 6 6.015121 15121 !34348 32.00 5.33
Li 3 4 7 7.016003 16003 !42132 39.25 5.61
Be 4 3 7 7.016928 16928 !40367 37.60 5.37
Be 4 5 9 9.012182 12182 !62442 58.16 6.46
Be 4 6 10 10.013534 13534 !69755 64.98 6.50
B 5 5 10 10.012937 12937 !69513 64.75 6.48
B 5 6 11 11.009305 9305 !81809 76.20 6.93
C 6 6 12 12.000000 0 !98940 92.16 7.68
N 7 7 14 14.003074 3074 !112356 104.7 7.48
O 8 8 16 15.994915 !5085 !137005 127.6 7.98
F 9 10 19 18.998403 !1597 !158671 147.8 7.78
Ne 10 10 20 19.992436 !7564 !172464 160.6 8.03
Na 11 12 23 22.989768 !10232 !200287 186.6 8.11
Mg 12 12 24 23.985042 !14958 !212837 198.3 8.26
Al 13 14 27 26.981539 !18461 !241495 225.0 8.33
Si 14 14 28 27.976927 !23073 !253932 236.5 8.45
P 15 16 31 30.973762 !26238 !282252 262.9 8.48
K 19 20 39 38.963707 !36293 !358266 333.7 8.56
Co 27 32 59 58.933198 !66802 !555355 517.3 8.77
Zr 40 54 94 93.906315 !93685 !874591 814.7 8.67
Ce 58 82 140 139.905433 !94567 !1258941 1172.7 8.38
Ta 73 108 181 180.947993 !52007 !1559045 1452.2 8.02
Hg 80 119 199 198.968254 !31746 !1688872 1573.2 7.91
Th 90 142 232 232.038051 38051 !1896619 1766.7 7.62
U 92 143 235 235.043924 43924 !1915060 1783.9 7.59
U 92 144 236 236.045563 45563 !1922087 1790.4 7.59
U 92 146 238 238.050785 50785 !1934195 1801.7 7.57
Pu 94 146 240 240.053808 53808 !1946821 1813.5 7.56

Nuclear Mass Stability 71
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Nuclear mass table

https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html
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Separation energy

1 NUCLEAR MASSES 10

top of the “ridge-of-stability” in binding energy or those at the bottom of the “valley-
of-stability” in mass. For a fixed A value nuclei away from the valley of stability beta
decay until they reach the bottom of the valley. Nuclear structure models are used
to understand the overall features of these data as well as the deviations from the
averge.

The maximum in the binding energy per nucleon occurs for 58Fe. 58Fe represents
the most bound (lowest energy) state for nucleons. Thus fusion of two light nuclei
with a combined mass of A < 58 usually results in energy release. The fusion of
deuterium and tritium is the main reaction being investigated for controlled fusion
reactors. Other fusion processes are important for solar energy and for the creation
of elements up to A = 58 in stellar environments. The falloff in binding energy per
nucleon above A = 58 implies that most of these nuclei can spontaneously decay into
lighter products. The most common of these decay processes are alpha decay, where a
4He is emitted, and fission, where the nucleus breaks up into two roughly equal mass
fragments. The fission products are usually accompanied by neutrons. Intermediate
decay modes, where light fragments such as 14C are emitted, are also possible and
have also been observed, but their decay rate relative to alpha decay is extremely
small. Although most heavy nuclei have a positive Q value for spontaneous decay,
many of them have lifetimes on the order of the age of the universe and thus exist in
nature, due to the hindrance of tunneling through the Coulomb barrier.

1.2 Q values and separation energies

In this section we consider energy conservation for nuclear transformations that in-
clude, for example, the fussion of two nuclei a and b into the combined system c

[N, Z]a + [N, Z]b → [N, Z]c (1.4)

or the decay of nucleus a into two other nuclei b and c

[N, Z]a → [N, Z]b + [N, Z]c (1.5)

In general we consider the combinations

∑

i

[N, Z]i →
∑

f

[N, Z]f (1.6)

where N and Z are conserved.

∑

i

Ni =
∑

f

Nf and
∑

i

Zi =
∑

f

Zf (1.7)

➢ Nuclear combinations

➢ Particle conserved 
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Figure 7: An expanded portion of the experimental values for BE/A (points
connected by a line). The liquid-drop model is shown by the dashed line.

This process is characterized by the Q value:

Q =
∑

i

M(Ni, Zi)c
2 −

∑

f

M(Nf , Zf)c
2 =

∑

f

B(Nf , Zf) −
∑

i

B(Ni, Zi). (1.8)

Spontaneous decay involves a single initial nuclear state and is allowed if Q > 0. In
the decay, energy is released in the form of the kinetic energy of the final products.
Reactions involving two initial nuclei and are endothermic (a net loss of energy) if
Q < 0; the reactions are exothermic (a net release of energy) if Q > 0.

We can consider the Q values associated with the removal of one or two nucleons
from a nucleus. These are conventionally defined in terms of the one-nucleon and
two-nucleon separation energies, S:

Sn = −Qn = B(N, Z) − B(N − 1, Z), (1.9)

Sp = −Qp = B(N, Z) − B(N, Z − 1), (1.10)

S2n = −Q2n = B(N, Z) − B(N − 2, Z), (1.11)

and
S2p = −Q2p = B(N, Z) − B(N, Z − 2). (1.12)
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the decay, energy is released in the form of the kinetic energy of the final products.
Reactions involving two initial nuclei and are endothermic (a net loss of energy) if
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Spontaneous decay involves a single initial nuclear state and is allowed if Q > 0. In
the decay, energy is released in the form of the kinetic energy of the final products.
Reactions involving two initial nuclei and are endothermic (a net loss of energy) if
Q < 0; the reactions are exothermic (a net release of energy) if Q > 0.

We can consider the Q values associated with the removal of one or two nucleons
from a nucleus. These are conventionally defined in terms of the one-nucleon and
two-nucleon separation energies, S:

Sn = −Qn = B(N, Z) − B(N − 1, Z), (1.9)

Sp = −Qp = B(N, Z) − B(N, Z − 1), (1.10)

S2n = −Q2n = B(N, Z) − B(N − 2, Z), (1.11)

and
S2p = −Q2p = B(N, Z) − B(N, Z − 2). (1.12)
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connected by a line). The liquid-drop model is shown by the dashed line.

This process is characterized by the Q value:

Q =
∑

i

M(Ni, Zi)c
2 −

∑

f

M(Nf , Zf)c
2 =

∑

f

B(Nf , Zf) −
∑

i

B(Ni, Zi). (1.8)

Spontaneous decay involves a single initial nuclear state and is allowed if Q > 0. In
the decay, energy is released in the form of the kinetic energy of the final products.
Reactions involving two initial nuclei and are endothermic (a net loss of energy) if
Q < 0; the reactions are exothermic (a net release of energy) if Q > 0.

We can consider the Q values associated with the removal of one or two nucleons
from a nucleus. These are conventionally defined in terms of the one-nucleon and
two-nucleon separation energies, S:

Sn = −Qn = B(N, Z) − B(N − 1, Z), (1.9)

Sp = −Qp = B(N, Z) − B(N, Z − 1), (1.10)

S2n = −Q2n = B(N, Z) − B(N − 2, Z), (1.11)

and
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Spontaneous decay involves a single initial nuclear state and is allowed if Q > 0. In
the decay, energy is released in the form of the kinetic energy of the final products.
Reactions involving two initial nuclei and are endothermic (a net loss of energy) if
Q < 0; the reactions are exothermic (a net release of energy) if Q > 0.

We can consider the Q values associated with the removal of one or two nucleons
from a nucleus. These are conventionally defined in terms of the one-nucleon and
two-nucleon separation energies, S:

Sn = −Qn = B(N, Z) − B(N − 1, Z), (1.9)

Sp = −Qp = B(N, Z) − B(N, Z − 1), (1.10)

S2n = −Q2n = B(N, Z) − B(N − 2, Z), (1.11)

and
S2p = −Q2p = B(N, Z) − B(N, Z − 2). (1.12)
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Figure 10: Measured one-neutron separation energies.

obtained from the observation of resonances in nuclear reactions. As such, it would
be better to call these quantities resonance energies rather than masses or binding
energies. In addition, there are several light nuclei not shown in Fig. (1.9) whose
non-observation in experimental studies implies that they lie outside of the drip lines
[3]. For light nuclei the proton and neutron drip lines are experimentally established
only up to about A = 24. For heavier nuclei the proton-drip line is observed in
a few regions from the observation of proton decays with relatively long lifetimes.
The HF1 model gives a prediction for the neutron and proton drip lines. Between
A = 40 and A = 200 nearly half of the nuclei expected to be inside the drip lines have
not yet been observed in experiments. The properties for many of these unobserved
nuclei are critical for the understanding of nuclear models as well as the astrophysical
processes in element production. New generations of accelerators such are RIA (the
Rare Isotope Accelerator project in the US) are being planned to produce and study
these nuclei.

The systematics of the one-neutron separation energies, Sn, are shown in Fig.
(1.10) for experiment and in Fig. (1.11) for the HF1 model. As one moves from the
proton to the neutron drip lines, the one-neutron separation energies decrease. This
decrease is not smooth but shows odd-even oscillations associated with the two-body
pairing nature of the strong interaction between neutrons(*).
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Figure 11: HF1 results for the one-neutron separation energies.

The Sn values vs neutron number for the even-even nuclei with N > Z are shown
in Fig. (1.12). Just after the magic numbers 28, 50, 82 and 126 there is sudden
decrease in the separation energy due to the fact that neutrons go into valence shells
which are loosely bound compared to those which have just been filled at the magic
numbers(*).

This jump at the magic numbers can be emphasized by taking the differences in
one-neutron separation energy:

∆Sn = B(N, Z) − B(N − 1, Z) − [B(N + 1, Z) − B(N, Z)]

= 2B(N, Z) − B(N − 1, Z) − B(N + 1, Z). (1.13)

The values of ∆Sn for the even-even nuclei (N, Z) are shown in the bottom panel
of Fig. (1.12). One observes clear peaks at the magic numbers 50, 82 and 126. The
magic numbers 8, 20 and 28 also appear as peaks, but the peak for 20 goes away for
Z = 10 and 12. The value of peak height is related to the size of the shell gaps(*).
Similar results are found for the proton separation energies.
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➢ Pairing energy
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Figure 11: HF1 results for the one-neutron separation energies.

The Sn values vs neutron number for the even-even nuclei with N > Z are shown
in Fig. (1.12). Just after the magic numbers 28, 50, 82 and 126 there is sudden
decrease in the separation energy due to the fact that neutrons go into valence shells
which are loosely bound compared to those which have just been filled at the magic
numbers(*).

This jump at the magic numbers can be emphasized by taking the differences in
one-neutron separation energy:

∆Sn = B(N, Z) − B(N − 1, Z) − [B(N + 1, Z) − B(N, Z)]

= 2B(N, Z) − B(N − 1, Z) − B(N + 1, Z). (1.13)

The values of ∆Sn for the even-even nuclei (N, Z) are shown in the bottom panel
of Fig. (1.12). One observes clear peaks at the magic numbers 50, 82 and 126. The
magic numbers 8, 20 and 28 also appear as peaks, but the peak for 20 goes away for
Z = 10 and 12. The value of peak height is related to the size of the shell gaps(*).
Similar results are found for the proton separation energies.
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Figure 9.1: Upper panels: odd-N pairing gaps. Lower panels: even-N pairing gaps.
Typically, the odd-N nuclei are less bound than the average of their even-N neighbors by
about 1 MeV. However, one sees that there can be about a factor of two scatter around
the average value at a given N .
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Figure 9.2: Upper panels: odd-Z pairing gaps. Lower panels: even-Z pairing gaps.
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Semi-empirical mass formula
10.3: ...Nuclear binding energy (con’t)...

Semi-empirical Mass Formula – Binding Energy per Nucleon

The formula for B(Z,A) is given conventionally as:

B(Z,A) = a
V
A (“volume” term)

−a
S
A2/3 (“surface” term)

−a
C
Z(Z − 1)A−1/3 (“Coulomb repulsion” term)

−asym
(A−2Z)2

A (“symmetry” term)

+ap
(−1)Z [1+(−1)A]

2 A−3/4 (“pairing” term) (10.38)

ai [MeV] Description Source
a
V

15.5 Volume attraction Liquid Drop Model
a
S

16.8 Surface repulsion Liquid Drop Model
a
C

0.72 Coulomb repulsion Liquid Drop Model + Electrostatics
asym 23 n/p symmetry Shell model
ap 34 n/n, p/p pairing Shell model

Table 10.1: Fitting parameters for the nuclear binding energy
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➢ Semi-empirical mass formula
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Semi-empirical mass formula

10.3: ...Nuclear binding energy (con’t)...
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The above plot shows the contributions of the components of B(Z,A)/A). The Z
employed is the most stable from the standpoint of β decay, discussed later in this chapter.
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10.3: ...Nuclear binding energy (con’t)...

Using the expression (10.38), viz.

B(Z,A) = a
V
A− a

S
A2/3 − a

C
Z(Z − 1)A−1/3 − asym

(A− 2Z)2

A

+ap

(−1)Z[1 + (−1)A]

2
A−3/4

and adapting (10.35), viz.

BN(Z,A) = [Zm(1H) +Nmn −m(AX)]c2

we obtain the semi-empirical mass formula:

m(AX) = Zm(1H) +Nmn −B(Z,A)/c2 , (10.39)

that one may use to estimate m(AX) from measured values of the binding energy, or
vice-versa.
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10.3: ...Nuclear binding energy (con’t)...
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The above plot gives a comparison of B(Z,A)/A) measured data
(from WikiPedia “nuclear binding energy”) .

Nuclear Engineering and Radiological Sciences NERS 312: Lecture 10, Slide # 68:10.3



16/05/2022 Jinniu Hu

Nuclear stability

4 OVERVIEW OF NUCLEAR DECAYS 52

test this idea. In 1957 parity nonconservation was confirmed by experiments carried
out by Wu, Ambler, Hayward, Hoppes and Hudson on the beta decay of 60Co.

The modern theory of beta decay is based upon the Standard Model which uni-
fies the weak and electromagnetic interactions. The Standard Model of beta decay
involves the W± bosons at an intermediate stage of the decay process. The most
elementary of these processes involved in nuclear beta decays are:

d → u + W− → u + e− + ν̄e, (4.20)

and
u → d + W+ → d + e+ + νe, (4.21)

where u and d are the “up” and “down” quarks, respectively. These transformations
are examples of a larger class of transformations that involve all quarks and leptons.
Each step in the elementary decay process is proportional to the weak-interaction
coupling constant g. The Standard Model relates the value of g to the mass of the
W boson and value of the electric charge e. Also in the standard model, beta decay
is unified with a larger class of weak interaction processes that involve the Z boson
as an intermediate particle.

4.3.1 Beta decay Q values

Beta minus, β−, decay involves the emission of an electron and electron antineutrino:

AZ → A(Z + 1) + e− + ν̄e. (4.22)

The Q value for β− decay is given in terms of nuclear masses M and nuclear binding
energies BV by

Q(β−) = [M(A, Z) − M−1(A, Z + 1) − me]c
2 = [M(A, Z) − M(A, Z + 1)]c2

= B(A, Z + 1) − B(N, Z) + δnH , (4.23)

where mec2 = 0.511 MeV is the mass of the electron,

M−1(A, Z + 1) = M(A, Z + 1) − me (4.24)

is the mass of the final nucleus with one electron missing, and

δnH = ∆nc2 − ∆Hc2 = 0.782 MeV (4.25)

comes from the mass difference between the neutron and the Hydrogen atom. In
these expressions we assume that the mass of the neutrino is zero and we ignore the
electronic binding energy.

➢ 𝛃- decay

➢ 𝛃+ decay

4 OVERVIEW OF NUCLEAR DECAYS 53

Beta plus, β+, decay involves emission of a positron and electron neutrino:

AZ → A(Z − 1) + e+ + νe, (4.26)

The Q value for β+ decay is given by

Q(β+) = [M(A, Z) − M+1(A, Z − 1) − me]c
2 = [M(A, Z) − M(A, Z − 1) − 2me]c

2

= B(A, Z − 1) − B(A, Z) − 2mec
2 − δnH . (4.27)

where
M+1(A, Z − 1) = M(A, Z − 1) + me (4.28)

is the mass of the final nucleus with one extra electron.

Another form of beta decay that competes with β+ decay is electron capture
(EC) in which one of the atomic electrons is captured by the nucleus and an electron-
neutrino is emitted:

e− + AZ → A(Z − 1) + νe. (4.29)

The Q value for electron capture decay is given by

Q(EC) = [M(A, Z) − M(A, Z − 1)]c2 = B(A, Z − 1) − B(A, Z) − δnH . (4.30)

The experimental beta decay Q values are shown in Fig. (4.10) and those for the
HF1 predictions are shown in (4.11). The energy released in β− or β+ decay is shared
between the recoiling nucleus, the electron and the neutrino. Since the nucleus is
heavy compared to the electron and neutrino, most of the energy is shared between
the electron and the neutrino with a probability distribution for each that can be be
accurately calculated. Usually only the electron or positron is detected, and it has a
range of kinetic energies ranging from zero up to Qβ (the end-point energy), assuming
that the mass of the neutrino is zero. If the neutrino has a mass, the end-point energy
of the electron would be reduced. The end-point energy of the tritium beta decay
has been used to set a limit of about mν < 9 eV/c2 for the mass of the electron
antineutrino. In the electron-capture process is all of the energy goes into that of the
neutrino. An experimental signature of electron capture is the X ray emitted when
the vacancy left by the inner electron that was absorbed by the nucleus is filled by
one of outer electrons.

4.3.2 Allowed beta decay

The allowed beta decay rate W between a specific set of initial and final states is
given by:

Wi,f = (f/Ko)
[

g2
V Bi,f(F±) + g2

A Bi,f(GT±)
]

, (4.31)

➢ Light fragment emission

➢ 𝛂 decay
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The Heisenberg uncertainty relation in terms of Γ and τ is

Γτ = h̄ = 6.58 × 10−22 MeV s = 6.58 × 10−4 eV ps. (4.8)

In nuclear physics we may describe the decay of a state in terms of its lifetime in units
of s, ms (10−3), µs (10−6), ns (10−9), ps (10−12) or fs (10−15), or alternatively with
Eq. (4.8) in terms of its width in MeV. Hitorically one usually the mean lifetime τ
for gamma decay of excited-state lifetimes and the half-life T1/2 = ln(2) τ for ground-
state lifetimes for beta decay and alpha decay. (Note that the Table of Isotopes by
Firestone et al. uses T1/2 for excited states.)

A given initial state may decay to several final states. The total transition rate
is:

W =
∑

f

Wi,f , (4.9)

where Wi,f is the partial decay rate to the particular final state f . The branching
fraction to this state is: 6

b(i → f) =
Wi,f

W
. (4.10)

When the total lifetime and the branching fraction for a given decay are known, we
can find the partial lifetime τp related to that specific decay channel by:

τp = τ/b. (4.11)

4.2 Alpha and cluster decay

Alpha decay occurs when a parent nucleus (A, Z) with atomic mass number A and
nuclear charge number Z spontaneously emits an alpha particle leaving a residual
(daughter) nucleus (A − 4, Z − 2):

AZ → (A−4)(Z − 2) + 4He. (4.12)

Alpha decay usually occurs from the nuclear ground state, but decay from excited
states may also occur. The alpha decay of a given parent nucleus often leads to
daughter nuclei that are themselves alpha or beta radioactive, thus giving rise to a
disintegration series. By 1935 the detailed decay schemes for three naturally occurring
series that started with 238U (Z=92), 235U, and 232Th (Z=90) had been discovered.
The alpha particles observed for these naturally occurring decays have energies in the
range of 5 to 10 MeV, and were used as a source of projectiles for nuclear reaction
experiments until the use of particle accelerators took over in the 1940’s.

6The branching fraction is often denoted by BR and is given in percent.

➢ Electron capture
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Beta plus, β+, decay involves emission of a positron and electron neutrino:

AZ → A(Z − 1) + e+ + νe, (4.26)

The Q value for β+ decay is given by

Q(β+) = [M(A, Z) − M+1(A, Z − 1) − me]c
2 = [M(A, Z) − M(A, Z − 1) − 2me]c

2

= B(A, Z − 1) − B(A, Z) − 2mec
2 − δnH . (4.27)

where
M+1(A, Z − 1) = M(A, Z − 1) + me (4.28)

is the mass of the final nucleus with one extra electron.

Another form of beta decay that competes with β+ decay is electron capture
(EC) in which one of the atomic electrons is captured by the nucleus and an electron-
neutrino is emitted:

e− + AZ → A(Z − 1) + νe. (4.29)

The Q value for electron capture decay is given by

Q(EC) = [M(A, Z) − M(A, Z − 1)]c2 = B(A, Z − 1) − B(A, Z) − δnH . (4.30)

The experimental beta decay Q values are shown in Fig. (4.10) and those for the
HF1 predictions are shown in (4.11). The energy released in β− or β+ decay is shared
between the recoiling nucleus, the electron and the neutrino. Since the nucleus is
heavy compared to the electron and neutrino, most of the energy is shared between
the electron and the neutrino with a probability distribution for each that can be be
accurately calculated. Usually only the electron or positron is detected, and it has a
range of kinetic energies ranging from zero up to Qβ (the end-point energy), assuming
that the mass of the neutrino is zero. If the neutrino has a mass, the end-point energy
of the electron would be reduced. The end-point energy of the tritium beta decay
has been used to set a limit of about mν < 9 eV/c2 for the mass of the electron
antineutrino. In the electron-capture process is all of the energy goes into that of the
neutrino. An experimental signature of electron capture is the X ray emitted when
the vacancy left by the inner electron that was absorbed by the nucleus is filled by
one of outer electrons.

4.3.2 Allowed beta decay

The allowed beta decay rate W between a specific set of initial and final states is
given by:

Wi,f = (f/Ko)
[

g2
V Bi,f(F±) + g2

A Bi,f(GT±)
]

, (4.31)

➢ Fission
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➢ Nuclear stability

10.3: ...Nuclear binding energy (con’t)...

Application to β-decay

β-decay occurs when a proton or a neutron in a nucleus converts to the other form of
nucleon, n → p, or p → n. (An unbound neutron will also β-decay.) This process
preserves A. Therefore, one may characterize β-decay as an isobaric (i.e. same A)
transition. For fixed A, (10.39) represents a parabola in Z, with the minimum occurring
at (Note: There is a small error in Krane’s formula below.):

Zmin =
[mn −m(1H)]c2 + a

C
A−1/3 + 4asym

2aCA
−1/3 + 8asymA

−1
. (10.40)

We have to use some caution when using this formula. When A is odd, there is no
ambiguity. However, when the decaying nucleus is odd-odd, the transition picks up an
additional loss in mass of 2apA

−3/4, because an odd-odd nucleus becomes an even-even
one. Similarly, when an even-even nucleus decays to an odd-odd nucleus, it picks up a
gain of 2apA

−3/4 in mass, that must be more than compensated for, by the energetics of
the β-decay.
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(the surface energy). In the fifth term, which accounts for the odd-even effect, a positive

sign is used for even proton-even neutron nuclei and a negative sign for odd proton-odd

neutron nuclei. For nuclei of odd A (even-odd or odd-even) this term has the value of

zero. Comparison of this equation with actual binding energies of nuclei yields a set

of coefficients; e.g.

av ¼ 15:5; aa ¼ 23; ac ¼ 0:72; as ¼ 16:8; ad ¼ 34

With these coefficients the binding energy equations (4.5) and (4.10) give agreement

within a few percent of the measured values for most nuclei of mass number greater

than 40.

When the calculated binding energy is compared with the experimental binding

energy, it is seen that for certain values of neutron and proton numbers, the disagreement

is more serious. These numbers are related to the so-called “magic numbers”, which we

have indicated in Figure 4.1, whose recognition led to the development of the nuclear

shell model described in a later chapter.

4.7. VALLEY OF b-STABILITY

If the semiempirical mass equation is written as a function of Z, remembering that N ¼
A " Z, it reduces to a quadratic equation of the form

EB ¼ a Z2 þ bZ þ c $ d=A3=4 (4.16)

where the terms a, b and c also containA. This quadratic equation describes a parabola for

constant values of A. Consequently, we would expect that for any family of isobars (i.e.

constant A) the masses should fall upon a parabolic curve. Such a curve is shown in

Figure 4.5. In returning to Figure 4.1, the isobar line with constant A but varying Z cuts

Figure 4.5 Isobar cut across the val-
ley of stability showing schematically
the position of different kinds of
nuclei.
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diagonally through the line of stable nuclei. We can picture this as a valley, where the

most stable nuclei lie at the bottom of it (cf. Figs. 4.1 and 4.5), while unstable nuclei lie

up the valley sides as shown in Figure 4.5. Any particular isobaric parabola can

be considered as a cross-section of the valley of stability; Figure 4.5 would be seen by

someone standing up to the right of Figure 4.1 and looking down the valley. The isobars

located on the sides of the parabola (or slope of the valley) are unstable to radioactive

decay to more stable nuclides lower on the parabola, though usually the most stable

nucleus is not located exactly at the minimum of the parabola. Nuclides on the left hand

side of the parabola (lower atomic numbers) are unstable to decay by b!emission. Isobars

to the right of the valley of stability are unstable to bþ decay or electron capture. At the

bottom of the valley the isobars are stable against b decay. The curved line in Figure 4.1 is

calculated for maximum stability according to (4.15), and indicates the theoretical

bottom of the valley. The minimum of the curve can be calculated from (4.15) to be

Z ¼ 2A=½4þ ðac=aaÞA2=3' (4.17)

and is shown in Figure 4.1. For small A values (4.17) reduces to Z¼ A/2 orN¼ Z; thus

the bottom of the stability valley follows theN¼ Z line as indicated in Figure 4.1 for the

lighter nuclides.

Figure 4.6 Isobar parabolas for odd mass numbers (I: odd-even or even-odd nuclides) and for even
mass numbers (cases II - V). The stable nuclides are indicated by heavier dots.
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10.3: ...Nuclear binding energy (con’t)...

(10.40) can very nearly be approximated by:

Zmin ≈
A

2

1

1 + (1/4)(a
C
/asym)A

2/3
. (10.41)

This shows clearly the tendency for Z ≈ N for lighter nuclei. For heavier nuclei, A ≈ 0.41.
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Nuclear stability
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Angular momentum and parity

10.4: Angular momentum and parity...

Some notation:

Symbol meaning
li orbital angular momentum of the i’th nucleon
si intrinsic spin angular momentum of the i’th nucleon

ji total angular momentum of the i’th nucleon, i.e. !i = !li + !si
!L sum of all orbital angular momenta in a nucleus i.e. !L =

∑A
i=1
!li

!S sum of all intrinsic spin angular momenta in a nucleus i.e. !S =
∑A

i=1 !si

The total angular momentum of a nucleus is formed from the sum of the individual
constituents angular momentum, !l, and spin, !s, angular momentum. The symbol given
to the nuclear angular momentum is I .
Thus,

!I =
A
∑

i=1

(!li + !si) = !L + !S . (10.42)
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➢ Nuclear angular momentum
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10.4: Angular momentum and parity...

These angular momenta add in the Quantum Mechanical sense. That is:

〈!I2〉 = !
2I(I + 1)

I = 0,
1

2
, 1,

3

2
· · ·

〈Iz〉 = !m
I

m
I

: −I ≤ m
I
≤ I

∆m
I

: integral jumps (10.43)
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I = n~ for odd-odd nuclei

I = (n+
1

2
)~ for odd-A nuclei

I = 0 for even-even nuclei
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Nuclear magnetic moment

10.7: ...Nuclear magnetic and electric moments...

A moving charge (positive in this case) generates a similar magnetic field and dipole
moment. For a negative charge moving in the same direction, the direction of the magnetic
moment would be reversed.
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10.10.1: Magnetic dipole of nucleons...

Nucleons, in a tightly-bound nucleus, all in close proximity to each other, all moving with
velocities of about 0.001 → 0.1c. This is a radical departure from the leisurely orbit of
an electron about a nucleus. This is a “mosh pit” of thrashing, slamming nucleons. The
forces between them are considerable, and play a vital role in the determination of nuclear
structure.

The orbital angular momentum can be characterized in classical electrodynamics in terms
of a magnetic moment, !µ:

!µ =
1

2

∫

d!x !x× J(!x) , (10.45)

where J(!x) is the current density. For the purpose of determining the orbital angular
momentum’s contribution to the magnetic moment, the nucleons can be considered to be
point-like particles.
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➢ Nuclear magnetic moment



16/05/2022 Jinniu Hu

Nuclear magnetic moment

➢ Nuclear magnetic moment
µz = gllz + gssz

so
µ = glj + (gs � gl)hszi

finally
µ = gl

✓
j � 1

2

◆
+

1

2
gs, j = l +

1

2

µ = gl
j(j + 3

2 )

j + 1
� jgs

2(j + 1)
, j = l � 1

2

where, we used
hszi =

*
(~j · ~s)jz

j2

+

=
j

2j(j + 1)
[j(j + 1)� l(l + 1) + s(s+ 1)]

CHAPTER 2. ჰሰࠎ֥ނЧྟᇉ 16

ჰሰ֥ނ໊࿈ູݺਈሰඔđ֒T=0ൈ

µ =< II|
1
2
Jz + 0.38Sz|II >=

I

2
+ 0.38 < II|Sz|II > (2.54)

ఃᇏSzູނሰሹሱ࿈b

קࡌodd-A֥ނՈइປಆႮໃ֥ؓቋު၂۱ނሰิ܂,అނሰԩႿ™nljm,ᄵ

µ =< ljm|µz|ljm > |m=j =< ljj|g(l)lz + g(s)sz|ljj > (2.55)

০Ⴈ

|ljm >=
X

mlms

| < lml
1
2
ms|jm > |lml > |

1
2
ms > (2.56)

ᄵ

µ =
X

mlms

| < lml
1
2
ms|jj > |

2(mlg
(l) + msg

(s)) (2.57)

ႨC-G༢ඔսೆ,ᄵ:

µ =

8
<

:
l0g(l) + 1

2g(s) j = l + 1/2

[(l + 1)g(l)
°

1
2g(s)] 1

j(j+1) j = l ° 1/2
(2.58)

ՎࠧނՈइ֥Schmit܄ൔb

༝ܸഈ෮ඪ֥Ոइ:

µ =< IM |µz|IM > |M=I (2.59)
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Nuclear magnetic moment

10.10.1: ...Magnetic dipole of nucleons

Iπ assignments: p, n = 1
2
+
, 2
1H1= 1+, 17

8 09=
5
2
+
, 57
26Fe31=

1
2
−
, 57
27Co30=

7
2
−
, 93
41Nb52=

9
2
+
.

Can you draw any conclusions?
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2 ԛྡྷჃ ཝ

ॳᄤḌⱘ⺕ⶽҙ⬅᳔ϔϾӋḌᄤއᅮ, Ⳉᑨ⫼݀ᓣ (1.1), ৃҹᕫࠄ

µs = j(gl ±
gs − gl
2l + 1

), (1.2a)

=

{
gll +

1
2gs, j = l + 1/2,

j
j+1 [gl(l + 1)− 1

2gs], j = l − 1/2.
(1.2b)

ϞᓣЁ j  l ,䞣ࡼ䞣䔼䘧㾦ࡼᰃӋḌᄤⱘᘏ㾦߿ߚ j = l ± 1
2 ᰃϔᇍ㞾ᮟ䔼䘧ӭԈᗕ. བ

ᵰ㒭ߎ⺕ⶽ µs 䱣 j ব࣪ⱘ, ߭ৃҹᕫࠄϸᴵ㒓, 䗮ᐌ㹿⿄ Schmidt 㒓 [5], ḍ݀ᓣ (1.2)

ᕫࠄⱘ⺕ⶽؐজ㹿⿄ Schmidtؐ.⬅Ѣ Schmidt⺕ⶽؐᇍᅮᗻ㾷䞞ॳᄤḌⱘ⺕ⶽ᳝䞡㽕খ

㗗ᛣН, 㸼 1.1 㒭ߎњϔѯऩ㉦ᄤᗕᇍᑨⱘ Schmidt ⺕ⶽؐ.

㸼 1.1 ϔѯऩ㉦ᄤᗕᇍᑨⱘ Schmidt ⺕ⶽؐ, ⺕ⶽⱘऩԡᰃ µN.

䔼䘧 s1/2 p1/2 p3/2 d3/2 d5/2 f5/2 f7/2 g7/2 g9/2 h9/2 h11/2 i11/2 i13/2

䋼ᄤ 2.79 −0.26 3.79 0.12 4.79 0.86 5.79 1.72 6.79 2.62 7.79 3.56 8.79

Ёᄤ −1.91 0.64 −1.91 1.15 −1.91 1.37 −1.91 1.49 −1.91 1.57 −1.91 1.62 −1.91

ᮽϞϪ㑾 50 ᑈҷҎӀᏆ⊼ᛣࠄ, Т᠔᳝༛ A ॳᄤḌᅲ偠⺕ⶽؐ䛑ϸᴵ Schmidt

㒓П䯈 [1,8]. 䱣ৢⱘकᑈЁ,䴲Ⳍᇍ䆎ḚᶊϟخњᕜᎹএ㾷䞞⺕ⶽᅲ偠ؐϢ Schmidt

ؐП䯈ⱘأᏂ. ⷨお㸼ᯢ,䖭⾡أᏂৃҹ㾷䞞Ўϟ䴶ϸ⾡ᬜᑨ.ϔᰃҟᄤѸᤶ⌕ᬜᑨ [9–13],े

ḌᄤП䯈Ѹᤶᏺ⬉ҟᄤ᠔ѻ⫳ⱘ⬉⌕ᇍ⺕ⶽⱘׂℷ, ᅲ䰙ᬜᵰᰃᇍ㞾⬅Ḍᄤ⺕ⶽㅫヺׂ᳝

ℷ. ѠᰃḌ㢃ᵕ࣪ (㒘ᗕ⏋ড়) ᬜᑨ, े⣀ゟ㉦ᄤൟЁᗑ⬹ⱘӋḌᄤϢḌ㢃⊶ߑ᭄ⱘ㗺ড়

ᬜᑨ [8,14–22]. 㗗㰥䖭ϸ⾡ᬜᑨⷨおॳᄤḌ⺕ⶽⱘⳌ݇Ꮉৃ㾕㓐䗄᭛ゴ [23–28].
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 1.1 ϔѯ᳝ঠ⒵Ḍ㢃ޣࡴϔϾḌᄤⱘ༛ AॳᄤḌ⺕ⶽⱘᅲ偠ؐ Schmidtؐҹঞᇍ

ᑨⱘ㞾ᮟ, Ꮊᰃ༛ЁᄤॳᄤḌ, েᰃ༛䋼ᄤॳᄤḌ. 㑶㡆㪱㡆߿ߚ㸼⼎ j = l + 1/2 

j = l − 1/2 ⱘ Schmidt 㒓. ᅲᖗ㸼⼎ᅲ偠⺕ⶽؐ, প㞾᭛⤂ [3].

Ѣ Schmidtؐᑊ㗗㰥ϸ⾡ᬜᑨ,ᇍ᳝ঠ⒵Ḍ㢃ޣࡴϔϾḌᄤⱘ⧗ᔶ༛ AॳᄤḌⱘ

⺕ⶽⷨお᳔,བ 16O, 40Ca 208PbḌ㢃.  1.1㒭ߎњ䖭ѯॳᄤḌ⺕ⶽⱘᅲ偠ؐ Schmidt
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Nuclear quadrupole moment

➢ Electrostatic potential of nuclei

10.10.2: Quadrupole moments of nuclei...

The electric quadrupole moment is derived from the following considerations.
The electrostatic potential of the nucleus is given by:

V (!x) =
Ze

4πε0

∫

d!x′
ρp(!x′)

|!x− !x′|
. (10.49)

Now, imagine that we are probing the nucleus from a considerable distance, so far away
from it, that we can only just discern the merest details of its shape. Given that ρp(!x′)
is highly localized in the vicinity of the nucleus and our probe is far removed from it, we
may expand (10.49) in a Taylor expansion in |!x′|/|!x|. Thus we obtain:

V (!x) =
Ze

4πε0

[

1

|!x|

∫

d!x′ ρp(!x
′) +

!x

|!x|3
·
∫

d!x′ !x′ρp(!x
′)+

1

2|!x|5

∫

d!x′
(

3(!x · !x′)2 − |!x|2|!x′|2
)

ρp(!x
′) · · ·

]

. (10.50)
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➢ Taylor expansion
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∫
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It can be simplified 

10.10.2: Quadrupole moments of nuclei...

This simplifies to:

V (!x) =
Ze

4πε0

[

1

|!x|
+

Q

2|!x|3
· · ·

]

, (10.51)

where

Q =

∫

d!x
(

3z2 − r2
)

ρp(!x) . (10.52)

We have used
∫

d!x ρp(!x) ≡ 1 for the first integral in (10.50). This is simply a statement
of our conventional normalization of ρp(!x). We also used

∫

d!x !xρp(!x) ≡ 0 in the second
integral in (10.50). This is made possible by choosing the “center of charge” as the origin
of the coordinate system for the integral. Finally, the third integral resulting in (10.52),
arises from the conventional choice, when there is no preferred direction in a problem, and
set the direction of !x′ to align with the z′-axis, for mathematical convenience.
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Nuclear quadrupole moment

➢ Nuclear quadrupole moment

10.10.2: Quadrupole moments of nuclei...

The quantum mechanics analog to (10.52) is:

Q =

∫

d!x ψ∗
N(!x)(3z

2 − r2)ψN(!x) , (10.53)

where ψN(!x) is the composite nuclear wave function. The electric quadrupole moment
of the nucleus is also a physical quantity that can be measured, and predicted by nuclear
model theories. See Krane’s Table 3.3.
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➢ For j=l+1/2 case
 =

ul(r)

r
Yll(✓,�)�spin�isospin

so

Q =

Z
u2
l (r)|Yll(✓,�)|2r2(3 cos2 ✓ � 1) sin ✓drd✓d�

finally

Q = �hr2i2j � 1

2j + 2
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Nuclear quadrupole moment
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Figure 4: Scaled experimental quadrupole moments for the ground states of
odd-even nuclei for a region of nuclei. The dashed lines show the magic numbers
50 and 82 for protons and 82 and 126 for neutrons.
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Excited state of nuclei

10.11:Nuclear excited states
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Excited state of nuclei

First excited state of even-even nuclei
Excitation energy (keV)

Ground state
Configuration.
Spin/parity Iπ=0+ ;
Ex = 0 keV

2+

0+
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The basic concept of the FermiThe basic concept of the Fermi--gas modelgas model

The theoretical concept of a Fermi-gas may be applied for systems of weakly 
interacting fermions, i.e. particles obeying Fermi-Dirac statistics leading to the Pauli
exclusion principle !!!!
• Simple picture of the nucleus:
— Protons and neutrons are considered as moving freely within the nuclear volume. 
The binding potential is generated by all nucleons
— In a first approximation, these nuclear potential wells are considered as
rectangular: it is constant inside the nucleus and stops sharply at its edge 
— Neutrons and protons are distinguishable fermions and are therefore situated in 
two separate potential wells

— Each energy state can be ocupied by two
nucleons with different spin projections
— All available energy states are filled by 
the pairs of nucleons !!!! no free states , no 
transitions between the states
— The energy of the highest occupied state 
is the Fermi energy EF

— The difference B‘ between the top of the well and the Fermi level is constant for 
most nuclei and is just the average binding energy per nucleon B‘/A = 7–8 MeV.
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Nuclear mean potential

Square-well potential

7.3 Phenomenological Single-Particle Models 
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1p(6) 

(2) N=O Is [21. __ --EL Is (6) 

• The Woods--Saxon potential [WoS4, R068] 

V(r) = _ Vo 
1 + exp[(r - R)/a] 

(7.120) 

Typical values for the parameters are: depth Vo :::::: SOMeV, radius R :::::: 
1.1 fmA 1/3, and surface thickness a :::::: O.S fm. Although this potential fol-
lows a similar form as the experimental nuclear density distributions and has 
the general behavior discussed above, it has the practical disadvantage of not 
leading to analytic forms for the wave functions. It is thus used usually in 
those cases where the asymptotic form of the wave functions is important and 
calculational expense not prohibitive. 

• The harmonic-oscillator potential 

(7.121) 

with nw :::::: 41 MeV x A -1/3 typically. This is very convenient for computation 
but as it goes to infinity instead of zero at large distances, it clearly does not 
produce the correct large-distance behavior of the wave functions, which fall 
off as exp( -k2r2) instead of exp( -kr) and there are no scattering states at all. 
The A -I /3 dependence of the oscillator constant implies that on the nuclear 
surface, i.e., for R = roA 1 /3, there is the same potential regardless of the value 
of A, thus simulating the constant depth of the potential well. 

• Finally, for some applications, the square-well potential 

for 
for 

r'5,R 
r>R 

(7.122) 

239 

Fig.7.4 Level structures in 
the harmonic-oscillator (left), 
Woods-Saxon (center), and 
square-well potentials (right). 
For each level the conven-
tional quantum number des-
ignation is given consisting 
of the radial quantum num-
ber and the angular momen-
tum. The number of particles 
in each state, including the 
two-fold spin degeneracy, is 
indicated in parantheses for 
the level, while the total oc-
cupation up to that level is 
given in square brackets. 
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• The Woods--Saxon potential [WoS4, R068] 

V(r) = _ Vo 
1 + exp[(r - R)/a] 

(7.120) 

Typical values for the parameters are: depth Vo :::::: SOMeV, radius R :::::: 
1.1 fmA 1/3, and surface thickness a :::::: O.S fm. Although this potential fol-
lows a similar form as the experimental nuclear density distributions and has 
the general behavior discussed above, it has the practical disadvantage of not 
leading to analytic forms for the wave functions. It is thus used usually in 
those cases where the asymptotic form of the wave functions is important and 
calculational expense not prohibitive. 

• The harmonic-oscillator potential 

(7.121) 

with nw :::::: 41 MeV x A -1/3 typically. This is very convenient for computation 
but as it goes to infinity instead of zero at large distances, it clearly does not 
produce the correct large-distance behavior of the wave functions, which fall 
off as exp( -k2r2) instead of exp( -kr) and there are no scattering states at all. 
The A -I /3 dependence of the oscillator constant implies that on the nuclear 
surface, i.e., for R = roA 1 /3, there is the same potential regardless of the value 
of A, thus simulating the constant depth of the potential well. 

• Finally, for some applications, the square-well potential 
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Fig. 7.3 Sketch of the functional form of three popular phenomenological shell-model poten-
tials: Woods-Saxon, harmonic oscillator, and the square well. The parameters are applicable 
to 208Pb. Note that for the harmonic oscillator the absolute value of the energy is unimpor-
tant, as it does have the natural limit of vanishing energy for large distances; for this figure 
it was adjusted to agree with the other potentials in the center of the nucleus. 

• a larger total binding energy of the nucleus, 

• a larger energy required to separate a single nucleon, 

• a higher energy of the lowest excited states, and 

• a large number of isotopes or isotones with the same magic number for protons 
(neutrons) 

(all of these in comparison to neighboring nuclei in the table of nuclides). The 
lower magic numbers are the same for protons and neutrons, namely 2, 8, 20, 
28, 50, and 82, whereas the next number, 126, is established only experimentally 
for neutrons. Theoretically one would expect additional magic numbers near 114 
for protons and 184 for neutrons (the exact prediction depends on the theory) 
leading to superheavy nuclei [Gr69, Ni69, Fin, Ra74] (for an extended treatment, 
see [lr75 , Ku89]), but these have not been confirmed in experiment, although there 
are hints of an increase of lifetimes in the heaviest elements observed up to now. 
We will come to this question in Sect. 9.2. 

A phenomenological shell model thus is based on the SchrOdinger equation for 
the single-particle levels: 

( - \72 + V(r») '¢i(r) = Ci '¢i(r) (7.118) 

with a prescribed potential V(r). 
What kind of function should be chosen for V (r)? It should be relatively 

constant inside heavier nuclei to explain the constant density suggested by the fact 
that the nuclear radius behaves as 

(7.119) 

but go to zero quite rapidly outside the nuclear surface. Popular and successful 
choices are given below (assuming spherical symmetry). 

    where V0 ~ -50 MeV, R~1.1 fm A1/3, 
    a ~ 0.5 fm

    where 𝜔~ 41 MeV A-1/3

Single particle equation in mean field
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 Nuclear shell model
Schroedinger equation with harmonics oscillator potential

Chapter 2

The Harmonics oscillator basis

2.1 Harmonic Oscillator in Schrödinger equation

The Schrödinger equation for a particle in a harmonic-oscillator potential reads,

!ℎ"" = (−∇2

2#
+

1

2
#$2%2)" = &". (2.1)

This eigenequation can be solved in spherical polar coordinates %, ) and *. In the spherical
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Kinetic energy in spherical coordinate
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Wave function
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Angular equation 
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Radial Schoedinger equation 

Chapter 2

The Harmonics oscillator basis

2.1 Harmonic Oscillator in Schrödinger equation
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Variable substitution

CHAPTER 2. THE HARMONICS OSCILLATOR BASIS 4

The !!"(", $) are called spherical harmonics; they contain the orbit angular momentum

dependence of the eigenfunction with % being the orbital angular momentum, and & its

projection along the ' axis. The ("
! is known as the associated Legendre functions.

The radial equation is solved by introducing the dimensionless variable ) = */, where

, =
√
ℏ- is the size parameter, which plays the role of the characteristic length of the

harmonic oscillator. This leads to the equation
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where 0̃ = 0/ℏ-. Then we can introduce a new radius wave function 1!()) = )/!()), which
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where, 2 = 20̃. Let 1!()) = )!+13−#2/24!()) and make a transform, ' = )2, the radius

equation will become a confluent hypergeometric equation,
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The boundary condition )→ 0 require the solution is the confluent hypergeometric function

7 (6, 5'). To keep 1!()) → 0 when ) → ∞, the 6 in 7 (6, 5, ') should be zero or negative

integer,

6 = −8, (8 = 0, 1, 2, . . . ), (2.11)

the confluent hypergeometric function will be cut as Laguerre polynomial,

4%!(') = :%!;
!+1/2
% (') (2.12)

Finally, we can obtain
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% (*2/,2), (2.13)

where Γ(<) is the gamma function. The energy spectrum is

0%! = (28+ % +
3

2
)ℏ-. (2.14)

with                  ,                    and
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 Nuclear shell model
Nuclear parameters

CHAPTER 2. THE HARMONICS OSCILLATOR BASIS 5

In nuclear physics, for the number of nucleons, A, the value of ℏ! can be obtained from

a simple argument resulting in formulas

ℏ! = 41"−1/3 MeV, $ = 1.005"1/6 fm. (2.15)

Introducing & = 2'+ (, we can rewrite the energy spectrum as

)"# = (& +
3

2
)ℏ!, (2.16)

which shows that & can be interpreted as the number of oscillator quanta, the term 3ℏ!/2
being accounted for the zero-point motion of an oscillation in three dimensions; & is called

the major oscillator quantum number. The allowed values of the orbital angular momentum

are

( = &,& − 2, . . . , 0 or 1. (2.17)

We can give the classification of states of a single particle in a harmonic-oscillator potential

up & = 6.

If the spin degeneracy of the quantum number ('(+,) is taken into account, stable shell

structures are obtained at the nucleon numbers 2, 8, 20, 40, 70, 112, . . . . These are the magic

number of the harmonic oscillator. How to explain the differences between the observed

magic numbers (2, 8, 20, 28, 50, 82, 126) and those of the harmonic oscillator? The observed

ones can be reproduced in a independent-particle model if to the harmonic-oscillator Hamil-

tonian -ℎ% a spin-orbit coupling is added of the form,

.&% = /'%l ⋅ s. (2.18)

The eigenvalue problem associated with the Hamiltonian -ℎ% + .&% is not, in general, ana-

lytically solved but the dominant characteristics can be found from the expectation values,

⟨'(+,∣.&%∣'(+,⟩ =
1

2
⟨/&%(0)⟩"#

[
+(+ + 1)− ((( + 1)− 3

4

]
(2.19)

=

⎧
⎨

⎩
−1

2(( + 1)⟨/&%(0)⟩"# for + = ( − 1/2

1
2 (⟨/&%(0)⟩"# for + = ( + 1/2

with radial integral defined as

⟨/(0)⟩"# =
∫ ∞

0

/(0)12
"#(0)0

220. (2.20)

Empirically, one finds that the radial integrals approximately satisfy the relation

⟨/(0)⟩"# ≈ −20"−2/3 MeV (2.21)
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The total degeneracy at level N
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 Nuclear shell model
Spin-orbit force 

CHAPTER 2. THE HARMONICS OSCILLATOR BASIS 5

In nuclear physics, for the number of nucleons, A, the value of ℏ! can be obtained from

a simple argument resulting in formulas

ℏ! = 41"−1/3 MeV, $ = 1.005"1/6 fm. (2.15)

Introducing & = 2'+ (, we can rewrite the energy spectrum as
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2
)ℏ!, (2.16)

which shows that & can be interpreted as the number of oscillator quanta, the term 3ℏ!/2
being accounted for the zero-point motion of an oscillation in three dimensions; & is called
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number of the harmonic oscillator. How to explain the differences between the observed

magic numbers (2, 8, 20, 28, 50, 82, 126) and those of the harmonic oscillator? The observed

ones can be reproduced in a independent-particle model if to the harmonic-oscillator Hamil-

tonian -ℎ% a spin-orbit coupling is added of the form,

.&% = /'%l ⋅ s. (2.18)

The eigenvalue problem associated with the Hamiltonian -ℎ% + .&% is not, in general, ana-
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236 A Spectral Terms

L2 `3 L S2 s3 S

2 1 f3,2,1g 1 1/2 f3/2,1/2g
1 1 f2,1,0g 0 1/2 1/2
0 1 1

Let us now compose L and S :

L S J Terms # of terms

3 3/2 f9/2,7/2,5/2,3/2g 4F9=2;7=2;5=2;3=2 1
2 3/2 f7/2,5/2,3/2,1/2g 4D7=2;5=2;3=2;1=2 2
1 3/2 f5/2,3/2,1/2g 4P5=2;3=2;1=2 3
0 3/2 3/2 4S3=2 1
3 1/2 f7/2,5/2g 2F7=2;5=2 2
2 1/2 f5/2,3/2g 2D5=2;3=2 4
1 1/2 f3/2,1/2g 2P3=2;1=2 6
0 1/2 1/2 2S1=2 2

A.1.3.6 Three Equivalent p Electrons (np3)

It turns out (see Fig. A.2) that for np3 electronic configuration only the terms 4S ,
2D, 2P survive. This is the case of the nitrogen atoms in ground and low-lying states
with three electrons having principal quantum number n D 2

Term Energy (cm!1) g
4S3=2 0 4
2D5=2 19224:464 6
2D3=2 19233:177 4
2P1=2 28838:920 2
2P3=2 28839:306 4

Fig. A.2 Arrangements of three electrons on three equivalent p orbitals

Calculate the total number of possible microstates N for a given electron 
configuration. As before, we discard the filled (sub)shells, and keep only the 
partially filled ones. For a given orbital quantum number l, t is the maximum 
allowed number of electrons, t = 2(2l+1). If there are e electrons in a given 
subshell, the number of possible microstates is


