

Atomic Physics

Chapter 7 Nuclear Physics

Nuclear physics application

刮

Nuclear Imaging

Nuclean physics application

Blood flow with radiopharmaceuticals

Imaging software and analysis

- Gamma Camera
- SPEC & PEP
- Isotopes & Isomer
- Parmaceuticals

Tumor mapping & visualization by radioactive isotope accumulation.

Imaging system development

16/05/2022

Dating real and false mummies

application

UN

16/05/2022

Nuc

✓ 1896: Henri Becquerel-discovery of radioactivity

Photographic plates blackened when placed near certain minerals (uranium salts). Radioactivity could not be explained by e-m (or gravity), and was one of the unsolved problems.

✓ 1898: Maria and Pierre Curie- discovery of Polonium and Radium (much more radioactive than uranium)

Becquerel and the Curies shared the Nobel Prize in Physics in 1903. Later, Marie Curie isolates metallic radium and receives the Nobel Price in Chemistry in 1911.

副大

Radioactivity Unit: Bacquerel and Curie

16/05/2022

Ernest Rutherford - "the father of nuclear physics"

- ✓ 1899: Rutherford shows 2 types of radiation exits and calls them named α and β .
- ✓ 1900: Villard gives evidence for a 3rd type of radiation coming from radium and calls it γ
- \checkmark 1902: Curies show that β radiation is electrons
- \checkmark 1904: Rutherford shows α particles are helium

Ernest Rutherford was awarded the Nobel Prize in Chemistry in 1908 "for his investigations into the disintegration of the elements, and the chemistry of radioactive substances".

"I have dealt with many different transformations with various periods of time, but the quickest that I have met was my own transformation in one moment from a physicist to a chemist." E. Rutherford (Nobel banquet 1908).

16/05/2022

The history of nuclear physics

✓ 1911: Rutherford proposed the existence of a massive nu as a small central part of an atom

Jinniu Hu

a massive nu

J.J. Thompson's Plum Pudding Model (1904) Rutherford's Planetary Model (1911)

16/05/2022

The history of nuclear physics

✓ 1911: Rutherford proposed the existence of a massive nu as a small central part of an atom

Jinniu Hu

a massive nu

J.J. Thompson's Plum Pudding Model (1904) Rutherford's Planetary Model (1911)

剧大

16/05/2022

- ✓ Chadwick's discovery made it possible to create elements heavier than Uranium in the lab. Later, Enrico Fermi discovered nuclear reactions (slow neutrons) which led to a revolutionary discovery of nuclear fission (Otto Hanh and Fritz Strassmann).
- ✓ Chadwick's discovery was crucial for the fission of uranium 235. Unlike α particles, neutrons do not need to overcome Coulomb barrier and thus can penetrate and split the nuclei of the heaviest elements. The release of neutrons sustains the fission reaction.

Isotope	Natural Abundance	Half-Life	
	(atomic percentage)	(years)	
U ²³⁴	0.0054	2.440×10^{5}	
U ²³⁵	0.7200	$7.040 \mathrm{x} 10^8$	
U ²³⁸	99.2746	$4.488 \mathrm{x10}^9$	

副大

Uranium-235 has the distinction of being the only naturally occurring fissile isotope.

Uranium-238 cannot fission with low energy neutrons (stable nuclear shell structure)

16/05/2022

- √1914: J. Chadwick shows spectrum of β radiation is continuous, contrary to the fundamental principle of energy conservation
- √1930:W.Pauli proposed a neutrino to explain the continuous spectrum of β decay.

"I have done a terrible thing, I have postulated a particle that cannot be detected." W. Pauli

副大

Wolfgang Pauli was awarded the Nobel Prize in Physics in 1945 "for the discovery of the Exclusion Principle, also called the Pauli Principle".

Enrico Fermi was aworded the Nobel Prize in Physics in 1938 "for his demonstrations of the existence of new radioactive elements produced by neutron irradiation, and for his related discovery of nuclear reactions brought about by slow neutrons".

The history of nuclear physics

16/05/2022

✓ 1956: F. Reines and C. Cowan detection of a neutrino via inverse beta decay reaction

$$\overline{\mathbf{v}}_{e} + p \rightarrow n + e^{+}$$

From then on Reines dedicated his career to the study of the neutrino's properties and interactions, including the discovery of neutrinos emitted from SN1987A by the Irvine-Michigan-Brookhaven Collaboration. This discovery helped to inaugurate the field of neutrino astronomy.

F. Reines was awarded the Nobel Prize in Physics in 1995 for his co-detection of the neutrino with Clyde Cowan in the neutrino experiment"

周大学

 ✓ 1957: Lee and Yang – proposed the concept of parity violation in weak interactions (Nobel Prize in Physics)

副大

Implications: if parity is not conserved in weak interactions, it means that the Universe sometimes distinguishes between left and right

C. N. YAND,† Brookhaten Nat ${}^{60}\text{Co} \rightarrow {}^{60}Ni^* + e^- + \overline{\nu}_e$ (Received (Received Construction in β decays and in hyperon and meson decays is examined. Parity violation in weak interactions (β decay of polarized cobalt-60 nuclei)

Observed electrons emitted preferentially in direction opposite to to applied field: If parity were conserved, expect equal rate of electrons in directions along and opposite to the nuclear $Ni^* + e^- + \overline{v}_e$

16/05/2022

√1935: Hideki Y between nucl

sed the force From meson exchange

阁大

Awarded the Nobel Prize in Physics in 1947 "for his prediction of the existence of mesons on the basis of theoretical work on nuclear forces

The meson-exchange concept (where hadrons are treated as elementary particles) continues to represent the best working model for a quantitative NN potential.

✓ 1949: M. Meyer and J. Jensen used shell model with spin-orbit interaction to explain magic number

1963 Mayer and Jensen are awarded Nobel prize in physics

"for their discoveries concerning nuclear shell structure".

16/05/2022

✓ 1951: Collective model
 (Bohr, Mottelson, Rainwater)

The Nobel Prize in Physics 1975 was awarded jointly to Aage Niels Bohr, Ben Roy Mottelson and Leo James Rainwater "for the discovery of the connection between collective motion and particle motion in atomic nuclei and the development of the theory of the structure of the atomic nucleus based on this connection".

16/05/2022

16/05/2022

The contents of theoretical nuclear physics

- ✓ Nuclear reaction decay, fusion, fission, heavy ion collision,
- ✓ Nuclear structure

nuclear basic properties: nuclear size, nuclear binding, nuclear shape

✓ Models of nuclear structure theory Collective models

The degrees of freedom are some bulk property of nucleus as a whole Microscopic models

周大

The degrees of freedom are those of the constituent particles of the nucleus

Present nuclear physics

副大學

16/05/2022

Hot topics in nuclear structure theory

16/05/2022

Proton number, Z

Some nomenclature

${}^{A}_{Z} X_{N}$	Isotope notation
Х	Chemical symbol, <i>e.g.</i> Ca, Pb
A	Atomic mass number (sum of n 's and p 's in the nucleus)
Z	Atomic number (or, proton number), the number of p 's in the nucleus
N	Neutron number, the number of n 's in the nucleus
Examples	${}^{3}_{2}$ He ₁ , ${}^{40}_{20}$ Ca ₂₀ , ${}^{208}_{82}$ Pb ₁₂₆
Variants	⁴⁰ Ca, Calcium-40, Ca-40

Note that, once X (which encodes Z) and A are given, the rest of the information is redundant, since A = Z + N. The full form is usually used only for emphasis.

Z , different N e.g. 40 Ca and 41 Ca
onic: From Greek <i>isos</i> (same) <i>topos</i> (place) (coined by F. Soddy 1913)
<i>i.e.</i> same place in the periodic table
nt Z , same N , <i>e.g.</i> 13 C and 12 B
onic: isoto P e and isoto N e (coined by K. Guggenheimer 1934)
nt Z , and N , but same A , e.g. 12 C and 12 B
onic: From Greek <i>isos</i> (same) <i>baros</i> (weight)

Jinniu Hu

16/05/2022

Nuclear Radii

> A nucleons with hard spheres of radius r

Looking in de zero, contrary the relatively

副大

Nuclear density

> Woods-Saxon distribution

$$\rho(r) = \rho_0 \frac{1}{1 + \exp\left(\frac{r - R_{1/2}}{a}\right)}$$

≫ nuclear radii

16/05/2022

> A uniform charge distribution

In spherical case

 $F(q) = \int_{0}^{2\pi} \mathrm{d}\phi \int_{0}^{\infty} r^{2} \mathrm{d}r \ \rho_{p}(r) \int_{0}^{\pi} \sin\theta \ \mathrm{d}\theta \ e^{iqr\cos\theta} \quad [\text{note } F(\vec{q}) \longrightarrow F(q)]$ $= 2\pi \int_{0}^{\infty} r^{2} \mathrm{d}r \ \rho_{p}(r) \int_{0}^{\pi} \sin \theta \ \mathrm{d}\theta \ e^{iqr\cos\theta} \quad [\text{did the integral over } \phi]$ $= 2\pi \int_{0}^{\infty} r^{2} \mathrm{d}r \ \rho_{p}(r) \int_{-1}^{1} \mathrm{d}\mu \ e^{iqr\mu} \quad [\text{change of variable } \mu = \cos\theta]$ $= 2\pi \int_{0}^{\infty} r dr \ \rho_{p}(r) \left(\frac{2}{a}\right) \sin qr \quad [\text{did the integral over } \mu]$ $= \frac{4\pi}{\alpha} \int_{-\infty}^{\infty} r \mathrm{d}r \ \rho_p(r) \sin qr \quad \text{[in final form]}$

16/05/2022

Form factor

> A uniform charge distribution

$$o_p(r) = \frac{3}{4\pi R_N^3} \Theta(R_N - r)$$

> Form factor from in uniform charge distribution

> A uniform charge distribution $\rho_p(r) = \frac{3}{4\pi R_N^3} \Theta(R_N - r)$

> Form factor from in uniform charge distribution

16/05/2022

> A delta charge distribution

 $\rho_p(r) = \delta(R_N - r)/4\pi R_N^2$

> Form factor from in delta charge distribution m factor for a spherical shell $F(a) = \sin(aR_{e})/aR_{e}$

Nuclear mass

> Mass excess

16/05/2022

$$\Delta(N,Z) \equiv M(N,Z) - uA,$$

> Atomic Mass Unit

Nuclear binding energy

> Nuclear binding energy

16/05/2022

>> Binding energy per nucleon

16/05/2022

Nuclear mass table

					Mass	Mass	Binding	
				Atomic mass	excess	defect	energy	E _B /A
Element	Ζ	Ν	Α	<i>M</i> _A (u)	<i>M</i> _A – <i>Α</i> (μu)	Δ <i>M</i> _A (μu)	E _B (MeV)	(MeV/A)
n	0	1	1	1.008665	8665	0	_	_
Н	1	0	1	1.007825	7825	0	_	_
D	1	1	2	2.014102	14102	-2388	2.22	1.11
Т	1	2	3	3.016049	16049	-9106	8.48	2.83
He	2	1	3	3.016029	16029	-8286	7.72	2.57
He	2	2	4	4.002603	2603	-30377	28.30	7.07
He	2	4	6	6.018886	18886	-31424	29.27	4.88
Li	3	3	6	6.015121	15121	-34348	32.00	5.33
Li	3	4	7	7.016003	16003	-42132	39.25	5.61
Be	4	3	7	7.016928	16928	-40367	37.60	5.37
Be	4	5	9	9.012182	12182	-62442	58.16	6.46
Be	4	6	10	10.013534	13534	-69755	64.98	6.50
В	5	5	10	10.012937	12937	-69513	64.75	6.48
В	5	6	11	11.009305	9305	-81809	76.20	6.93
С	6	6	12	12.000000	0	-98940	92.16	7.68
Ν	7	7	14	14.003074	3074	-112356	104.7	7.48
0	8	8	16	15.994915	-5085	-137005	127.6	7.98
F	9	10	19	18.998403	-1597	-158671	147.8	7.78
Ne	10	10	20	19.992436	-7564	-172464	160.6	8.03
Na	11	12	23	22.989768	-10232	-200287	186.6	8.11
Mg	12	12	24	23.985042	-14958	-212837	198.3	8.26
Al	13	14	27	26.981539	-18461	-241495	225.0	8.33
Si	14	14	28	27.976927	-23073	-253932	236.5	8.45
Р	15	16	31	30.973762	-26238	-282252	262.9	8.48
К	19	20	39	38.963707	-36293	-358266	333.7	8.56
Со	27	32	59	58.933198	-66802	-555355	517.3	8.77
Zr	40	54	94	93.906315	-93685	-874591	814.7	8.67
Ce	58	82	140	139.905433	-94567	-1258941	1172.7	8.38
Ta	73	108	181	180.947993	-52007	-1559045	1452.2	8.02
Hg	80	119	199	198.968254	-31746	-1688872	1573.2	7.91
Th	90	142	232	232.038051	38051	-1896619	1766.7	7.62
U	92	143	235	235.043924	43924	-1915060	1783.9	7.59
U	92	144	236	236.045563	45563	-1922087	1790.4	7.59
U	92	146	238	238.050785	50785	-1934195	1801.7	7.57
Pu	94	146	240	240.053808	53808	-1946821	1813.5	7.56

16/05/2022

Nuclear mass table

16/05/2022

https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html

Separation energy

> Nuclear combinations

$$\sum_{i} [N, Z]_i \to \sum_{f} [N, Z]_f$$

> Particle conserved

$$\sum_{i} N_i = \sum_{f} N_f$$
 and $\sum_{i} Z_i = \sum_{f} Z_f$

> Q values

$$Q = \sum_{i} M(N_i, Z_i)c^2 - \sum_{f} M(N_f, Z_f)c^2 = \sum_{f} B(N_f, Z_f) - \sum_{i} B(N_i, Z_i)$$

> One neutron separation energy

$$S_n = -Q_n = B(N, Z) - B(N - 1, Z)$$

 \succ One proton separation energy

$$S_p = -Q_p = B(N, Z) - B(N, Z - 1)$$

 \succ Two neutron separation energy

$$S_{2n} = -Q_{2n} = B(N, Z) - B(N - 2, Z)$$

> Two proton separation energy $S_{2p} = -Q_{2p} = B(N, Z) - B(N, Z - 2)$

Separation energy

> Pairing energy

 $\Delta S_n = B(N, Z) - B(N - 1, Z) - [B(N + 1, Z) - B(N, Z)]$

16/05/2022

Semi-empirical mass formula

B(Z, A) = $a_{\rm v}A$ $-a_{\rm s}A^{2/3}$ ("surface" term) $-a_{\rm C} Z(Z-1) A^{-1/3}$ $-a_{\text{sym}}\frac{(A-2Z)^2}{4}$ ("symmetry" term) $+a_{n}\frac{(-1)^{Z}[1+(-1)^{A}]}{2}A^{-3/4}$ ("pairing" term)

("volume" term) ("Coulomb repulsion" term)

周大

Description Source [MeV] a_i 15.5 Liquid Drop Model Volume attraction a_{v} Liquid Drop Model 16.8 Surface repulsion a_{s} 0.72 Coulomb repulsion Liquid Drop Model + Electrostatics $a_{\rm C}$ 23 Shell model n/p symmetry $a_{\rm sym}$ 34 n/n, p/p pairing Shell model $a_{\rm p}$

16/05/2022

Semi-empirical mass formula

剧大

2

16/05/2022

Semi-empirical mass formula

16/05/2022

 $> \alpha$ decay

$${}^{A}Z \rightarrow {}^{(A-4)}(Z-2) + {}^{4}\text{He}$$

副大學

> Electron capture

$$e^- + {}^A Z \rightarrow {}^A (Z-1) + \nu_e$$

 $> \beta^-$ decay

$${}^{A}Z \rightarrow {}^{A}(Z+1) + e^{-} + \bar{\nu}_{e}$$

 $> \beta^+$ decay

$${}^{A}Z \rightarrow {}^{A}(Z-1) + e^{+} + \nu_{e}$$

- > Light fragment emission
- > Fission

Decay Type	Radiation Emitted	Generic Equation	Model
Alpha decay	4 α 2 α	$A_{Z} X \longrightarrow A_{Z-2}^{-4} X' + \frac{4}{2} \alpha$	Parent Daughter Alpha Particle
Beta decay	0 -1β	${}^{A}_{Z}X \longrightarrow {}^{A}_{Z+1}X' + {}^{0}_{-1}\beta$	Parent Daughter Beta Particle
Positron emission	0 +1 β	${}^{A}_{Z} X \longrightarrow {}^{A}_{Z-1} X' + {}^{0}_{+1} \beta$	$\begin{array}{c} & \longrightarrow \\ Parent \end{array} \longrightarrow \begin{array}{c} & \longrightarrow \\ Daughter \end{array} \begin{array}{c} & \longrightarrow \\ Positron \end{array}$
Electron capture	X rays	$A_Z^A X + {}^{0}_{-1} e \longrightarrow_{Z-1} A_X' + X ray$	Parent Electron Daughter X ray
Gamma emission	0 Y	$ \overset{A}{Z} X^* \xrightarrow{\text{Relaxation}} \overset{A}{Z} X' + \overset{0}{_{0}} \gamma $	Parent (excited nuclear state)
Spontaneous fission	Neutrons	$A \stackrel{B}{\to} \stackrel{C}{\to} X \longrightarrow \begin{array}{c} A \\ Z + Y \end{array} X' + \begin{array}{c} B \\ Y \\ X' \end{array} X' + \begin{array}{c} C \\ 0 \\ 1 \end{array} n$	Parent (unstable) Daughters

16/05/2022

NUCLEAR FISSION

NUCLEAR FISSION

16/05/2022

Type of nuclide by stability class	Number of nuclides in class	Running total of nuclides in all classes to this point	Notes
Theoretically stable to according to the Standard Model	90	90	Includes first 40 elements. If protons decay, then there are no stable nuclides.
Theoretically stable to alpha decay, beta decay, isomeric transition, and double beta decay but not spontaneous fission, which is possible for "stable" nuclides ≥ niobium–93	56	146	Note that spontaneous fission has never been observed for nuclides with mass number < 230.
Energetically unstable to one or more known decay modes, but no decay yet seen. Considered stable until radioactivity confirmed.	106 [<i>citation needed</i>]	252	Total is the observationally stable nuclides.
Radioactive primordial nuclides.	34	286	Includes Bi, Th, U
Radioactive nonprimordial, but naturally occurring on Earth.	~61 significant	~347 significant	Cosmogenic nuclides from cosmic rays; daughters of radioactive primordials such as francium, etc.

ド

副

16/05/2022

Symbol	meaning
l_i	orbital angular momentum of the i 'th nucleon
s_i	intrinsic spin angular momentum of the i 'th nucleon
j_i	total angular momentum of the i 'th nucleon, $i.e.$ $ec{\jmath_i} = ec{l_i} + ec{s_i}$
$ec{L}$	sum of all orbital angular momenta in a nucleus <i>i.e.</i> $ec{L} = \sum_{i=1}^A ec{l_i}$
\vec{S}	sum of all intrinsic spin angular momenta in a nucleus <i>i.e.</i> $ec{S} = \sum_{i=1}^A ec{s_i}$

周大學

> Nuclear angular momentum

$$\vec{I} = \sum_{i=1}^{A} (\vec{l_i} + \vec{s_i}) = \vec{L} + \vec{S}$$

$$\begin{split} \langle \vec{I}^2 \rangle &= \hbar^2 I (I+1) \\ I &= 0, \frac{1}{2}, 1, \frac{3}{2} \cdots \\ \langle I_z \rangle &= \hbar m_I \\ m_I &: -I \leq m_I \leq I \\ \Delta m_I &: \text{ integral jumps} \end{split} \quad I &= n\hbar \quad \text{for odd-odd nuclei} \\ I &= (n+\frac{1}{2})\hbar \quad \text{for odd-A nuclei} \\ I &= 0 \quad \text{for even-even nuclei} \\ \end{split}$$

16/05/2022

Nuclear magnetic moment

周大學

> Nuclear magnetic moment

$$\vec{\mu} = \frac{1}{2} \int \mathrm{d}\vec{x} \ \vec{x} \times J(\vec{x})$$

Nuclear magnetic moment

國南間大學

> Nuclear magnetic moment

 $\mu_z = g^l l_z + g^s s_z$

SO

$$\mu = g^l j + (g^s - g^l) \langle s_z \rangle$$

finally

$$\mu = g^{l} \left(j - \frac{1}{2} \right) + \frac{1}{2} g^{s}, \quad j = l + \frac{1}{2}$$

$$\mu = g^{l} \frac{j(j + \frac{3}{2})}{j + 1} - \frac{jg^{s}}{2(j + 1)}, \quad j = l - \frac{1}{2}$$
where, we used
$$\langle s_{z} \rangle = \left\langle \frac{(j \cdot \vec{s})j_{z}}{j^{2}} \right\rangle$$

$$= \frac{j}{2j(j + 1)} [j(j + 1) - l(l + 1) + s(s + 1)]$$

$$|ljm \rangle = \sum_{m_{l}m_{s}} | < lm_{l} \frac{1}{2} m_{s} | jm > |lm_{l} > | \frac{1}{2} m_{s} >$$

16/05/2022

Nuclear magnetic moment

周

16/05/2022

Nuclear quadrupole moment

> Electrostatic potential of nuclei

$$V(\vec{x}) = \frac{Ze}{4\pi\epsilon_0} \int d\vec{x}' \; \frac{\rho_p(\vec{x}')}{|\vec{x} - \vec{x}'|}$$

> Taylor expansion

$$V(\vec{x}) = \frac{Ze}{4\pi\epsilon_0} \left[\frac{1}{|\vec{x}|} \int d\vec{x}' \ \rho_p(\vec{x}') + \frac{\vec{x}}{|\vec{x}|^3} \cdot \int d\vec{x}' \ \vec{x}' \rho_p(\vec{x}') + \frac{1}{2|\vec{x}|^5} \int d\vec{x}' \ \left(3(\vec{x} \cdot \vec{x}')^2 - |\vec{x}|^2 |\vec{x}'|^2 \right) \rho_p(\vec{x}') \cdots \right]$$

It can be simplified

$$V(\vec{x}) = \frac{Ze}{4\pi\epsilon_0} \left[\frac{1}{|\vec{x}|} + \frac{Q}{2|\vec{x}|^3} \cdots \right]$$

where

$$Q = \int \mathrm{d}\vec{x} \, \left(3z^2 - r^2\right) \rho_p(\vec{x})$$

16/05/2022

Nuclear quadrupole moment

> Nuclear quadrupole moment

$$Q = \int \mathrm{d}\vec{x} \ \psi_N^*(\vec{x})(3z^2 - r^2)\psi_N(\vec{x})$$

周大學

> For j=l+1/2 case

$$\psi = \frac{u_l(r)}{r} Y_{ll}(\theta, \phi) \chi_{spin} \chi_{isospin}$$

SO

$$Q = \int u_l^2(r) |Y_{ll}(\theta, \phi)|^2 r^2 (3\cos^2\theta - 1) \sin\theta dr d\theta d\phi$$

finally

$$Q = -\langle r^2 \rangle \frac{2j-1}{2j+2}$$

阁大

Excited state of nuclei

周

16/05/2022

The basic concept of the Fermi-gas model

The theoretical concept of a Fermi-gas may be applied for systems of weakly interacting fermions, i.e. particles obeying Fermi-Dirac statistics leading to the Pauli exclusion principle →

• Simple picture of the nucleus:

— Protons and neutrons are considered as moving freely within the nuclear volume. The binding potential is generated by all nucleons

— In a first approximation, these nuclear potential wells are considered as rectangular: it is constant inside the nucleus and stops sharply at its edge

— Neutrons and protons are distinguishable fermions and are therefore situated in two separate potential wells

- Each energy state can be ocupied by two nucleons with different spin projections - All available energy states are filled by the pairs of nucleons \rightarrow no free states , no transitions between the states - The energy of the highest occupied state is the Fermi energy E_F

— The difference *B*' between the top of the well and the Fermi level is constant for most nuclei and is just the average binding energy per nucleon B'/A = 7-8 MeV. ₂

16/05/2022

Nuclear mean potential

Single particle equation in mean field

$$\left(-\frac{\hbar^2}{2m}\nabla^2+V(\boldsymbol{r})\right)\psi_i(\boldsymbol{r})=\varepsilon_i\,\psi_i(\boldsymbol{r})$$

Square-well potential

$$V(r) = \begin{cases} -V_0 & \text{for} \quad r \le R\\ \infty & \text{for} \quad r > R \end{cases}$$

Woods-Saxon potential

$$V(r) = -\frac{V_0}{1 + \exp[(r - R)/a]}$$

where $V_0 \sim -50$ MeV, $R \sim 1.1$ fm $A^{1/3}$,
 $a \sim 0.5$ fm

Harmonics-oscillator potential

$$V(r) = \frac{1}{2}m\omega^2 r^2$$

where $\omega \sim 41 \text{ MeV } A^{-1/3}$

16/05/2022

Schroedinger equation with harmonics oscillator potential

$$H_{ho}\psi = \left(-\frac{\nabla^2}{2m} + \frac{1}{2}m\omega^2 r^2\right)\psi = E\psi$$

Kinetic energy in spherical coordinate

$$-\frac{1}{2m}\left[\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2}{\partial\varphi^2}\right]$$

Wave function

$$\psi(r,\theta,\varphi) = R(r)Y(\theta,\varphi)$$

Angular equation

$$\left[\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) + \frac{1}{\sin^2\theta}\frac{\partial^2}{\partial\varphi^2} + \lambda\right]Y(\theta,\varphi) = 0$$

Solution of angular equation

$$Y_{lm}(\theta,\varphi) = (-)^m \left[\frac{(2l+1)(l-m)!}{4\pi(l+m)!} \right]^{1/2} P_l^m(\cos\theta) e^{im\varphi} \qquad \lambda = l(l+1)$$

16/05/2022

Radial Schoedinger equation

$$\left[\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{d}{dr}\right) + 2m\left(E - \frac{m\omega^2 r^2}{2}\right) - \frac{\lambda}{r}\right]R(r) = 0$$

Variable substitution

$$\frac{1}{2} \left[-\frac{1}{\rho^2} \frac{d}{d\rho} \left(\rho^2 \frac{d}{d\rho} \right) + \rho^2 + \frac{l(l+1)}{\rho} \right] R(\rho) = \tilde{E}R(\rho)$$

with $\rho = r/b$, $b = \sqrt{\hbar\omega}$ and $\tilde{E} = E/\hbar\omega$.

Wave function

$$R_{nl}(r) = \left[\frac{2n!}{b^3\Gamma(n+l+\frac{3}{2})}\right]^{1/2} \left(\frac{r}{b}\right)^l e^{-r^2/2b^2} L_n^{l+1/2}(r^2/b^2)$$

Eigenengery

$$E_{nl} = (2n+l+\frac{3}{2})\hbar\omega$$

16/05/2022

Nuclear parameters

$$\hbar\omega = 41A^{-1/3} \text{ MeV}, \quad b = 1.005A^{1/6} \text{ fm}$$

New quantum number

$$E_{nl} = (N + \frac{3}{2})\hbar\omega \qquad \qquad N = 2n + l,$$

16/05/2022

國南國大學

The total degeneracy at level N

(*N*+1)(*N*+2)

The magic number in harmonics oscillator

(N+1)(N+2)(N+3)/3

2, 8, 20, 40, 70, 112, ...

Spin-orbit force

$$V_{so} = \zeta_{zo} \mathbf{l} \cdot \mathbf{s}$$

The expecting energy of spin-orbit force

$$\langle nljm|V_{so}|nljm\rangle = \frac{1}{2}\langle \zeta_{so}(r)\rangle_{nl} \left[j(j+1) - l(l+1) - \frac{3}{4} \right]$$
$$= \begin{cases} -\frac{1}{2}(l+1)\langle \zeta_{so}(r)\rangle_{nl} & \text{for } j = l - 1/2\\ \frac{1}{2}l\langle \zeta_{so}(r)\rangle_{nl} & \text{for } j = l + 1/2 \end{cases}$$

where

$$\langle \zeta(r) \rangle_{nl} = \int_0^\infty \zeta(r) R_{nl}^2(r) r^2 dr$$

16/05/2022

N=0 — 1s — - - - - 1s — (2) — (2) — 2

16/05/2022

Calculate the total number of possible microstates N for a given electron configuration. As before, we discard the filled (sub)shells, and keep only the partially filled ones. For a given orbital quantum number 1, t is the maximum allowed number of electrons, t = 2(2l+1). If there are e electrons in a given subshell, the number of possible microstates is

刮

$$N = \begin{pmatrix} t \\ e \end{pmatrix} = rac{t!}{e! (t-e)!}.$$

16/05/2022