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Chapter 2
Bohr's Model of the Hydrogen 

1

Atomic Physics



16/03/2021 Jinniu Hu

The Classical Atomic Model 

The force of attraction on the electron due to the nucleus is 

~F =

�e2

4⇡"0

~r

r3

The electron’s radial acceleration 

ar =
v2

r
where v is the tangential velocity of the electron and 
Newton’s second law now gives 

e2

4⇡"0

1

r2
=

mv2

r
and

v =
ep

4⇡"mr
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The Classical Atomic Model 

The total mechanical energy is 


E =
1

2
mv2 � e2

4⇡"0r
with the equation about v, we have 


E =
e2

8⇡"0r
� e2

4⇡"0r
=

�e2

8⇡"0r
The total energy is negative, indicating a bound system. 
An accelerated electric charge continuously 
radiates energy in the form of electromagnetic 

radiation!
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Thus far, the classical atomic model seems plausible. The problem arises 
when we consider that the electron is accelerating due to its circular motion 
about the nucleus. We know from classical electromagnetic theory that an ac-
celerated electric charge continuously radiates energy in the form of electromag-
netic radiation. If the electron is radiating energy, then the total energy E of the 
system, Equation (4.21), must decrease continuously. In order for this to hap-
pen, the radius r must decrease. The electron will continuously radiate energy as 
the electron orbit becomes smaller and smaller until the electron crashes into 
the nucleus! This process, displayed in Figure 4.14, would occur in about 10!9 s 
(see Problem 18).

Thus the classical theories of Newton and Maxwell, which had served 
Rutherford so well in his analysis of a-particle scattering and had thereby en-
abled him to discover the nucleus, also led to the failure of the planetary model 
of the atom. Physics had reached a decisive turning point like that encountered 
in 1900 with Planck’s revolutionary hypothesis of the quantum behavior of radia-
tion. In the early 1910s, however, the answer would not be long in coming, as we 
shall see in the next section.

4.4  The Bohr Model
of the Hydrogen Atom

Shortly after receiving his Ph.D. from the University of Copenhagen in 1911, the 
26-year-old Danish physicist Niels Bohr traveled to Cambridge University to work 
with J. J. Thomson. He subsequently went to the University of Manchester to 
work with Rutherford for a few months in 1912 where he became particularly 
involved in the mysteries of the new Rutherford model of the atom. Bohr returned 
to the University of Copenhagen in the summer of 1912 with many questions 
about atomic structure. Like several others, he believed that a fundamental length 
about the size of an atom (10!10 m) was needed for an atomic model. This funda-
mental length might somehow be connected to Planck’s new constant h. The 
pieces finally came together during the fall and winter of 1912-1913 when Bohr 
learned of new precise measurements of the hydrogen spectrum and of the em-
pirical formulas describing them. He set out to find a fundamental basis from 
which to derive the Balmer formula [Equation (3.12)], the Ryd berg equation 
[Equation (3.13)], and Ritz’s combination principles (see Problem 19).

Bohr was well acquainted with Planck’s work on the quantum nature of ra-
diation. Like Einstein, Bohr believed that quantum principles should govern 
more phenomena than just the blackbody spectrum. He was impressed by 
Einstein’s application of the quantum theory to the photoelectric effect and to 
the specific heat of solids (see Chapter 9 for the latter) and wondered how the 
quantum theory might affect atomic structure.

In 1913, following several discussions with Rutherford during 1912 and 
1913, Bohr published the paper* “On the Constitution of Atoms and Mole-
cules.” He subsequently published several other papers refining and restating his 
“assumptions” and their predicted results. We will generally follow Bohr’s papers 
in our discussion.

Planetary model 
is doomed.

Electron

Nucleus
"e

Figure 4.14 The electromag-
netic radiation of an orbiting 
electron in the planetary model 
of the atom will cause the elec-
tron to spiral inward until it 
crashes into the nucleus.

*Niels Bohr, Philosophical Magazine 26, 1 (1913) and 30, 394 (1915).
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10�9 s

c) Do the relativistic corrections increase or decrease the fall time of the electron?

It suffices to determine the sign of the leading correction as the radial velocity of the
radiating electron approaches the speed of light.

A question closely related to the present one is whether the rate of decay of the orbit of
a binary pulsar system due to gravitational radiation is increased or decreased by special-
relativistic “corrections” as the orbital velocity becomes relativistic.

2 Solution

a) The dominant energy loss is from electric dipole radiation, which obeys the Larmor
formula [11] (in Gaussian units),

dU

dt
= −〈PE1〉 = −2e2a2

3c3
, (1)

where a is the acceleration of the electron. For an electron of charge −e and (rest) mass
m0 in an orbit of radius r about a fixed nucleus of charge +e, the radial component of
the nonrelativistic force law, F = m0a, tells us that

e2

r2
= m0ar ≈ m0

v2
θ

r
, (2)

in the adiabatic approximation that the orbit remains nearly circular at all times. In
the same approximation, aθ % ar, i.e., a ≈ ar, and hence,

dU

dt
= − 2e6

3r4m2
0c3

= −2

3

r3
0

r4
m0c

3. (3)

where r0 = e2/m0c2 = 2.8 × 10−15 m is the classical electron radius. The total nonrel-
ativistic energy (kinetic plus potential) is, using eq. (2),

U = −e2

r
+

1

2
m0v

2 = − e2

2r
= −r0

r
m0c

2. (4)

Equating the time derivative of eq. (4) to eq. (3), we have

dU

dt
=

r0

2r2
ṙm0c

2 = −2

3

r3
0

r4
m0c

3, (5)

or

r2ṙ =
1

3

dr3

dt
= −4

3
r2
0c. (6)

Hence,
r3 = a3

0 − 4r2
0ct. (7)

The time to fall to the origin is

tfall =
a3

0

4r2
0c

. (8)
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Bohr’s general assumptions 

A. Certain “stationary states” exist in atoms, which differ 
from the classical stable states in that the orbiting 
electrons do not continuously radiate electromagnetic 
energy. The stationary states are states of definite total 
energy. 


B. The emission or absorption of electromagnetic radiation 
can occur only in conjunction with a transition between 
two stationary states. The frequency of the emitted or 
absorbed radiation is proportional to the difference in 
energy of the two stationary states (1 and 2):  
 
where h is Planck’s constant.  

E = E1 � E2 = h⌫
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Bohr’s general assumptions 

C. the angular momentum of the system in a stationary state 
being an integral multiple of ħ=h/2!

L = mvr = n~
where n is an integer called the principal quantum number.   

The velocity can be solved 

v =
n~
mr

with Newton’s second law

v2 =
e2

4⇡"0mr
=

n2~2
m2r2
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Bohr model

Only certain values of radii are allowed

The atomic radius is now quantized. The quantization of 
various physical values arises because of the principal 
quantum number n. 


rn =
4⇡"0n2~2

me2
⌘ n2a0

where the Bohr radius a0 is given by

a0 =
4⇡"0~2
me2

= 0.53⇥ 10�10 m
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Bohr model
Electron’s velocity in Bohr model

vn =
n~
mrn

=
n~

mn2a0
=

1

n

~
ma0

or
vn =

1

n

e2

4⇡"0~
and

v1 =
~

ma0
= 2.2⇥ 106 m/s

We define the dimensionless quantity ratio of v1 to c as 


↵ ⌘ v1
c

=
~

ma0c
=

e2

4⇡"0~c
⇡ 1

137

This ratio is called the fine structure constant. It 
appears often in atomic structure calculations. 
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Bohr model

The energies of the stationary states

This is the experimentally measured ionization energy of the 
hydrogen atom. Bohr’s assumption C imply that the atom can 
exsit only in “stationary state” with define, quantized 
energies En.


The lowest energy state (n=1) is E1= -E0, where

En = � e2

8⇡"0rn
= � e2

8⇡"0a0n2
⌘ �E0

n2

E0 =
e2

8⇡"0a0
=

e2

8⇡"0

me2

4⇡"0~2
= 13.6 eV
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Line spectra 
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Line spectra 

In 1859 Gustav Kirchhoff and Robert Bunsen had already 
found, through joint research, that atoms only absorb or 
emit light at certain discrete wavelengths �i . 


These specific wavelengths that are characteristic of each 
chemical element, are called the absorption or emission 
spectra of the atom. 


These spectra are like a fingerprint of the atom, since every 
atomic species can be unambiguously recognized by its 
spectrum. 
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The absorption spectrum 
When we pass white light (composed of all visible photon 
frequencies) through atomic hydrogen gas, we find that 
certain frequencies are absent. This pattern of dark lines is 
called an absorption spectrum. 
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The emission spectrum 
The missing frequencies are precisely the ones observed in 
the corresponding emission spectrum. 
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The Rydberg formula
The most simple of all atoms is the H atom, consisting of 
only one proton and one electron. Its emission spectrum 
was measured in 1885 by Johann Jakob Balmer.

He could fit the wave numbers of its emission lines by the 
simple formula 
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(a)

(b)

Fig. 3.39 a,b. Measurement of absorption spectra. (a) Experimental arrangement (b) Absorption spectrum of sodium vapor

• The spectral lines are not completely narrow, even if the
spectral resolution of the spectrograph is extremely high.
This means that the atoms do not emit strictly monochro-
matic radiation but show an intensity distribution I (λK)
around each wavelength λK with a finite halfwidth ∆λ.
The reasons for these halfwidths will be discussed in
Sect.7.5.

The most simple of all atoms is the H atom, consisting of only
one proton and one electron. Its emission spectrum (Fig. 3.40)
wasmeasured in 1885 by Johann Jakob Balmer (1825–1898).
He could fit thewavenumbers ν̄K = 1/λK of its emission lines
by the simple formula

ν̄K = Ry

(
1

n21
− 1

n22

)

, (3.79)

where the integer numbers n1, n2 take the values n1 = 2
and n2 = 3, 4, 5, . . ... The constant Ry = 109, 678 cm−1 is
the Rydberg constant, which is historically given by spec-
troscopists in units of inverse centimeters cm−1, since all
wavenumbers ν̄K = 1/λK are measured in these units.

Example
A spectral line with a wavelength λK = 500 nm = 5 ×
10−5 cm has a wavenumber ν̄K = 2 × 104 cm−1.

α β γ δ ε ν→

Fig.3.40 Balmer series of the hydrogen atom emitted from a hydrogen
gas discharge

Later on Theodore Lyman (1874–1954) and Friedrich
Paschen (1865–1947) found further series in the emission
and absorption spectrum of the H atom, which could all be
described by the Balmer formula (3.79), but with n1 = 1
(Lyman series) or n1 = 3 (Paschen series) (Fig. 3.41).

How can we understand these experimental results?

3.4.2 Bohr’s Atomic Model

Many theoriticians tried to develop models that could explain
the experimental findings. However, most of these models
could describe some results but not all of them in a consistent
way without any contradictions. After many efforts Nils Bohr
(1885–1962) (Fig. 3.42) starting from Rutherford’s atomic
model finally developed in 1913 the famous planetary model
of the atoms [4,18], which we will now discuss for atomic
systems with only one electron (H atom, He+ ion, Li++ ion,
etc.).

In Bohr’s atomic model the electron (massme, charge−e)
and the nucleus (massmN, charge+Ze) both move on circles
with radius re or rN, respectively, around their center of mass.
This movement of two bodies can be described in the center
of mass system by the movement of a single particle with
reducedmassµ = (memN)/(me+mN) ≈ me in theCoulomb
potential Epot(r) around the center r = 0, where r is the
distance between electron and nucleus. The balance between
Coulomb force and centripetal force yields the equation

µv2

r
= 1

4πε0

Ze2

r2
, (3.80)

which determines the radius

r = Ze2

4πε0µv2
(3.81)

where the integer numbers n1, n2 take the values n1 = 2 and 
n2 = 3,4,5,..... The constant Ry = 109,678cm−1 is the Rydberg 
constant, which is historically given by spectroscopists in 
units of inverse centimeters cm−1
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Bohr model
Emission of a quantum of light occurs when 
the atom is in an excited state (quantum 
number n=nu) and decays to a lower 
energy state (quantum number n=nl)

144 Chapter 4 Structure of the Atom

state (n ! n/). A transition between two energy levels is schematically illustrated 
in Figure 4.15. According to Assumption B we have

 hf ! Eu " E/ (4.27)

where f is the frequency of the emitted light quantum (photon). Because lf ! c, 
we have

  
1
l

!
f
c !

Eu " E/

hc

  !
"E0

hc
a 1

nu
2 "

1
n /

2 b !
E0

hc
a 1

n /
2 "

1
nu

2 b  (4.28)

where

 
E0

hc
!

me 4

4pc U314pP0 22 ! Rq (4.29)

This constant R q is called the Rydberg constant (for an infinite nuclear mass). 
Equation (4.28) becomes

 
1
l

! Rq a 1
n /

2 "
1

nu
2 b  (4.30)

which is similar to the Rydberg equation (3.13). The value of R q ! 1.097373 # 
107 m"1 calculated from Equation (4.29) agrees well with the experimental val-
ues given in Chapter 3, and we will obtain an even more accurate result in the 
next section.

Bohr’s model predicts the frequencies (and wavelengths) of all possible 
transitions in atomic hydrogen. Several of the series are shown in Figure 4.16. 
The Lyman series represents transitions to the lowest state with n/ ! 1; the 
Balmer series results from downward transitions to the stationary state n/ ! 2; 
and the Paschen series represents transitions to n/ ! 3. As mentioned in Sec-
tion 3.3, not all of these series were known experimentally in 1913, but it was 
clear that Bohr had successfully accounted for the known spectral lines of 
hydrogen.

The frequencies of the photons in the emission spectrum of an element are 
directly proportional to the differences in energy of the stationary states. When 
we pass white light (composed of all visible photon frequencies) through atomic 
hydrogen gas, we find that certain frequencies are absent. This pattern of dark 
lines is called an absorption spectrum. The missing frequencies are precisely the 
ones observed in the corresponding emission spectrum. In absorption, certain 
photons of light are absorbed, giving up energy to the atom and enabling the 
electron to move from a lower (/) to a higher (u) stationary state. Equations 
(4.27) and (4.30) describe the frequencies and wavelengths of the absorbed 
photons. The atom will remain in the excited state for only a short time (on the 
order of 10"10 s) before emitting a photon and returning to a lower stationary 
state. Thus, at ordinary temperatures practically all hydrogen atoms exist in the 
lowest possible energy state, n ! 1, and only the absorption spectral lines of the 
Lyman series are normally observed. However, these lines are not in the visible 
region. The sun produces electromagnetic radiation over a wide range of wave-
lengths, including the visible region. When sunlight passes through the sun’s 

Bohr predicted new 
hydrogen wavelengths

Absorption and 
emission spectrum

Energy

E (eV)

0.00
"0.85
"1.51

"3.40

n

∞
4
3

2

"13.61

nu

n!

Figure 4.15 The energy-level di-
agram of the hydrogen atom. The 
principal quantum numbers n are 
shown on the left, with the energy 
of each level indicated on the right. 
The ground-state energy is 
"13.6 eV; negative total energy 
indicates a bound, attractive system. 
When an atom is in an excited state 
(for example, nu ! 3) and decays to 
a lower stationary state (for exam-
ple, n/ ! 2), the hydrogen atom 
must emit the energy difference in 
the form of electromagnetic radia-
tion; that is, a photon emerges.
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h⌫ = Eu � El

where, v is the frequency of the emitted 
light quantum (photon). Because

�⌫ = c
we have

1

�
=

⌫

c
=

Eu � El

hc

= �E0

hc

✓
1

n2
u

� 1

n2
l

◆
=

E0

hc

✓
1

n2
l

� 1

n2
u

◆
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Bohr model
where, 

E0

hc
=

me4

4⇡c~3(4⇡"0)2
⌘ R1

is called the Rydberg constant (for an infinite nuclear mass) 
and 

1

�
= R1

✓
1

n2
l

� 1

n2
u

◆

which was found by J. Rydberg. 


Bohr’s model predicts the frequencies (and wavelengths) of 
all possible transitions in atomic hydrogen. 
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Fig. 3.41 Simplified level
scheme of the hydrogen atom and
the different absorption or
emission series labelfig

Fig. 3.42 Niels Bohr (1885–1962) From E. Bagge: Die Nobel-
preisträger (Heinz-Moos-Verlag, München 1964)

of the circular path of the electron. As long as there are no
further restrictions for the kinetic energy (µ/2)v2 any radius
r is possible, according to (3.81).

If, however, the electron is described by its matter wave
with wavelength λdB = h/(µv) a stationary state of the
atom must be described by a standing wave along the cir-

cle (Fig. 3.43) since the electron should not leave the atom.
This gives the quantum condition:

2πr = nλdB (n = 1, 2, 3, . . .), (3.82)

which restricts the possible radii r to the discrete values (3.82).
With the de Broglie wavelength λdB = h/(µv) the relation

v = h
λ · µ = n

h
2πµr

(3.83)

between velocity and radius is obtained. Inserting this into
(3.81) yields the possible radii for the electron circles:

rn = n2h2ε0
πµZe2

= n2

Z
a0, (3.84)

where

a0 =
ε0h2

πµe2
= 5.2917 × 10−11 m ≈ 0.5Å

is the smallest radius of the electron (n = 1) in the
hydrogen atom (Z = 1), which is named the Bohr
radius.
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The spectrum of hydrogen

Lyman series:   nl=1

Balmer series:  nl=2

Paschen series: nl=3


94 Chapter 3 The Experimental Basis of Quantum Physics

It is more convenient to take the reciprocal of Equation (3.11) and write 
Balmer’s formula in the form

1
l

!
1

364.56 nm
 
k 

2 " 4
k 

2 !
4

364.56 nm
 a 1

22 "
1
k 

2 b ! RH a 1
22 "

1
k 

2 b   (3.12)

where RH is called the Rydberg constant (for hydrogen) and has the more accurate 
value 1.096776 # 107 m"1, and k is an integer greater than two (k $ 2).

By 1890, efforts by Johannes Rydberg and particularly Walther Ritz resulted  
in a more general empirical equation for calculating the wavelengths, called the 
Ryd berg equation.

 
1
l

! RH a 1
n2 "

1
k 

2 b  (3.13)

where n ! 2 corresponds to the Balmer series and k $ n always. In the next 
20 years after Balmer’s contribution, other series of the hydrogen atom’s spectral 
lines were discovered, and by 1925 five series had been discovered, each having 
a different integer n (Table 3.2). The understanding of the Rydberg equa-
tion (3.13) and the discrete spectrum of hydrogen were important research top-
ics early in the twentieth century.

Rydberg equation

The visible lines of the Balmer series were observed first 
because they are most easily seen. Show that the wavelengths 
of spectral lines in the Lyman (n ! 1) and Paschen (n ! 3) 
series are not in the visible region. Find the wavelengths of 
the four visible atomic hydrogen lines. Assume the visible 
wavelength region is l ! 400– 700 nm.

Strategy We use Equation (3.13) to determine the vari-
ous wavelengths for n ! 1, 2, and 3. If the wavelengths are 
between 400 and 700 nm, we conclude they are in the visible 
region. Otherwise, they are not visible.

Solution We use Equation (3.13) first to examine the 
 Lyman series (n ! 1):

 
1
l

! RH a1 "
1
k 

2 b
 ! 1.0968 # 107a1 "

1
k 

2 b  m"1

 k ! 2: 
1
l

! 1.0968 # 107a1 "
1
4
b  m"1

 l ! 1.216 # 10"7 m ! 121.6 nm 1Ultraviolet 2
 k ! 3: 

1
l

! 1.0968 # 107a1 "
1
9
b  m"1

 l ! 1.026 # 10"7 m ! 102.6 nm 1Ultraviolet 2
Because the wavelengths are decreasing for higher k values, 
all the wavelengths in the Lyman series are in the ultraviolet 
region and not visible by eye.

 EXAMPLE 3 .3

Discoverer (year) Wavelength n   k

Lyman (1916) Ultraviolet 1 $1
Balmer (1885) Visible, ultraviolet 2 $2
Paschen (1908) Infrared 3 $3
Brackett (1922) Infrared 4 $4
Pfund (1924) Infrared 5 $5

Tab le  3 .2   Hydrogen Series of Spectral Lines
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The Correspondence Principle 

Bohr’s correspondence principle: In the limits where 
classical and quantum theories should agree, the quantum 
theory must reduce to the classical result. 


To illustrate this principle, let us examine the predictions 
of the radiation law. 


Classically the frequency of the radiation emitted is equal 
to the orbital frequency vorb of the electron around the 
nucleus: 


⌫classical = ⌫orb =
!

2⇡
=

1

2⇡

v

r
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With Newton’s second law: 


⌫classical =
1

2⇡

s
e2

4⇡"0mr3

Using Bohr model, the classical frequency in terms of 
fundamental constants and the principal quantum number n 


⌫classical =
me4

4"20h
3

1

n3

In the Bohr model, the frequency of the transition from 
n+1 to n is  


⌫Bohr =
E0

h


1

n2
� 1

(n+ 1)2

�
=

E0

h


2n+ 1

n2(n+ 1)2

�

rn =
4⇡"0n2~2

me2
⌘ n2a0



16/03/2021 Jinniu Hu

The Correspondence Principle 

It becomes for large n

⌫Bohr ⇡
2nE0

hn4
=

2E0

hn3

When the E0 is substituted, the result is  


⌫Bohr =
me4

4✏20h
3

1

n3
= ⌫classical

180 5 The Hydrogen Atom

Table 5.5 Comparison of quantum mechanical and classical transition
frequencies ∆n = 1 for the H atom

n νQM νcla Difference (%)

5 5.26 · 1013 7.38 · 1013 29
10 6.57 · 1012 7.72 · 1012 14
100 6.578 · 109 6.677 · 109 1.5
1000 6.5779 · 106 6.5878 · 106 0.15
10,000 6.5779 · 103 6.5789 · 103 0.015

νQM ≈ mZ2e4

4ε20n
3h3

∆n. (5.94)

For ∆n = 1 the quantum model gives the classical fun-
damental frequency (5.92b) and for ∆n = 2, 3, . . . the
corresponding harmonics (Table 5.5).

2. The angular momentum of the electron is, according to
Bohr’s model,

|l| = n! with n = 1, 2, 3, . . . , (5.95a)

while the Schrödinger theory yields

|l| =
√
l(l + 1)!. (5.95b)

For small values of l the differences between the two mod-
els are significant, because the lowest state is described
by l = 1 in the Bohr model while the quantum theory
demands l = 0.
For large values of l and n both models converge against
l ≈ [l(l+1)]1/2 ≤ [(n−1)n]1/2 ≈ n (because l ≤ n−1).

3. For the limiting case of small frequencies (large wave-
lengths) Planck’s radiation law converges against the
Rayleigh–Jeans law (see Sect. 3.1). Themean energy of the
black body radiation at the frequency ν is 〈E〉 = 〈ν〉 hν,
where 〈n〉 is the mean population density of photons hν in
a mode of the radiation field. From Planck’s formula we
can see that for ν → 0, the energy converges as E → kT .
This gives

〈n〉 hν → kT ⇒ 〈n〉 → kT/(hν). (5.95c)

For hν ( kT the mean photon density 〈n〉 becomes very
large, and 〈n〉hν ) hν. The quantum structure of the
photon field becomes less prominent, because the energy
E = 〈n〉 hν is now a nearly continuous function of n and
the classical model does not differ much from the quantum
mechanical one.

4. For the harmonic oscillator, the probability |ψn(R)|2 of
finding the system in the nth vibrational level at a dis-
tance R is for small quantum numbers n very different for
the classical and the quantum mechanical models. How-

ever, for large values of n the classical probability Pcl(R)
approaches more and more the average of |ψ(R)|2 (see
Fig. 4.21).

The correspondence principle is particularly useful for the
discussion of selection rules for radiative transitions between
atomic or molecular levels (see Chap. 7).

5.9 The ElectronModel and its
Problems

We have learned so far that the electron has a rest mass me =
9.1× 10−31 kg, a negative electric charge e = −1.6× 10−19

Coulomb, a spin s with the absolute value

|s| = 1
2

√
3!, (5.95d)

which can be mathematically treated like an angular momen-
tum, and a magnetic moment

|µs | = gsµB ≈ 2µB,

which is related to the spin by

µs = −γs · s with γs = e/me.

Up to now we have neither discussed the size of the electron,
nor its spatial mass- and charge- distributions.

In a simple classical model, one assumes that the electron
can be described by a charged sphere where the mass is uni-
formly distributed over the volume of this sphere and, because
of the electric repulsion between charges of equal sign, the
charge is uniformly distributed over its surface (Fig. 5.39).
The radius re of this sphere (the classical electron radius)
can then be calculated as follows.

The capacity of the charged surface is

C = 4πε0re. (5.95e)

Fig. 5.39 Classical model of the
electron as a sphere with mass m,
uniform surface charge −e, spin s
and magnetic moment µs
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Angular momentum 


Black-body radiation


The probability of particle in the Harmonic oscillator  


so the frequencies of the radiated energy agree between 
classical theory and the Bohr model for large values of 
the quantum number n. Bohr’s correspondence principle is 
verified for large orbits, where classical and quantum 
physics should agree. 
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The Successes of Bohr Model 

A straightforward analysis derived from classical mechanics 
shows that this two-body problem can be reduced to an 
equivalent one-body problem 


148 Chapter 4 Structure of the Atom

theory in Chapter 6. Wavelength measurements for the atomic spectrum of hy-
drogen are precise and exhibit a small disagreement with the Bohr model results 
just presented. These disagreements can be corrected by looking more carefully 
at our original assumptions, one of which was to assume an infinite nuclear mass.

Reduced Mass Correction
The electron and hydrogen nucleus actually revolve about their mutual center 
of mass as shown in Figure 4.17. This is a two-body problem, and our previous 
analysis should be in terms of re and rM instead of just r. A straightforward analysis 
derived from classical mechanics shows that this two-body problem can be re-
duced to an equivalent one-body problem in which the motion of a particle of 
mass me moves in a central force field around the center of mass. The only 
change required in the results of Section 4.4 is to replace the electron mass me 
by its reduced mass me where

 me !
me 

M
me " M

!
me

1 "
me

M

 (4.36)

and M is the mass of the nucleus (see Problem 53). In the case of the hydro-
gen atom, M is the proton mass, and the correction for the hydrogen atom is 
me ! 0.999456 me. This difference can be measured experimentally. The Rydberg 
constant for infinite nuclear mass, R q, defined in Equation (4.29), should be 
replaced by R, where

 R !
me

me
 Rq !

1

1 "
me

M

 Rq !
me e 4

4pc U314pP0 22 (4.37)

The Rydberg constant for hydrogen is R H ! 1.096776 # 107 m$1.

Reduced mass

me
Electron

rerM

r

M
Nucleus Center of mass

Figure 4.17 Because the nu-
cleus does not actually have an 
infinite mass, the electron and 
nucleus rotate about a common 
center of mass that is located very 
near the nucleus. This diagram is 
a very simplistic view of a hydro-
gen atom.
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The Successes of Bohr Model 

Reduced mass


µe =
meM

me +M
=

me

1 + me
M

and M is the mass of the nucleus. In the case of the hydro- 
gen atom, M is the proton mass, and the correction for the 
hydrogen atom is 

µe = 0.999456me

This difference can be measured experimentally. The Rydberg 
constant for infinite nuclear mass should be replaced by,

R =
µe

me
R1 =

µee4

4⇡c~3(4⇡✏0)2
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The Successes of Bohr Model 

The Rydberg constant for hydrogen is
RH = 1.096776⇥ 107 m�1

The Bohr model may be applied to any single-electron atom 
(hydrogen-like) even if the nuclear charge is greater than 1 
proton charge (+e), for example He+  and Li++ .


The Rydberg equation becomes 


Z is the nuclear charge. This equation is valid only for single-
electron atoms. Charged atoms, such as He+ , Li+, and Li++, are 
called ions 

 


1

�
= Z2R

✓
1

n2
l

� 1

n2
u
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Atomic Excitation by Electrons 
The German physicists James Franck and Gustav Hertz 
decided to study electron bombardment of gaseous vapors to 
study the phenomenon of ionization. 
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electron current registered in the electrometer continued to increase as V in-
creased. However, as the accelerating voltage increased above 5 V, there was a 
sudden drop in the current (see Figure 4.21, which was constructed using data 
taken by students performing this experiment). As the accelerating voltage con-
tinued to increase above 5 V, the current increased again, but suddenly dropped 
above 10 V. Franck and Hertz first interpreted this behavior as the onset of ion-
ization of the Hg atom; that is, an atomic electron is given enough energy to 
remove it from the Hg, leaving the atom ionized. They later realized that the Hg 
atom was actually being excited to its first excited state.

We can explain the experimental results of Franck and Hertz within the 
context of Bohr’s picture of quantized atomic energy levels. In the most popular 
representation of atomic energy states, we say that the atom, when all the elec-
trons are in their lowest possible energy states, is the ground state. We define this 
energy E0 to be zero. The first quantized energy state above the ground state is 
called the first excited state, and it has energy E1. The energy difference E1 ! 0 
" E1 is called the excitation energy of the state E1. We show the position of one 
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Figure 4.20 Schematic diagram of apparatus used in an undergraduate physics laboratory for 
the Franck-Hertz experiment. The hot filament produces electrons, which are accelerated through 
the mercury vapor toward the grid. A decelerating voltage between grid and collector prevents the 
electrons from registering in the electrometer unless the electron has a certain minimum energy.

Figure 4.21 Data from an un-
dergraduate student’s Franck-
Hertz experiment using appara-
tus similar to that shown in 
Figure 4.20. The energy differ-
ence between peaks is about 5 V, 
but the first peak is not at 5 V be-
cause of the work function differ-
ences of the metals used for the 
filament and grid.
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electron current registered in the electrometer continued to increase as V in-
creased. However, as the accelerating voltage increased above 5 V, there was a 
sudden drop in the current (see Figure 4.21, which was constructed using data 
taken by students performing this experiment). As the accelerating voltage con-
tinued to increase above 5 V, the current increased again, but suddenly dropped 
above 10 V. Franck and Hertz first interpreted this behavior as the onset of ion-
ization of the Hg atom; that is, an atomic electron is given enough energy to 
remove it from the Hg, leaving the atom ionized. They later realized that the Hg 
atom was actually being excited to its first excited state.

We can explain the experimental results of Franck and Hertz within the 
context of Bohr’s picture of quantized atomic energy levels. In the most popular 
representation of atomic energy states, we say that the atom, when all the elec-
trons are in their lowest possible energy states, is the ground state. We define this 
energy E0 to be zero. The first quantized energy state above the ground state is 
called the first excited state, and it has energy E1. The energy difference E1 ! 0 
" E1 is called the excitation energy of the state E1. We show the position of one 
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the Franck-Hertz experiment. The hot filament produces electrons, which are accelerated through 
the mercury vapor toward the grid. A decelerating voltage between grid and collector prevents the 
electrons from registering in the electrometer unless the electron has a certain minimum energy.

Figure 4.21 Data from an un-
dergraduate student’s Franck-
Hertz experiment using appara-
tus similar to that shown in 
Figure 4.20. The energy differ-
ence between peaks is about 5 V, 
but the first peak is not at 5 V be-
cause of the work function differ-
ences of the metals used for the 
filament and grid.

0

0.1

0.2

0.3

0.4

C
ol

le
ct

or
 c

ur
re

nt
 (

nA
)

0.5

0.6

V (volts)
0 10 20 30 40 50 60

03721_ch04_127-161.indd   15503721_ch04_127-161.indd   155 9/29/11   9:36 AM9/29/11   9:36 AM

Data from Franck- Hertz experiment  
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Atomic Excitation by Electrons 

We can explain the experimental results of Franck and 
Hertz within the context of Bohr’s picture of quantized 
atomic energy levels. 


In the most popular representation of atomic energy states, 
we say that the atom, when all the electrons are in their 
lowest possible energy states, is the ground state. The first 
quantized energy state above the ground state is called the 
first excited state. 
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electron in an energy-level diagram of Hg in Figure 4.22 in both the ground 
state and first excited state. The first excited state of Hg is at an excitation energy 
of 4.88 eV. As long as the accelerating electron’s kinetic energy is below 4.88 eV, 
no energy can be transferred to Hg because not enough energy is available to 
excite an electron to the next energy level in Hg. The Hg atom is so much more 
massive than the electron that almost no kinetic energy is transferred to the re-
coil of the Hg atom; the collision is elastic. The electron can only bounce off the 
Hg atom and continue along a new path with about the same kinetic energy. If 
the electron gains at least 4.88 eV of kinetic energy from the accelerating poten-
tial, it can transfer 4.88 eV to an electron in Hg, promoting it to the first excited 
state. This is an inelastic collision. A bombarding electron that has lost energy in 
an inelastic collision then has too little energy (after it passes the grid) to reach 
the collector. Above 4.88 V, the current dramatically drops because the inelasti-
cally scattered electrons no longer reach the collector.

When the accelerating voltage is increased to 7 or 8 V, even electrons that 
have already made an inelastic collision have enough remaining energy to reach 
the collector. Once again the current increases with V. However, when the ac-
celerating voltage reaches 9.8 V, the electrons have enough energy to excite two 
Hg atoms in successive inelastic collisions, losing 4.88 eV in each (2 ! 4.88 eV " 
9.76 eV). The current drops sharply again. As we see in Figure 4.21, even with 
student apparatus it is possible to observe several successive excitations as the 
accelerating voltage is increased. Notice that the energy differences between 
peaks are typically 4.9 eV. The first peak does not occur at 4.9 eV because of the 
difference in the work functions between the dissimilar metals used as cathode 
and anode. Other highly excited states in Hg can also be excited in an inelastic 
collision, but the probability of exciting them is much smaller than that for the 
first excited state. Franck and Hertz, however, were able to detect them.

The Franck-Hertz experiment convincingly proved the quantization of 
atomic electron energy levels. The bombarding electron’s kinetic energy can 
change only by certain discrete amounts determined by the atomic energy levels 
of the mercury atom. They performed the experiment with gases of several other 
elements and obtained similar results.

Would it be experimentally possible to observe radiation 
emitted from the first excited state of Hg after it was pro-
duced by an electron collision?

Solution If the collision of the bombarding electron with 
the mercury atom is elastic, mercury will be left in its ground 
state. If the collision is inelastic, however, the mercury atom 
will end up in its excited state at 4.9 eV (see Figure 4.22). 
The mercury atom will not exist long in its first excited state 

and should decay quickly (!10#8 s) back to the ground 
state. Franck and Hertz considered this possibility and looked 
for x rays. They observed no radiation emitted when the 
electron’s kinetic energy was below about 5 V, but as soon as 
the current dropped as the voltage went past 5 V, indicating 
excitation of Hg, an emission line of wavelength 254 nm 
(ultraviolet) was observed. Franck and Hertz set E " 4.88 eV 
" hf " (hc)/l and showed that the value of h determined 
from l " 254 nm was in good agreement with values of 
Planck’s constant determined by other means.

 CONCEPTUAL EXAMPLE 4 .11

Ground !
state

E2

E1

0
First!

excited!
state

Mercury

Figure 4.22 A valence electron 
is shown in the ground state of 
mercury on the left. On the right 
side the electron has been ele-
vated to the first excited state af-
ter a bombarding electron scat-
tered inelastically from the 
mercury atom.
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The first excited state of Hg is 
at an excitation energy of 4.88 
eV. As long as the accelerating 
electron’s kinetic energy is 
below 4.88 eV, no energy can be 
transferred to Hg because not 
enough energy is available to 
excite an electron to the next 
energy level in Hg 
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Atomic Excitation by Electrons 
The electrons suffer elastic and 
inelastic collisions with the Hg 
atoms. In inelastic collisions, 
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Wefind the relation p > ∆p ≥ !/a. Themean kinetic energy
of the electron is:

Ekin =
p2

2me
≥ (∆p)2

2me
≥ !2

2mea2
. (3.91)

Its potential energy at a distance a from the nucleus is

Epot = − e2

4πε0a
(3.92)

and its total energy E = Ekin+ Epot at the distance a is then:

E ≥ !2

2ma2
− e2

4πε0a
. (3.93)

The largest probability of finding the electron is at a distance
amin where the total energy is minimum, i.e., where dE/
da = 0. This gives

amin =
4πε0!2

me2
= ε0h2

πµe2
= a0 (3.94)

which is identical to the Bohr radius a0.
Therefore, a stable state exists with the minimum energy

limit

Emin = − me4

2(4πε0!2)2
= − me4

8ε20h
2
= −Ry∗, (3.95)

which is consistent with the energy of the lowest state with
n = 1 in Bohr’s model.

Although the quantum mechanical results for the energy
confirms Bohr’s result, the explanation of the stability is dif-
ferent.

According to the uncertainty principle the atom in its low-
est state cannot radiate because it has minimum energy. In
order to emit a photon, it would have to make a transition to
a higher energy state, which contradicts energy conservation.
The reason for this energy minimum is the sharp increase of
the kinetic energy of the electron with decreasing distance a,
due to the uncertainty of its momentum (Fig. 3.44). In higher
energy states the atom can radiate, in accordance with the
experimental results.

In Bohr’s model the stability is explained by the assump-
tion of standing waves for the electron, where the Poynting
vector is zero. However, this does not explain why higher
energy states, which are also represented by standing waves,
do radiate.

3.4.4 Franck–Hertz Experiment

James Franck and Gustav Hertz [19] gave in 1914 an
impressive experimental proof for the energy quantization
of atoms based on the following experimental arrangement
(Fig. 3.45a).

Electrons, emitted from a hot cathode in a bulb, filled with
mercury vapor at low pressures, are accelerated to the energy
Ekin = eU by the grid G at the voltageU against the cathode.
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Fig. 3.45 a,b. Franck–Hertz experiment. (a) Experimental setup (b)
Electron current as function of the acceleration voltageU in a tube with
mercury vapor
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The electrons can only reach the collecting anode A that is
kept at a lower voltage UA = U − ∆U , if their energy after
having passed the grid G is at least e∆U .

When measuring the electron current IA(U ) as a function
of the acceleration voltage U , one obtains a curve like that in
Fig. 3.45b. The current increases withU betweenU = 0 and
U = 4.9 eVand follows a typical diode characteristics.Above
U1 = 4.9V the current decreases sharply, goes through a
minimum, rises again until it reaches a second maximum at
about Ue = 9.8 eV.

How can this be explained?
The electrons suffer elastic and inelastic collisions with

the Hg atoms. In inelastic collisions,

e−(Ekin)+ Hg → Hg∗(Ea)+ e−(Ekin − Ea)

the electrons excite the Hg atoms and transfer the amount
∆Ekin = Ekin − Ea of their kinetic energy to the excitation
energy Ea of the atom. Because of this loss of energy the elec-
trons cannot overcome the bias voltage −∆U and therefore
cannot reach the detector.

During elastic collisions the electron can at most transfer
the fraction 4me/mHg ≈ 10−5 of its kinetic energy. At suffi-
ciently low pressures each electron suffers only a few elastic
collisions and the total energy loss due to elastic collisions is
then completely negligible. However, elastic collisions may
result in large angular changes of the electron’s flight direc-
tion and the electrons may therefore hit the walls of the tube
before they reach the anode. Without inelastic collisions the
electron current would follow the dashed curve in Fig. 3.45b,
which resembles the electron current in a diode tube. The
further maxima and minima in the actually measured current
I (UA) are due to the fact that at sufficiently large voltages U
the electron can regain, after n inelastic collisions, the min-
imum required kinetic energy e∆U during its flight path to
the grid G for overcoming the bias voltage ∆U but has not
enough energy for the (n + 1)th inelastic collision [20].

The separation between subsequent maxima corresponds
to the excitation energy Ea = 4.9 eV of Hg atoms. The exact
form of the curve I (U ) in Fig. 3.45 is determined by

• The energy dependence of the excitation probability
• The energy distribution of the electrons emitted from the

hot cathode.

With the improved experimental setup of Fig. 3.46a the energy
resolution could be substantially improved. Here, two grids
are used and the acceleration of the electrons is essentially
restricted to the short flight path between K and G1, while
the small adjustable voltage U2 between G2 and G1 does not
change the electron energy much. The excitation probabil-
ity is then nearly the same for all points between G1 and
G2. With such an improved apparatus the finer details of the
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Fig.3.46 (a) Improved experimental arrangement for the Franck–Hertz
experiment with higher energy resolution. (b) Electron current I (U )
measured with the apparatus shown in (a), where the excitation of many
higher levels in the Hg atom can be seen. The structured maximum
corresponds to the first maximum in Fig. 3.45b

excitation function could be resolved, which correspond to
different excited states of the Hg atoms (Fig. 3.47).

The excited Hg∗ atoms release their excitation energy by
emission of light

Hg∗ → Hg+ hν.

Measuring this fluorescence light through a monochromator
shows that the emitted spectral lines have wavelengths λk ,
which exactly correspond to the measured absorption lines of
Hg vapor. Time-resolved measurements of this fluorescence
prove that the excited atomic levels Ei are not stable. They
decay within a very short time (typically≈ 10−8s) into lower
states Ek , where

the electrons excite the Hg 
atoms and transfer the amount 
�Ekin = Ekin − Ea of their kinetic 
energy to the excitation energy 
Ea of the atom. 
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The further maxima and minima in the actually measured 
current I (UA ) are due to the fact that at sufficiently large 
voltages U the electron can regain, after n inelastic 
collisions, the minimum required kinetic energy e�U during 
its flight path to the grid for overcoming the bias voltage 
but has not enough energy for the (n + 1)th inelastic 
collision 


 The exact form of the curve I (U) is determined by 


 1. The energy dependence of the excitation probability  
 2.The energy distribution of the electrons emitted from 

    the hot cathode.  
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The electrons can only reach the collecting anode A that is
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When measuring the electron current IA(U ) as a function
of the acceleration voltage U , one obtains a curve like that in
Fig. 3.45b. The current increases withU betweenU = 0 and
U = 4.9 eVand follows a typical diode characteristics.Above
U1 = 4.9V the current decreases sharply, goes through a
minimum, rises again until it reaches a second maximum at
about Ue = 9.8 eV.

How can this be explained?
The electrons suffer elastic and inelastic collisions with

the Hg atoms. In inelastic collisions,

e−(Ekin)+ Hg → Hg∗(Ea)+ e−(Ekin − Ea)

the electrons excite the Hg atoms and transfer the amount
∆Ekin = Ekin − Ea of their kinetic energy to the excitation
energy Ea of the atom. Because of this loss of energy the elec-
trons cannot overcome the bias voltage −∆U and therefore
cannot reach the detector.

During elastic collisions the electron can at most transfer
the fraction 4me/mHg ≈ 10−5 of its kinetic energy. At suffi-
ciently low pressures each electron suffers only a few elastic
collisions and the total energy loss due to elastic collisions is
then completely negligible. However, elastic collisions may
result in large angular changes of the electron’s flight direc-
tion and the electrons may therefore hit the walls of the tube
before they reach the anode. Without inelastic collisions the
electron current would follow the dashed curve in Fig. 3.45b,
which resembles the electron current in a diode tube. The
further maxima and minima in the actually measured current
I (UA) are due to the fact that at sufficiently large voltages U
the electron can regain, after n inelastic collisions, the min-
imum required kinetic energy e∆U during its flight path to
the grid G for overcoming the bias voltage ∆U but has not
enough energy for the (n + 1)th inelastic collision [20].

The separation between subsequent maxima corresponds
to the excitation energy Ea = 4.9 eV of Hg atoms. The exact
form of the curve I (U ) in Fig. 3.45 is determined by

• The energy dependence of the excitation probability
• The energy distribution of the electrons emitted from the

hot cathode.

With the improved experimental setup of Fig. 3.46a the energy
resolution could be substantially improved. Here, two grids
are used and the acceleration of the electrons is essentially
restricted to the short flight path between K and G1, while
the small adjustable voltage U2 between G2 and G1 does not
change the electron energy much. The excitation probabil-
ity is then nearly the same for all points between G1 and
G2. With such an improved apparatus the finer details of the
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Fig.3.46 (a) Improved experimental arrangement for the Franck–Hertz
experiment with higher energy resolution. (b) Electron current I (U )
measured with the apparatus shown in (a), where the excitation of many
higher levels in the Hg atom can be seen. The structured maximum
corresponds to the first maximum in Fig. 3.45b

excitation function could be resolved, which correspond to
different excited states of the Hg atoms (Fig. 3.47).

The excited Hg∗ atoms release their excitation energy by
emission of light

Hg∗ → Hg+ hν.

Measuring this fluorescence light through a monochromator
shows that the emitted spectral lines have wavelengths λk ,
which exactly correspond to the measured absorption lines of
Hg vapor. Time-resolved measurements of this fluorescence
prove that the excited atomic levels Ei are not stable. They
decay within a very short time (typically≈ 10−8s) into lower
states Ek , where

With the improved experimental setup, the energy resolution 
could be substantially improved. Here, two grids are used 
and the acceleration of the electrons is essentially restricted 
to the short flight path between K and G1, while the small 
adjustable voltage U2 between G2 and G1 does not change the 
electron energy much.  
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The electrons can only reach the collecting anode A that is
kept at a lower voltage UA = U − ∆U , if their energy after
having passed the grid G is at least e∆U .

When measuring the electron current IA(U ) as a function
of the acceleration voltage U , one obtains a curve like that in
Fig. 3.45b. The current increases withU betweenU = 0 and
U = 4.9 eVand follows a typical diode characteristics.Above
U1 = 4.9V the current decreases sharply, goes through a
minimum, rises again until it reaches a second maximum at
about Ue = 9.8 eV.

How can this be explained?
The electrons suffer elastic and inelastic collisions with

the Hg atoms. In inelastic collisions,

e−(Ekin)+ Hg → Hg∗(Ea)+ e−(Ekin − Ea)

the electrons excite the Hg atoms and transfer the amount
∆Ekin = Ekin − Ea of their kinetic energy to the excitation
energy Ea of the atom. Because of this loss of energy the elec-
trons cannot overcome the bias voltage −∆U and therefore
cannot reach the detector.

During elastic collisions the electron can at most transfer
the fraction 4me/mHg ≈ 10−5 of its kinetic energy. At suffi-
ciently low pressures each electron suffers only a few elastic
collisions and the total energy loss due to elastic collisions is
then completely negligible. However, elastic collisions may
result in large angular changes of the electron’s flight direc-
tion and the electrons may therefore hit the walls of the tube
before they reach the anode. Without inelastic collisions the
electron current would follow the dashed curve in Fig. 3.45b,
which resembles the electron current in a diode tube. The
further maxima and minima in the actually measured current
I (UA) are due to the fact that at sufficiently large voltages U
the electron can regain, after n inelastic collisions, the min-
imum required kinetic energy e∆U during its flight path to
the grid G for overcoming the bias voltage ∆U but has not
enough energy for the (n + 1)th inelastic collision [20].

The separation between subsequent maxima corresponds
to the excitation energy Ea = 4.9 eV of Hg atoms. The exact
form of the curve I (U ) in Fig. 3.45 is determined by

• The energy dependence of the excitation probability
• The energy distribution of the electrons emitted from the

hot cathode.

With the improved experimental setup of Fig. 3.46a the energy
resolution could be substantially improved. Here, two grids
are used and the acceleration of the electrons is essentially
restricted to the short flight path between K and G1, while
the small adjustable voltage U2 between G2 and G1 does not
change the electron energy much. The excitation probabil-
ity is then nearly the same for all points between G1 and
G2. With such an improved apparatus the finer details of the
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Fig.3.46 (a) Improved experimental arrangement for the Franck–Hertz
experiment with higher energy resolution. (b) Electron current I (U )
measured with the apparatus shown in (a), where the excitation of many
higher levels in the Hg atom can be seen. The structured maximum
corresponds to the first maximum in Fig. 3.45b

excitation function could be resolved, which correspond to
different excited states of the Hg atoms (Fig. 3.47).

The excited Hg∗ atoms release their excitation energy by
emission of light

Hg∗ → Hg+ hν.

Measuring this fluorescence light through a monochromator
shows that the emitted spectral lines have wavelengths λk ,
which exactly correspond to the measured absorption lines of
Hg vapor. Time-resolved measurements of this fluorescence
prove that the excited atomic levels Ei are not stable. They
decay within a very short time (typically≈ 10−8s) into lower
states Ek , where
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Fig. 3.47 Excitation cross section for electron excitation of the singlet
→ triplet transition 61S0 → 63P0,1,2 in the Hg-atom [20]

∆E = Ek − Ei = hνik = hc/λik .

Only the lowest atomic states (called the ground states) are
stable. Their lifetimes are infinitely long (if not excited by
collisions or absorption of photons). The wavelength λik of
the emission spectrummeasured through a spectrograph allow
a much higher accuracy in the determination of energy levels
than those obtained from the electron impact measurements
in Figs. 3.46 and 3.47.

The experimental results of the electron impact excita-
tion prove that atoms can acquire energy only in dis-
crete energy quanta ∆E . Their magnitude depend on
the specific atom and its level structure.

3.5 What are the Differences Between
Classical and Quantum Physics?

In the quantum physical description ofmicroparticles, such as
atoms, molecules, electrons and photons, there is no distinct
separation between particle model and wave model. The mat-
ter wave function is characterized by the particle momentum
p and energy E as well as by the de Broglie wavelength λ or
the frequency ν = E/h. The examples given in the previous
sections have illustrated the particle nature of light and the
wave properties of particles. In this section we will discuss

the particle-wave duality of microparticles and make clear,
by some more instructive examples, that this duality does not
give contradictory but rather complementary descriptions of
nature.

3.5.1 Classical Particle PathsVersus Probability
Densities in Quantum Physics

The classical path of a particle can be exactly predicted, at
least in principle, for all times, if the initial conditions (e.g.,
r(t = 0) and v(t = 0)) and the forces acting on the parti-
cle are known. For the model of point-like massive particles
the equation of motion (Newton’s equation F = ma) can
be solved either analytically or numerically with computers
within any wanted accuracy.

For linear equations of motion, small inaccuracies of the
initial conditions results in only small uncertainties of the
further path r(t) of the particles.

However, many phenomena in nature have to be described
by nonlinear equations ofmotion (e.g., themotion of a particle
in a turbulent flow).Here, tiny changes in the initial conditions
may already change the future development of the particles
motion drastically. For such “chaotic” movements the exact
calculation of themotion r(t) is in principle not possible, even
in “classical physics.”

Quantumphysics brings, through the uncertainty relations,
an additional principal limit to the calculation of the time
development of a physical system.

• The initial conditions r(0) and p(0) for location and
momentum of a particle can not be both given simul-
taneously exactly but only within uncertainty limits.
The product ∆xi · ∆pi (i = x, y, z) of the uncertainty
∆xi , ∆pi cannot be smaller than Planck’s constant !
(Fig. 3.48). Instead of the classical well-defined path
represented by the solid curve in Fig. 3.48 the location
x(t) can be only determined within a certain area ∆x ·∆t ,
schematically shown by the grey area in Fig. 3.48, which
becomes larger in the course of time.

• The determination of the exact paths r(t) of single particles
is replaced in quantum physics by probability statements.
It is only possible to determine the probability P(x, p, t)
to iind amicroparticle withmomentum p(t) at the location
x(t) at time t .

• Measurements of x and p changes the state of the micro-
particle (see Sect. 3.3.3).

• The probability of finding a particle at time t at the loca-
tion x is related to the absolute square of its wave function
ψ(x, t). Averaging over a large number of identical mea-
surements gives the mean probability |ψ(x, t)|2dx to find
the particle at time t within the spatial interval dx around

are not very well defined and are excluded from the data
analysis. The mean spacing is !39.1 V" /8=4.89 V and is
larger than the first excitation energy in mercury, 4.67 eV.
An accurate evaluation of the individual spacings between
the minima as well as between the maxima reveals their sys-
tematic increase. The spacing between the 4th and the 5th
minimum is 4.78 eV, whereas the spacing between the 11th
and the 12th minimum is 5.03 eV. We will show that this
increase is due to the additional acceleration of electrons
over the mean free path after the excitation energy has been
reached, but before inelastic collisions with atoms occur.

The observed increase of the spacing between the maxima
and minima varies with the temperature of the Hg tube.
Figure 4 shows that three spacings in the Franck-Hertz curve
at 145 °C correspond to 3.25 spacings at 200 °C. This ob-

servation supports our model, because the mean free path of
the electrons decreases with the atomic density and therefore
with the tube temperature.

III. MODEL OF INELASTIC COLLISIONS

Figure 5 shows the motion of an electron between two
grids in a Hg tube in the presence of the accelerating poten-
tial U2. While it accelerates the electron gains energy and
collides with mercury atoms. If the electron energy is smaller
than the lowest excitation energy of the mercury atoms, the
collisions are elastic and the energy loss by the electron is
very small because of the large mass difference between the
colliding particles. If the electron energy reaches the excita-
tion threshold of Hg atoms, inelastic collisions may occur.
Before the inelastic collision takes place, an electron must
come close to a mercury atom. The average distance that an
electron moves before the inelastic collision takes place is
the mean free path !. The electrons continue to gain energy
over a distance equal to the mean free path and can excite not
only the lowest but also one of the higher energy states of the

Fig. 1. Schematic diagram of the Franck-Hertz experiment.

Fig. 2. Lowest energy levels in Hg !Ref. 10".

Fig. 3. Typical Franck-Hertz curve recorded with Hg tube at 170 °C.

Fig. 4. Franck-Hertz curves recorded with Hg atoms at two different tube
temperatures. The curves are shifted horizontally so that two of the maxima
coincide.
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The limitations of Bohr Model 
1. It could be successfully applied only to single-electron 
atoms (H, He+ , Li++ , and so on). 


2. It was not able to account for the intensities or the fine 
structure of the spectral lines. 


3. Bohr’s model could not explain the binding of atoms into 
molecules. 
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The extension of Bohr model 
Sommerfeld succeeded partially in explaining the observed 
fine structure of spectral lines by introducing the 
following main modifications in Bohr’s theory:


1.Sommerfeld suggested that the path of an electron 
around the nucleus, in general, is an ellipse with the 
nucleus at one of the foci.


2. Sommerfeld took into account the relativistic variation 
of the mass of the electron with velocity. Hence this 
model of the atom is called the relativistic atom model.  
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The extension of Bohr model 
Elliptical orbits for hydrogen

Two quantization conditions are 


where n" and nr are the two quantum numbers introduced 
by Sommerfeld and

140 7 Ultracold Rydberg Atoms and Ultralong-Range Rydberg Molecules
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Fig. 7.3 Elliptical trajectory associated with Sommerfeld’s atomic model. The electron describes
an elliptical trajectory, and its position is characterized by the polar coordinates (r,φ) defined from
the focus, where the atomic core is placed. The semi-major axis of the ellipse is a, whereas the
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H = p2
r

2m
+

p2
φ

2r2m
− Ze2

4πε0r
, (7.2)

where ε0 is the electric constant of vacuum m is the electron’s mass, and Z denotes
the effective charge of the atomic core that the electron feels. The Hamiltonian in
Eq. (7.2) is time-independent and it does not depend on φ. Thus, the energy and
angular momentum (pφ) are conserved quantities.

The connection between classical and quantum mechanics relies on the quan-
tization of the classical action, following the ideas of Bohr and Sommerfeld. In
particular, the angular degree of freedom yields

∮
pφdφ = hl → pφ = h̄l, (7.3)

where l is the quantum number associated with the angular momentum. For the
radial degree of freedom, the action reads as

∮
prdr = hnr, (7.4)

where nr is the quantum number regarding the motion in the radial direction. It is
preferable to express the radial action as

∮
prdr =

∮
pφ

r2

(
dr

dφ

)2

dφ = hnr, (7.5)

where we have taken into account that pr = mṙ = mdr/dφφ̇, pφ = mr2φ̇ and
ẋ ≡ dx/dt . To solve Eq. (7.4) is convenient to introduce the equation of a general
conic section in polar coordinates (r,φ) as

corresponding de Broglie wave must be considered to have a
wavelength that varies continuously around the orbit.
However, over a small enough time interval Dt, during which
r ! r þ Dr and /! /þ D/, p can be considered to be sen-
sibly constant, in which case the wave-particle can be repre-
sented by

Wðr;/; tÞ ¼ Aðr;/Þeiðk%Ds&xDtÞ; (17)

where Aðr;/Þ is real. It is convenient to resolve the motion
into the two independent orthogonal directions, indicated by
the r̂ and /̂ directions in Fig. 3, so that

Wðr;/; tÞ ¼ Aðr;/Þei krðDsÞrþk/ðDsÞ/&xðDtÞ½ (

¼ Aðr;/ÞeiðkrDrþk/rD/&xDtÞ (18)

and the wave at the point ðr;/Þ can be represented by a prod-
uct of radial and angular functions as

Wðr;/; tÞ ¼ Are
ikrDrA/eirk/D/e&ixDt: (19)

As in the case of a circular orbit, the condition for a stable
wave pattern in this case is that the wave should return in
phase after one full revolution of the orbit. In this case, we
require

þ
rk/ d/ ¼ 2pn/ and

þ
kr dr ¼ 2pnr; (20)

where n/ and nr are integers (not necessarily equal) and the
integration is over one complete cycle. Again, we invoke the
de Broglie hypothesis p¼ h/k to get k ¼ 2p=k ¼ 2pp=h, and
thus

þ
p/r d/ ¼ n/h and

þ
pr dr ¼ nrh: (21)

These are precisely the original quantum conditions pro-
posed by Wilson, Ishiwara, and Sommerfeld [recall Eq. (1)
above], derived here using de Broglie wave concepts only.

The first of the conditions in Eq. (21) reduces to Eq. (5) in
the case of circular orbits (corresponding to nr¼ 0), the inte-
grand being identified as the angular momentum of the parti-
cle L ¼ jr ) pj ¼ rp/. Since L is a constant of the motion,
the first condition therefore becomes

L

þ
d/ ¼ Lð2pÞ ¼ n/h or L ¼ n/!h: (22)

A negative value of n/ can be interpreted as corresponding
to rotation in the opposite sense (clockwise rather than

counterclockwise in Fig. 2). The possibility of n/ being zero
was, to quote Pauling and Wilson,7 “somewhat arbitrarily
excluded, on the basis of the argument that the correspond-
ing orbit is a degenerate line ellipse which would cause the
electron to strike the nucleus.”

To integrate the second condition in Eq. (21), one notes
that

pr ¼ mr
dr

dt
¼ mr

dr

d/
d/
dt
¼ 1

r2
mrr

2 d/
dt

" #
dr

d/
¼ L

r2

dr

d/
;

(23)

so that

þ
pr dr ¼

þ
L

r2

dr

d/

" #2

d/ ¼ nrh: (24)

Then, using Eq. (11) the integral can be evaluated8 to give

nrh ¼ e2L

ð2p

0

sin2/ d/

1þ ecos/ð Þ2
¼ 2pL

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& e2
p & 1

" #
;

(25)

and substituting L ¼ n/!h from Eq. (22) then leads to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& e2
p

¼ n/

nr þ n/
¼ b

a
: (26)

We now replace nr and n/ by two new integers m ¼ 6n/
and n ¼ nr þ n/ so that we can writeffiffiffiffiffiffiffiffiffiffiffiffiffi

1& e2
p

¼ b=a ¼ jmj=n. Thus, the only allowed orbits are
those with (quantized) eccentricity given by

enm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& m2

n2

r
; (27)

where n and m are integers satisfying n> 0 and &n < m < n
(with m 6¼ 0). Figure 4 shows the predicted orbits for n¼ 4.
Note that the circular (!¼ 0) orbits have m¼6n, giving
nr¼ 0, as expected. (The ground state is given by n¼ 1,
m¼61.)

Finally, using Eqs. (9), (16), and (22), we can find the
(quantized) energy, angular momentum, and the semi-major
and minor axes as a function of the quantum numbers n
and m:

Enm ¼ &
mrj2

2!h2

1

n2
; (28)

Fig. 3. Plane polar coordinates used in text.

Fig. 4. Sommerfeld elliptical orbits for the case n¼ 4.
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corresponding de Broglie wave must be considered to have a
wavelength that varies continuously around the orbit.
However, over a small enough time interval Dt, during which
r ! r þ Dr and /! /þ D/, p can be considered to be sen-
sibly constant, in which case the wave-particle can be repre-
sented by

Wðr;/; tÞ ¼ Aðr;/Þeiðk%Ds&xDtÞ; (17)

where Aðr;/Þ is real. It is convenient to resolve the motion
into the two independent orthogonal directions, indicated by
the r̂ and /̂ directions in Fig. 3, so that

Wðr;/; tÞ ¼ Aðr;/Þei krðDsÞrþk/ðDsÞ/&xðDtÞ½ (

¼ Aðr;/ÞeiðkrDrþk/rD/&xDtÞ (18)

and the wave at the point ðr;/Þ can be represented by a prod-
uct of radial and angular functions as

Wðr;/; tÞ ¼ Are
ikrDrA/eirk/D/e&ixDt: (19)

As in the case of a circular orbit, the condition for a stable
wave pattern in this case is that the wave should return in
phase after one full revolution of the orbit. In this case, we
require

þ
rk/ d/ ¼ 2pn/ and

þ
kr dr ¼ 2pnr; (20)

where n/ and nr are integers (not necessarily equal) and the
integration is over one complete cycle. Again, we invoke the
de Broglie hypothesis p¼ h/k to get k ¼ 2p=k ¼ 2pp=h, and
thus

þ
p/r d/ ¼ n/h and

þ
pr dr ¼ nrh: (21)

These are precisely the original quantum conditions pro-
posed by Wilson, Ishiwara, and Sommerfeld [recall Eq. (1)
above], derived here using de Broglie wave concepts only.

The first of the conditions in Eq. (21) reduces to Eq. (5) in
the case of circular orbits (corresponding to nr¼ 0), the inte-
grand being identified as the angular momentum of the parti-
cle L ¼ jr ) pj ¼ rp/. Since L is a constant of the motion,
the first condition therefore becomes

L

þ
d/ ¼ Lð2pÞ ¼ n/h or L ¼ n/!h: (22)

A negative value of n/ can be interpreted as corresponding
to rotation in the opposite sense (clockwise rather than

counterclockwise in Fig. 2). The possibility of n/ being zero
was, to quote Pauling and Wilson,7 “somewhat arbitrarily
excluded, on the basis of the argument that the correspond-
ing orbit is a degenerate line ellipse which would cause the
electron to strike the nucleus.”

To integrate the second condition in Eq. (21), one notes
that

pr ¼ mr
dr

dt
¼ mr
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d/
d/
dt
¼ 1
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mrr

2 d/
dt
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;

(23)

so that

þ
pr dr ¼
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d/ ¼ nrh: (24)

Then, using Eq. (11) the integral can be evaluated8 to give

nrh ¼ e2L
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0
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1þ ecos/ð Þ2
¼ 2pL

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
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;
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and substituting L ¼ n/!h from Eq. (22) then leads to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& e2
p

¼ n/

nr þ n/
¼ b

a
: (26)

We now replace nr and n/ by two new integers m ¼ 6n/
and n ¼ nr þ n/ so that we can writeffiffiffiffiffiffiffiffiffiffiffiffiffi

1& e2
p

¼ b=a ¼ jmj=n. Thus, the only allowed orbits are
those with (quantized) eccentricity given by

enm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& m2

n2

r
; (27)

where n and m are integers satisfying n> 0 and &n < m < n
(with m 6¼ 0). Figure 4 shows the predicted orbits for n¼ 4.
Note that the circular (!¼ 0) orbits have m¼6n, giving
nr¼ 0, as expected. (The ground state is given by n¼ 1,
m¼61.)

Finally, using Eqs. (9), (16), and (22), we can find the
(quantized) energy, angular momentum, and the semi-major
and minor axes as a function of the quantum numbers n
and m:

Enm ¼ &
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Fig. 3. Plane polar coordinates used in text.

Fig. 4. Sommerfeld elliptical orbits for the case n¼ 4.
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corresponding de Broglie wave must be considered to have a
wavelength that varies continuously around the orbit.
However, over a small enough time interval Dt, during which
r ! r þ Dr and /! /þ D/, p can be considered to be sen-
sibly constant, in which case the wave-particle can be repre-
sented by

Wðr;/; tÞ ¼ Aðr;/Þeiðk%Ds&xDtÞ; (17)

where Aðr;/Þ is real. It is convenient to resolve the motion
into the two independent orthogonal directions, indicated by
the r̂ and /̂ directions in Fig. 3, so that

Wðr;/; tÞ ¼ Aðr;/Þei krðDsÞrþk/ðDsÞ/&xðDtÞ½ (

¼ Aðr;/ÞeiðkrDrþk/rD/&xDtÞ (18)

and the wave at the point ðr;/Þ can be represented by a prod-
uct of radial and angular functions as

Wðr;/; tÞ ¼ Are
ikrDrA/eirk/D/e&ixDt: (19)

As in the case of a circular orbit, the condition for a stable
wave pattern in this case is that the wave should return in
phase after one full revolution of the orbit. In this case, we
require

þ
rk/ d/ ¼ 2pn/ and

þ
kr dr ¼ 2pnr; (20)

where n/ and nr are integers (not necessarily equal) and the
integration is over one complete cycle. Again, we invoke the
de Broglie hypothesis p¼ h/k to get k ¼ 2p=k ¼ 2pp=h, and
thus

þ
p/r d/ ¼ n/h and

þ
pr dr ¼ nrh: (21)

These are precisely the original quantum conditions pro-
posed by Wilson, Ishiwara, and Sommerfeld [recall Eq. (1)
above], derived here using de Broglie wave concepts only.

The first of the conditions in Eq. (21) reduces to Eq. (5) in
the case of circular orbits (corresponding to nr¼ 0), the inte-
grand being identified as the angular momentum of the parti-
cle L ¼ jr ) pj ¼ rp/. Since L is a constant of the motion,
the first condition therefore becomes

L

þ
d/ ¼ Lð2pÞ ¼ n/h or L ¼ n/!h: (22)

A negative value of n/ can be interpreted as corresponding
to rotation in the opposite sense (clockwise rather than

counterclockwise in Fig. 2). The possibility of n/ being zero
was, to quote Pauling and Wilson,7 “somewhat arbitrarily
excluded, on the basis of the argument that the correspond-
ing orbit is a degenerate line ellipse which would cause the
electron to strike the nucleus.”

To integrate the second condition in Eq. (21), one notes
that

pr ¼ mr
dr

dt
¼ mr

dr

d/
d/
dt
¼ 1

r2
mrr

2 d/
dt

" #
dr

d/
¼ L
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dr

d/
;

(23)

so that

þ
pr dr ¼

þ
L

r2

dr

d/

" #2

d/ ¼ nrh: (24)

Then, using Eq. (11) the integral can be evaluated8 to give

nrh ¼ e2L

ð2p

0

sin2/ d/

1þ ecos/ð Þ2
¼ 2pL

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& e2
p & 1
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;
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and substituting L ¼ n/!h from Eq. (22) then leads to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& e2
p

¼ n/

nr þ n/
¼ b

a
: (26)

We now replace nr and n/ by two new integers m ¼ 6n/
and n ¼ nr þ n/ so that we can writeffiffiffiffiffiffiffiffiffiffiffiffiffi

1& e2
p

¼ b=a ¼ jmj=n. Thus, the only allowed orbits are
those with (quantized) eccentricity given by

enm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& m2

n2

r
; (27)

where n and m are integers satisfying n> 0 and &n < m < n
(with m 6¼ 0). Figure 4 shows the predicted orbits for n¼ 4.
Note that the circular (!¼ 0) orbits have m¼6n, giving
nr¼ 0, as expected. (The ground state is given by n¼ 1,
m¼61.)

Finally, using Eqs. (9), (16), and (22), we can find the
(quantized) energy, angular momentum, and the semi-major
and minor axes as a function of the quantum numbers n
and m:

Enm ¼ &
mrj2

2!h2

1

n2
; (28)

Fig. 3. Plane polar coordinates used in text.

Fig. 4. Sommerfeld elliptical orbits for the case n¼ 4.
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The extension of Bohr model 
To integrate the second condition about the radial 
direction, one notes that 


corresponding de Broglie wave must be considered to have a
wavelength that varies continuously around the orbit.
However, over a small enough time interval Dt, during which
r ! r þ Dr and /! /þ D/, p can be considered to be sen-
sibly constant, in which case the wave-particle can be repre-
sented by

Wðr;/; tÞ ¼ Aðr;/Þeiðk%Ds&xDtÞ; (17)

where Aðr;/Þ is real. It is convenient to resolve the motion
into the two independent orthogonal directions, indicated by
the r̂ and /̂ directions in Fig. 3, so that

Wðr;/; tÞ ¼ Aðr;/Þei krðDsÞrþk/ðDsÞ/&xðDtÞ½ (

¼ Aðr;/ÞeiðkrDrþk/rD/&xDtÞ (18)

and the wave at the point ðr;/Þ can be represented by a prod-
uct of radial and angular functions as

Wðr;/; tÞ ¼ Are
ikrDrA/eirk/D/e&ixDt: (19)

As in the case of a circular orbit, the condition for a stable
wave pattern in this case is that the wave should return in
phase after one full revolution of the orbit. In this case, we
require

þ
rk/ d/ ¼ 2pn/ and

þ
kr dr ¼ 2pnr; (20)

where n/ and nr are integers (not necessarily equal) and the
integration is over one complete cycle. Again, we invoke the
de Broglie hypothesis p¼ h/k to get k ¼ 2p=k ¼ 2pp=h, and
thus

þ
p/r d/ ¼ n/h and

þ
pr dr ¼ nrh: (21)

These are precisely the original quantum conditions pro-
posed by Wilson, Ishiwara, and Sommerfeld [recall Eq. (1)
above], derived here using de Broglie wave concepts only.

The first of the conditions in Eq. (21) reduces to Eq. (5) in
the case of circular orbits (corresponding to nr¼ 0), the inte-
grand being identified as the angular momentum of the parti-
cle L ¼ jr ) pj ¼ rp/. Since L is a constant of the motion,
the first condition therefore becomes

L

þ
d/ ¼ Lð2pÞ ¼ n/h or L ¼ n/!h: (22)

A negative value of n/ can be interpreted as corresponding
to rotation in the opposite sense (clockwise rather than

counterclockwise in Fig. 2). The possibility of n/ being zero
was, to quote Pauling and Wilson,7 “somewhat arbitrarily
excluded, on the basis of the argument that the correspond-
ing orbit is a degenerate line ellipse which would cause the
electron to strike the nucleus.”

To integrate the second condition in Eq. (21), one notes
that

pr ¼ mr
dr

dt
¼ mr

dr

d/
d/
dt
¼ 1

r2
mrr

2 d/
dt

" #
dr

d/
¼ L

r2

dr

d/
;

(23)

so that

þ
pr dr ¼

þ
L

r2

dr

d/

" #2

d/ ¼ nrh: (24)

Then, using Eq. (11) the integral can be evaluated8 to give

nrh ¼ e2L

ð2p

0

sin2/ d/

1þ ecos/ð Þ2
¼ 2pL

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& e2
p & 1

" #
;

(25)

and substituting L ¼ n/!h from Eq. (22) then leads to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& e2
p

¼ n/

nr þ n/
¼ b

a
: (26)

We now replace nr and n/ by two new integers m ¼ 6n/
and n ¼ nr þ n/ so that we can writeffiffiffiffiffiffiffiffiffiffiffiffiffi

1& e2
p

¼ b=a ¼ jmj=n. Thus, the only allowed orbits are
those with (quantized) eccentricity given by

enm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& m2

n2

r
; (27)

where n and m are integers satisfying n> 0 and &n < m < n
(with m 6¼ 0). Figure 4 shows the predicted orbits for n¼ 4.
Note that the circular (!¼ 0) orbits have m¼6n, giving
nr¼ 0, as expected. (The ground state is given by n¼ 1,
m¼61.)

Finally, using Eqs. (9), (16), and (22), we can find the
(quantized) energy, angular momentum, and the semi-major
and minor axes as a function of the quantum numbers n
and m:

Enm ¼ &
mrj2

2!h2

1

n2
; (28)

Fig. 3. Plane polar coordinates used in text.

Fig. 4. Sommerfeld elliptical orbits for the case n¼ 4.
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so that
corresponding de Broglie wave must be considered to have a
wavelength that varies continuously around the orbit.
However, over a small enough time interval Dt, during which
r ! r þ Dr and /! /þ D/, p can be considered to be sen-
sibly constant, in which case the wave-particle can be repre-
sented by

Wðr;/; tÞ ¼ Aðr;/Þeiðk%Ds&xDtÞ; (17)

where Aðr;/Þ is real. It is convenient to resolve the motion
into the two independent orthogonal directions, indicated by
the r̂ and /̂ directions in Fig. 3, so that

Wðr;/; tÞ ¼ Aðr;/Þei krðDsÞrþk/ðDsÞ/&xðDtÞ½ (

¼ Aðr;/ÞeiðkrDrþk/rD/&xDtÞ (18)

and the wave at the point ðr;/Þ can be represented by a prod-
uct of radial and angular functions as

Wðr;/; tÞ ¼ Are
ikrDrA/eirk/D/e&ixDt: (19)

As in the case of a circular orbit, the condition for a stable
wave pattern in this case is that the wave should return in
phase after one full revolution of the orbit. In this case, we
require

þ
rk/ d/ ¼ 2pn/ and

þ
kr dr ¼ 2pnr; (20)

where n/ and nr are integers (not necessarily equal) and the
integration is over one complete cycle. Again, we invoke the
de Broglie hypothesis p¼ h/k to get k ¼ 2p=k ¼ 2pp=h, and
thus

þ
p/r d/ ¼ n/h and

þ
pr dr ¼ nrh: (21)

These are precisely the original quantum conditions pro-
posed by Wilson, Ishiwara, and Sommerfeld [recall Eq. (1)
above], derived here using de Broglie wave concepts only.

The first of the conditions in Eq. (21) reduces to Eq. (5) in
the case of circular orbits (corresponding to nr¼ 0), the inte-
grand being identified as the angular momentum of the parti-
cle L ¼ jr ) pj ¼ rp/. Since L is a constant of the motion,
the first condition therefore becomes

L

þ
d/ ¼ Lð2pÞ ¼ n/h or L ¼ n/!h: (22)

A negative value of n/ can be interpreted as corresponding
to rotation in the opposite sense (clockwise rather than

counterclockwise in Fig. 2). The possibility of n/ being zero
was, to quote Pauling and Wilson,7 “somewhat arbitrarily
excluded, on the basis of the argument that the correspond-
ing orbit is a degenerate line ellipse which would cause the
electron to strike the nucleus.”

To integrate the second condition in Eq. (21), one notes
that

pr ¼ mr
dr

dt
¼ mr

dr

d/
d/
dt
¼ 1

r2
mrr

2 d/
dt

" #
dr

d/
¼ L

r2

dr

d/
;

(23)

so that

þ
pr dr ¼

þ
L

r2

dr

d/

" #2

d/ ¼ nrh: (24)

Then, using Eq. (11) the integral can be evaluated8 to give

nrh ¼ e2L

ð2p

0

sin2/ d/

1þ ecos/ð Þ2
¼ 2pL

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& e2
p & 1

" #
;

(25)

and substituting L ¼ n/!h from Eq. (22) then leads to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& e2
p

¼ n/

nr þ n/
¼ b

a
: (26)

We now replace nr and n/ by two new integers m ¼ 6n/
and n ¼ nr þ n/ so that we can writeffiffiffiffiffiffiffiffiffiffiffiffiffi

1& e2
p

¼ b=a ¼ jmj=n. Thus, the only allowed orbits are
those with (quantized) eccentricity given by

enm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& m2

n2

r
; (27)

where n and m are integers satisfying n> 0 and &n < m < n
(with m 6¼ 0). Figure 4 shows the predicted orbits for n¼ 4.
Note that the circular (!¼ 0) orbits have m¼6n, giving
nr¼ 0, as expected. (The ground state is given by n¼ 1,
m¼61.)

Finally, using Eqs. (9), (16), and (22), we can find the
(quantized) energy, angular momentum, and the semi-major
and minor axes as a function of the quantum numbers n
and m:

Enm ¼ &
mrj2

2!h2

1

n2
; (28)

Fig. 3. Plane polar coordinates used in text.

Fig. 4. Sommerfeld elliptical orbits for the case n¼ 4.
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In the equation of the ellipse: 


which is equivalent to the expression for the angular momen-
tum of the particle orbiting on a circular path quoted from de
Broglie above [Eq. (2)]. Thus, the quantum condition applied
by Bohr to the hydrogen atom is seen by de Broglie as being
equivalent to the requirement that the electron wave gener-
ates a stable wave pattern on the circle.

Applied to a particle in circular orbit under any inverse-
square-law force (with potential energy given by
UðrÞ ¼ $j=r, where j is constant), this result yields the
Bohr quantization of energy E, angular momentum L, and
orbit radius r; namely,

En ¼ $
mrj2

2!h2

1

n2
; (6)

Ln ¼ n!h; (7)

and

rn ¼
!h2

mrj
n2: (8)

Here, j ¼ Ze2=4p!0 in the case of a one-electron atom and
mr is the reduced mass of the system.

III. CLASSICAL ELLIPTICAL ORBITS

Sommerfeld and his contemporaries were troubled by the
fact that the Bohr quantum atom appeared to demand circu-
lar orbits only, and in particular by the consequence that for
any fixed energy there is only one possible value of the cor-
responding angular momentum (or two of equal magnitude if
one allows for clockwise and counter-clockwise rotations).
From the classical Kepler problem, it follows that for a fixed
energy in an elliptical orbit (Fig. 2) there are an infinite num-
ber of possible angular momentum values, each depending
on the eccentricity of the elliptical path involved. The total
energy of a particle in an elliptical orbit depends only on the
semi-major axis a and is given by

E ¼ $ j
2a
; (9)

while the angular momentum depends on the semi-minor
axis b according to

L2 ¼ $2mrEb2: (10)

Furthermore, evidence based on observation of atomic spec-
tra available at the time suggested a more complicated pic-
ture than Bohr’s, which Sommerfeld’s model was designed
to explain.

The problem of treating a particle in an elliptical orbit as a
de Broglie wave is somewhat more complicated than in the
case of circular motion. For one thing, the wave amplitude
depends on two spatial variables so that W ¼ Wðr;/; tÞ, with
the two (polar) spatial variables ðr;/Þ related by the equa-
tion of the ellipse:

r ¼ b2

að1þ e cos /Þ
¼ að1$ e2Þ

1þ e cos /
; (11)

where e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ b2=a2

p
is the eccentricity of the ellipse. In

addition, the magnitude of the particle’s momentum, poten-
tial energy, and kinetic energy are all continuously changing
throughout the orbit. Conservation of energy, using Eq. (9)
above, gives

p2

2mr
þ UðrÞ ¼ p2

2mr
$ j

r
¼ $ j

2a
; (12)

from which we get

p2 ¼ mrj
2

r
$ 1

a

" #
¼ mrj

2a 1þ e cos /ð Þ
b2

$ 1

a

$ %
; (13)

U ¼ $j 1þ e cos /ð Þ
að1$ e2Þ

; (14)

and

T ¼ j 1þ e2 þ 2e cos /
& '

2að1$ e2Þ
: (15)

Finally, using Eqs. (9) and (10), the semi-major axis can be
written as

a ¼ L2

mrjð1$ e2Þ
: (16)

IV. APPLICATION OF THE DE BROGLIE
HYPOTHESIS TO ELLIPTICAL ORBITS

Because the magnitude of the momentum of the particle in
an elliptical orbit varies with r and /, a function in the form
of Eq. (3) cannot represent the particle. Indeed, the

Fig. 1. Wave on a circular path.

Fig. 2. Particle on an elliptical path under a force centered at the focus.
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where

which is equivalent to the expression for the angular momen-
tum of the particle orbiting on a circular path quoted from de
Broglie above [Eq. (2)]. Thus, the quantum condition applied
by Bohr to the hydrogen atom is seen by de Broglie as being
equivalent to the requirement that the electron wave gener-
ates a stable wave pattern on the circle.

Applied to a particle in circular orbit under any inverse-
square-law force (with potential energy given by
UðrÞ ¼ $j=r, where j is constant), this result yields the
Bohr quantization of energy E, angular momentum L, and
orbit radius r; namely,

En ¼ $
mrj2

2!h2

1

n2
; (6)

Ln ¼ n!h; (7)

and

rn ¼
!h2

mrj
n2: (8)

Here, j ¼ Ze2=4p!0 in the case of a one-electron atom and
mr is the reduced mass of the system.

III. CLASSICAL ELLIPTICAL ORBITS

Sommerfeld and his contemporaries were troubled by the
fact that the Bohr quantum atom appeared to demand circu-
lar orbits only, and in particular by the consequence that for
any fixed energy there is only one possible value of the cor-
responding angular momentum (or two of equal magnitude if
one allows for clockwise and counter-clockwise rotations).
From the classical Kepler problem, it follows that for a fixed
energy in an elliptical orbit (Fig. 2) there are an infinite num-
ber of possible angular momentum values, each depending
on the eccentricity of the elliptical path involved. The total
energy of a particle in an elliptical orbit depends only on the
semi-major axis a and is given by

E ¼ $ j
2a
; (9)

while the angular momentum depends on the semi-minor
axis b according to

L2 ¼ $2mrEb2: (10)

Furthermore, evidence based on observation of atomic spec-
tra available at the time suggested a more complicated pic-
ture than Bohr’s, which Sommerfeld’s model was designed
to explain.

The problem of treating a particle in an elliptical orbit as a
de Broglie wave is somewhat more complicated than in the
case of circular motion. For one thing, the wave amplitude
depends on two spatial variables so that W ¼ Wðr;/; tÞ, with
the two (polar) spatial variables ðr;/Þ related by the equa-
tion of the ellipse:

r ¼ b2

að1þ e cos /Þ
¼ að1$ e2Þ

1þ e cos /
; (11)

where e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ b2=a2

p
is the eccentricity of the ellipse. In

addition, the magnitude of the particle’s momentum, poten-
tial energy, and kinetic energy are all continuously changing
throughout the orbit. Conservation of energy, using Eq. (9)
above, gives

p2

2mr
þ UðrÞ ¼ p2

2mr
$ j

r
¼ $ j

2a
; (12)

from which we get

p2 ¼ mrj
2

r
$ 1

a

" #
¼ mrj

2a 1þ e cos /ð Þ
b2

$ 1

a

$ %
; (13)

U ¼ $j 1þ e cos /ð Þ
að1$ e2Þ

; (14)

and

T ¼ j 1þ e2 þ 2e cos /
& '

2að1$ e2Þ
: (15)

Finally, using Eqs. (9) and (10), the semi-major axis can be
written as

a ¼ L2

mrjð1$ e2Þ
: (16)

IV. APPLICATION OF THE DE BROGLIE
HYPOTHESIS TO ELLIPTICAL ORBITS

Because the magnitude of the momentum of the particle in
an elliptical orbit varies with r and /, a function in the form
of Eq. (3) cannot represent the particle. Indeed, the

Fig. 1. Wave on a circular path.

Fig. 2. Particle on an elliptical path under a force centered at the focus.
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16/03/2021 Jinniu Hu

The extension of Bohr model 
To integrate the second condition about the radial 
direction, one notes that 


corresponding de Broglie wave must be considered to have a
wavelength that varies continuously around the orbit.
However, over a small enough time interval Dt, during which
r ! r þ Dr and /! /þ D/, p can be considered to be sen-
sibly constant, in which case the wave-particle can be repre-
sented by

Wðr;/; tÞ ¼ Aðr;/Þeiðk%Ds&xDtÞ; (17)

where Aðr;/Þ is real. It is convenient to resolve the motion
into the two independent orthogonal directions, indicated by
the r̂ and /̂ directions in Fig. 3, so that

Wðr;/; tÞ ¼ Aðr;/Þei krðDsÞrþk/ðDsÞ/&xðDtÞ½ (

¼ Aðr;/ÞeiðkrDrþk/rD/&xDtÞ (18)

and the wave at the point ðr;/Þ can be represented by a prod-
uct of radial and angular functions as

Wðr;/; tÞ ¼ Are
ikrDrA/eirk/D/e&ixDt: (19)

As in the case of a circular orbit, the condition for a stable
wave pattern in this case is that the wave should return in
phase after one full revolution of the orbit. In this case, we
require

þ
rk/ d/ ¼ 2pn/ and

þ
kr dr ¼ 2pnr; (20)

where n/ and nr are integers (not necessarily equal) and the
integration is over one complete cycle. Again, we invoke the
de Broglie hypothesis p¼ h/k to get k ¼ 2p=k ¼ 2pp=h, and
thus

þ
p/r d/ ¼ n/h and

þ
pr dr ¼ nrh: (21)

These are precisely the original quantum conditions pro-
posed by Wilson, Ishiwara, and Sommerfeld [recall Eq. (1)
above], derived here using de Broglie wave concepts only.

The first of the conditions in Eq. (21) reduces to Eq. (5) in
the case of circular orbits (corresponding to nr¼ 0), the inte-
grand being identified as the angular momentum of the parti-
cle L ¼ jr ) pj ¼ rp/. Since L is a constant of the motion,
the first condition therefore becomes

L

þ
d/ ¼ Lð2pÞ ¼ n/h or L ¼ n/!h: (22)

A negative value of n/ can be interpreted as corresponding
to rotation in the opposite sense (clockwise rather than

counterclockwise in Fig. 2). The possibility of n/ being zero
was, to quote Pauling and Wilson,7 “somewhat arbitrarily
excluded, on the basis of the argument that the correspond-
ing orbit is a degenerate line ellipse which would cause the
electron to strike the nucleus.”

To integrate the second condition in Eq. (21), one notes
that

pr ¼ mr
dr

dt
¼ mr

dr

d/
d/
dt
¼ 1

r2
mrr

2 d/
dt

" #
dr

d/
¼ L

r2

dr

d/
;

(23)

so that

þ
pr dr ¼

þ
L

r2

dr

d/

" #2

d/ ¼ nrh: (24)

Then, using Eq. (11) the integral can be evaluated8 to give

nrh ¼ e2L

ð2p

0

sin2/ d/

1þ ecos/ð Þ2
¼ 2pL

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& e2
p & 1

" #
;

(25)

and substituting L ¼ n/!h from Eq. (22) then leads to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& e2
p

¼ n/

nr þ n/
¼ b

a
: (26)

We now replace nr and n/ by two new integers m ¼ 6n/
and n ¼ nr þ n/ so that we can writeffiffiffiffiffiffiffiffiffiffiffiffiffi

1& e2
p

¼ b=a ¼ jmj=n. Thus, the only allowed orbits are
those with (quantized) eccentricity given by

enm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& m2

n2

r
; (27)

where n and m are integers satisfying n> 0 and &n < m < n
(with m 6¼ 0). Figure 4 shows the predicted orbits for n¼ 4.
Note that the circular (!¼ 0) orbits have m¼6n, giving
nr¼ 0, as expected. (The ground state is given by n¼ 1,
m¼61.)

Finally, using Eqs. (9), (16), and (22), we can find the
(quantized) energy, angular momentum, and the semi-major
and minor axes as a function of the quantum numbers n
and m:

Enm ¼ &
mrj2

2!h2

1

n2
; (28)

Fig. 3. Plane polar coordinates used in text.

Fig. 4. Sommerfeld elliptical orbits for the case n¼ 4.
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so that
corresponding de Broglie wave must be considered to have a
wavelength that varies continuously around the orbit.
However, over a small enough time interval Dt, during which
r ! r þ Dr and /! /þ D/, p can be considered to be sen-
sibly constant, in which case the wave-particle can be repre-
sented by

Wðr;/; tÞ ¼ Aðr;/Þeiðk%Ds&xDtÞ; (17)

where Aðr;/Þ is real. It is convenient to resolve the motion
into the two independent orthogonal directions, indicated by
the r̂ and /̂ directions in Fig. 3, so that

Wðr;/; tÞ ¼ Aðr;/Þei krðDsÞrþk/ðDsÞ/&xðDtÞ½ (

¼ Aðr;/ÞeiðkrDrþk/rD/&xDtÞ (18)

and the wave at the point ðr;/Þ can be represented by a prod-
uct of radial and angular functions as

Wðr;/; tÞ ¼ Are
ikrDrA/eirk/D/e&ixDt: (19)

As in the case of a circular orbit, the condition for a stable
wave pattern in this case is that the wave should return in
phase after one full revolution of the orbit. In this case, we
require

þ
rk/ d/ ¼ 2pn/ and

þ
kr dr ¼ 2pnr; (20)

where n/ and nr are integers (not necessarily equal) and the
integration is over one complete cycle. Again, we invoke the
de Broglie hypothesis p¼ h/k to get k ¼ 2p=k ¼ 2pp=h, and
thus

þ
p/r d/ ¼ n/h and

þ
pr dr ¼ nrh: (21)

These are precisely the original quantum conditions pro-
posed by Wilson, Ishiwara, and Sommerfeld [recall Eq. (1)
above], derived here using de Broglie wave concepts only.

The first of the conditions in Eq. (21) reduces to Eq. (5) in
the case of circular orbits (corresponding to nr¼ 0), the inte-
grand being identified as the angular momentum of the parti-
cle L ¼ jr ) pj ¼ rp/. Since L is a constant of the motion,
the first condition therefore becomes

L

þ
d/ ¼ Lð2pÞ ¼ n/h or L ¼ n/!h: (22)

A negative value of n/ can be interpreted as corresponding
to rotation in the opposite sense (clockwise rather than

counterclockwise in Fig. 2). The possibility of n/ being zero
was, to quote Pauling and Wilson,7 “somewhat arbitrarily
excluded, on the basis of the argument that the correspond-
ing orbit is a degenerate line ellipse which would cause the
electron to strike the nucleus.”

To integrate the second condition in Eq. (21), one notes
that

pr ¼ mr
dr

dt
¼ mr

dr

d/
d/
dt
¼ 1

r2
mrr

2 d/
dt

" #
dr

d/
¼ L

r2

dr

d/
;

(23)

so that

þ
pr dr ¼

þ
L

r2

dr

d/

" #2

d/ ¼ nrh: (24)

Then, using Eq. (11) the integral can be evaluated8 to give

nrh ¼ e2L

ð2p

0

sin2/ d/

1þ ecos/ð Þ2
¼ 2pL

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& e2
p & 1

" #
;

(25)

and substituting L ¼ n/!h from Eq. (22) then leads to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& e2
p

¼ n/

nr þ n/
¼ b

a
: (26)

We now replace nr and n/ by two new integers m ¼ 6n/
and n ¼ nr þ n/ so that we can writeffiffiffiffiffiffiffiffiffiffiffiffiffi

1& e2
p

¼ b=a ¼ jmj=n. Thus, the only allowed orbits are
those with (quantized) eccentricity given by

enm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& m2

n2

r
; (27)

where n and m are integers satisfying n> 0 and &n < m < n
(with m 6¼ 0). Figure 4 shows the predicted orbits for n¼ 4.
Note that the circular (!¼ 0) orbits have m¼6n, giving
nr¼ 0, as expected. (The ground state is given by n¼ 1,
m¼61.)

Finally, using Eqs. (9), (16), and (22), we can find the
(quantized) energy, angular momentum, and the semi-major
and minor axes as a function of the quantum numbers n
and m:

Enm ¼ &
mrj2

2!h2

1

n2
; (28)

Fig. 3. Plane polar coordinates used in text.

Fig. 4. Sommerfeld elliptical orbits for the case n¼ 4.
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In the equation of the ellipse: 


which is equivalent to the expression for the angular momen-
tum of the particle orbiting on a circular path quoted from de
Broglie above [Eq. (2)]. Thus, the quantum condition applied
by Bohr to the hydrogen atom is seen by de Broglie as being
equivalent to the requirement that the electron wave gener-
ates a stable wave pattern on the circle.

Applied to a particle in circular orbit under any inverse-
square-law force (with potential energy given by
UðrÞ ¼ $j=r, where j is constant), this result yields the
Bohr quantization of energy E, angular momentum L, and
orbit radius r; namely,

En ¼ $
mrj2

2!h2

1

n2
; (6)

Ln ¼ n!h; (7)

and

rn ¼
!h2

mrj
n2: (8)

Here, j ¼ Ze2=4p!0 in the case of a one-electron atom and
mr is the reduced mass of the system.

III. CLASSICAL ELLIPTICAL ORBITS

Sommerfeld and his contemporaries were troubled by the
fact that the Bohr quantum atom appeared to demand circu-
lar orbits only, and in particular by the consequence that for
any fixed energy there is only one possible value of the cor-
responding angular momentum (or two of equal magnitude if
one allows for clockwise and counter-clockwise rotations).
From the classical Kepler problem, it follows that for a fixed
energy in an elliptical orbit (Fig. 2) there are an infinite num-
ber of possible angular momentum values, each depending
on the eccentricity of the elliptical path involved. The total
energy of a particle in an elliptical orbit depends only on the
semi-major axis a and is given by

E ¼ $ j
2a
; (9)

while the angular momentum depends on the semi-minor
axis b according to

L2 ¼ $2mrEb2: (10)

Furthermore, evidence based on observation of atomic spec-
tra available at the time suggested a more complicated pic-
ture than Bohr’s, which Sommerfeld’s model was designed
to explain.

The problem of treating a particle in an elliptical orbit as a
de Broglie wave is somewhat more complicated than in the
case of circular motion. For one thing, the wave amplitude
depends on two spatial variables so that W ¼ Wðr;/; tÞ, with
the two (polar) spatial variables ðr;/Þ related by the equa-
tion of the ellipse:

r ¼ b2

að1þ e cos /Þ
¼ að1$ e2Þ

1þ e cos /
; (11)

where e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ b2=a2

p
is the eccentricity of the ellipse. In

addition, the magnitude of the particle’s momentum, poten-
tial energy, and kinetic energy are all continuously changing
throughout the orbit. Conservation of energy, using Eq. (9)
above, gives

p2

2mr
þ UðrÞ ¼ p2

2mr
$ j

r
¼ $ j

2a
; (12)

from which we get

p2 ¼ mrj
2

r
$ 1

a

" #
¼ mrj

2a 1þ e cos /ð Þ
b2

$ 1

a

$ %
; (13)

U ¼ $j 1þ e cos /ð Þ
að1$ e2Þ

; (14)

and

T ¼ j 1þ e2 þ 2e cos /
& '

2að1$ e2Þ
: (15)

Finally, using Eqs. (9) and (10), the semi-major axis can be
written as

a ¼ L2

mrjð1$ e2Þ
: (16)

IV. APPLICATION OF THE DE BROGLIE
HYPOTHESIS TO ELLIPTICAL ORBITS

Because the magnitude of the momentum of the particle in
an elliptical orbit varies with r and /, a function in the form
of Eq. (3) cannot represent the particle. Indeed, the

Fig. 1. Wave on a circular path.

Fig. 2. Particle on an elliptical path under a force centered at the focus.
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where                  is the eccentricity of the ellipse. 


which is equivalent to the expression for the angular momen-
tum of the particle orbiting on a circular path quoted from de
Broglie above [Eq. (2)]. Thus, the quantum condition applied
by Bohr to the hydrogen atom is seen by de Broglie as being
equivalent to the requirement that the electron wave gener-
ates a stable wave pattern on the circle.

Applied to a particle in circular orbit under any inverse-
square-law force (with potential energy given by
UðrÞ ¼ $j=r, where j is constant), this result yields the
Bohr quantization of energy E, angular momentum L, and
orbit radius r; namely,

En ¼ $
mrj2

2!h2

1

n2
; (6)

Ln ¼ n!h; (7)

and

rn ¼
!h2

mrj
n2: (8)

Here, j ¼ Ze2=4p!0 in the case of a one-electron atom and
mr is the reduced mass of the system.

III. CLASSICAL ELLIPTICAL ORBITS

Sommerfeld and his contemporaries were troubled by the
fact that the Bohr quantum atom appeared to demand circu-
lar orbits only, and in particular by the consequence that for
any fixed energy there is only one possible value of the cor-
responding angular momentum (or two of equal magnitude if
one allows for clockwise and counter-clockwise rotations).
From the classical Kepler problem, it follows that for a fixed
energy in an elliptical orbit (Fig. 2) there are an infinite num-
ber of possible angular momentum values, each depending
on the eccentricity of the elliptical path involved. The total
energy of a particle in an elliptical orbit depends only on the
semi-major axis a and is given by

E ¼ $ j
2a
; (9)

while the angular momentum depends on the semi-minor
axis b according to

L2 ¼ $2mrEb2: (10)

Furthermore, evidence based on observation of atomic spec-
tra available at the time suggested a more complicated pic-
ture than Bohr’s, which Sommerfeld’s model was designed
to explain.

The problem of treating a particle in an elliptical orbit as a
de Broglie wave is somewhat more complicated than in the
case of circular motion. For one thing, the wave amplitude
depends on two spatial variables so that W ¼ Wðr;/; tÞ, with
the two (polar) spatial variables ðr;/Þ related by the equa-
tion of the ellipse:

r ¼ b2

að1þ e cos /Þ
¼ að1$ e2Þ

1þ e cos /
; (11)

where e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ b2=a2

p
is the eccentricity of the ellipse. In

addition, the magnitude of the particle’s momentum, poten-
tial energy, and kinetic energy are all continuously changing
throughout the orbit. Conservation of energy, using Eq. (9)
above, gives

p2

2mr
þ UðrÞ ¼ p2

2mr
$ j

r
¼ $ j

2a
; (12)

from which we get

p2 ¼ mrj
2

r
$ 1

a

" #
¼ mrj

2a 1þ e cos /ð Þ
b2

$ 1

a

$ %
; (13)

U ¼ $j 1þ e cos /ð Þ
að1$ e2Þ

; (14)

and

T ¼ j 1þ e2 þ 2e cos /
& '

2að1$ e2Þ
: (15)

Finally, using Eqs. (9) and (10), the semi-major axis can be
written as

a ¼ L2

mrjð1$ e2Þ
: (16)

IV. APPLICATION OF THE DE BROGLIE
HYPOTHESIS TO ELLIPTICAL ORBITS

Because the magnitude of the momentum of the particle in
an elliptical orbit varies with r and /, a function in the form
of Eq. (3) cannot represent the particle. Indeed, the

Fig. 1. Wave on a circular path.

Fig. 2. Particle on an elliptical path under a force centered at the focus.
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16/03/2021 Jinniu Hu

The extension of Bohr model 
Therefore 


corresponding de Broglie wave must be considered to have a
wavelength that varies continuously around the orbit.
However, over a small enough time interval Dt, during which
r ! r þ Dr and /! /þ D/, p can be considered to be sen-
sibly constant, in which case the wave-particle can be repre-
sented by

Wðr;/; tÞ ¼ Aðr;/Þeiðk%Ds&xDtÞ; (17)

where Aðr;/Þ is real. It is convenient to resolve the motion
into the two independent orthogonal directions, indicated by
the r̂ and /̂ directions in Fig. 3, so that

Wðr;/; tÞ ¼ Aðr;/Þei krðDsÞrþk/ðDsÞ/&xðDtÞ½ (

¼ Aðr;/ÞeiðkrDrþk/rD/&xDtÞ (18)

and the wave at the point ðr;/Þ can be represented by a prod-
uct of radial and angular functions as

Wðr;/; tÞ ¼ Are
ikrDrA/eirk/D/e&ixDt: (19)

As in the case of a circular orbit, the condition for a stable
wave pattern in this case is that the wave should return in
phase after one full revolution of the orbit. In this case, we
require

þ
rk/ d/ ¼ 2pn/ and

þ
kr dr ¼ 2pnr; (20)

where n/ and nr are integers (not necessarily equal) and the
integration is over one complete cycle. Again, we invoke the
de Broglie hypothesis p¼ h/k to get k ¼ 2p=k ¼ 2pp=h, and
thus

þ
p/r d/ ¼ n/h and

þ
pr dr ¼ nrh: (21)

These are precisely the original quantum conditions pro-
posed by Wilson, Ishiwara, and Sommerfeld [recall Eq. (1)
above], derived here using de Broglie wave concepts only.

The first of the conditions in Eq. (21) reduces to Eq. (5) in
the case of circular orbits (corresponding to nr¼ 0), the inte-
grand being identified as the angular momentum of the parti-
cle L ¼ jr ) pj ¼ rp/. Since L is a constant of the motion,
the first condition therefore becomes

L

þ
d/ ¼ Lð2pÞ ¼ n/h or L ¼ n/!h: (22)

A negative value of n/ can be interpreted as corresponding
to rotation in the opposite sense (clockwise rather than

counterclockwise in Fig. 2). The possibility of n/ being zero
was, to quote Pauling and Wilson,7 “somewhat arbitrarily
excluded, on the basis of the argument that the correspond-
ing orbit is a degenerate line ellipse which would cause the
electron to strike the nucleus.”

To integrate the second condition in Eq. (21), one notes
that

pr ¼ mr
dr

dt
¼ mr

dr

d/
d/
dt
¼ 1

r2
mrr

2 d/
dt

" #
dr

d/
¼ L

r2

dr

d/
;

(23)

so that

þ
pr dr ¼

þ
L

r2

dr

d/

" #2

d/ ¼ nrh: (24)

Then, using Eq. (11) the integral can be evaluated8 to give

nrh ¼ e2L

ð2p

0

sin2/ d/

1þ ecos/ð Þ2
¼ 2pL

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& e2
p & 1

" #
;

(25)

and substituting L ¼ n/!h from Eq. (22) then leads to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& e2
p

¼ n/

nr þ n/
¼ b

a
: (26)

We now replace nr and n/ by two new integers m ¼ 6n/
and n ¼ nr þ n/ so that we can writeffiffiffiffiffiffiffiffiffiffiffiffiffi

1& e2
p

¼ b=a ¼ jmj=n. Thus, the only allowed orbits are
those with (quantized) eccentricity given by

enm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& m2

n2

r
; (27)

where n and m are integers satisfying n> 0 and &n < m < n
(with m 6¼ 0). Figure 4 shows the predicted orbits for n¼ 4.
Note that the circular (!¼ 0) orbits have m¼6n, giving
nr¼ 0, as expected. (The ground state is given by n¼ 1,
m¼61.)

Finally, using Eqs. (9), (16), and (22), we can find the
(quantized) energy, angular momentum, and the semi-major
and minor axes as a function of the quantum numbers n
and m:

Enm ¼ &
mrj2

2!h2

1

n2
; (28)

Fig. 3. Plane polar coordinates used in text.

Fig. 4. Sommerfeld elliptical orbits for the case n¼ 4.
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and substituting

then leads to 

corresponding de Broglie wave must be considered to have a
wavelength that varies continuously around the orbit.
However, over a small enough time interval Dt, during which
r ! r þ Dr and /! /þ D/, p can be considered to be sen-
sibly constant, in which case the wave-particle can be repre-
sented by

Wðr;/; tÞ ¼ Aðr;/Þeiðk%Ds&xDtÞ; (17)

where Aðr;/Þ is real. It is convenient to resolve the motion
into the two independent orthogonal directions, indicated by
the r̂ and /̂ directions in Fig. 3, so that

Wðr;/; tÞ ¼ Aðr;/Þei krðDsÞrþk/ðDsÞ/&xðDtÞ½ (

¼ Aðr;/ÞeiðkrDrþk/rD/&xDtÞ (18)

and the wave at the point ðr;/Þ can be represented by a prod-
uct of radial and angular functions as

Wðr;/; tÞ ¼ Are
ikrDrA/eirk/D/e&ixDt: (19)

As in the case of a circular orbit, the condition for a stable
wave pattern in this case is that the wave should return in
phase after one full revolution of the orbit. In this case, we
require

þ
rk/ d/ ¼ 2pn/ and

þ
kr dr ¼ 2pnr; (20)

where n/ and nr are integers (not necessarily equal) and the
integration is over one complete cycle. Again, we invoke the
de Broglie hypothesis p¼ h/k to get k ¼ 2p=k ¼ 2pp=h, and
thus

þ
p/r d/ ¼ n/h and

þ
pr dr ¼ nrh: (21)

These are precisely the original quantum conditions pro-
posed by Wilson, Ishiwara, and Sommerfeld [recall Eq. (1)
above], derived here using de Broglie wave concepts only.

The first of the conditions in Eq. (21) reduces to Eq. (5) in
the case of circular orbits (corresponding to nr¼ 0), the inte-
grand being identified as the angular momentum of the parti-
cle L ¼ jr ) pj ¼ rp/. Since L is a constant of the motion,
the first condition therefore becomes

L

þ
d/ ¼ Lð2pÞ ¼ n/h or L ¼ n/!h: (22)

A negative value of n/ can be interpreted as corresponding
to rotation in the opposite sense (clockwise rather than

counterclockwise in Fig. 2). The possibility of n/ being zero
was, to quote Pauling and Wilson,7 “somewhat arbitrarily
excluded, on the basis of the argument that the correspond-
ing orbit is a degenerate line ellipse which would cause the
electron to strike the nucleus.”

To integrate the second condition in Eq. (21), one notes
that

pr ¼ mr
dr

dt
¼ mr

dr

d/
d/
dt
¼ 1

r2
mrr

2 d/
dt

" #
dr

d/
¼ L

r2

dr

d/
;

(23)

so that

þ
pr dr ¼

þ
L

r2

dr

d/

" #2

d/ ¼ nrh: (24)

Then, using Eq. (11) the integral can be evaluated8 to give

nrh ¼ e2L

ð2p

0

sin2/ d/

1þ ecos/ð Þ2
¼ 2pL

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& e2
p & 1

" #
;

(25)

and substituting L ¼ n/!h from Eq. (22) then leads to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& e2
p

¼ n/

nr þ n/
¼ b

a
: (26)

We now replace nr and n/ by two new integers m ¼ 6n/
and n ¼ nr þ n/ so that we can writeffiffiffiffiffiffiffiffiffiffiffiffiffi

1& e2
p

¼ b=a ¼ jmj=n. Thus, the only allowed orbits are
those with (quantized) eccentricity given by

enm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& m2

n2

r
; (27)

where n and m are integers satisfying n> 0 and &n < m < n
(with m 6¼ 0). Figure 4 shows the predicted orbits for n¼ 4.
Note that the circular (!¼ 0) orbits have m¼6n, giving
nr¼ 0, as expected. (The ground state is given by n¼ 1,
m¼61.)

Finally, using Eqs. (9), (16), and (22), we can find the
(quantized) energy, angular momentum, and the semi-major
and minor axes as a function of the quantum numbers n
and m:

Enm ¼ &
mrj2

2!h2

1

n2
; (28)

Fig. 3. Plane polar coordinates used in text.

Fig. 4. Sommerfeld elliptical orbits for the case n¼ 4.
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corresponding de Broglie wave must be considered to have a
wavelength that varies continuously around the orbit.
However, over a small enough time interval Dt, during which
r ! r þ Dr and /! /þ D/, p can be considered to be sen-
sibly constant, in which case the wave-particle can be repre-
sented by

Wðr;/; tÞ ¼ Aðr;/Þeiðk%Ds&xDtÞ; (17)

where Aðr;/Þ is real. It is convenient to resolve the motion
into the two independent orthogonal directions, indicated by
the r̂ and /̂ directions in Fig. 3, so that

Wðr;/; tÞ ¼ Aðr;/Þei krðDsÞrþk/ðDsÞ/&xðDtÞ½ (

¼ Aðr;/ÞeiðkrDrþk/rD/&xDtÞ (18)

and the wave at the point ðr;/Þ can be represented by a prod-
uct of radial and angular functions as

Wðr;/; tÞ ¼ Are
ikrDrA/eirk/D/e&ixDt: (19)

As in the case of a circular orbit, the condition for a stable
wave pattern in this case is that the wave should return in
phase after one full revolution of the orbit. In this case, we
require

þ
rk/ d/ ¼ 2pn/ and

þ
kr dr ¼ 2pnr; (20)

where n/ and nr are integers (not necessarily equal) and the
integration is over one complete cycle. Again, we invoke the
de Broglie hypothesis p¼ h/k to get k ¼ 2p=k ¼ 2pp=h, and
thus

þ
p/r d/ ¼ n/h and

þ
pr dr ¼ nrh: (21)

These are precisely the original quantum conditions pro-
posed by Wilson, Ishiwara, and Sommerfeld [recall Eq. (1)
above], derived here using de Broglie wave concepts only.

The first of the conditions in Eq. (21) reduces to Eq. (5) in
the case of circular orbits (corresponding to nr¼ 0), the inte-
grand being identified as the angular momentum of the parti-
cle L ¼ jr ) pj ¼ rp/. Since L is a constant of the motion,
the first condition therefore becomes

L

þ
d/ ¼ Lð2pÞ ¼ n/h or L ¼ n/!h: (22)

A negative value of n/ can be interpreted as corresponding
to rotation in the opposite sense (clockwise rather than

counterclockwise in Fig. 2). The possibility of n/ being zero
was, to quote Pauling and Wilson,7 “somewhat arbitrarily
excluded, on the basis of the argument that the correspond-
ing orbit is a degenerate line ellipse which would cause the
electron to strike the nucleus.”

To integrate the second condition in Eq. (21), one notes
that

pr ¼ mr
dr

dt
¼ mr

dr

d/
d/
dt
¼ 1

r2
mrr

2 d/
dt

" #
dr

d/
¼ L

r2

dr

d/
;

(23)

so that

þ
pr dr ¼

þ
L

r2

dr

d/

" #2

d/ ¼ nrh: (24)

Then, using Eq. (11) the integral can be evaluated8 to give

nrh ¼ e2L

ð2p

0

sin2/ d/

1þ ecos/ð Þ2
¼ 2pL

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& e2
p & 1

" #
;

(25)

and substituting L ¼ n/!h from Eq. (22) then leads to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& e2
p

¼ n/

nr þ n/
¼ b

a
: (26)

We now replace nr and n/ by two new integers m ¼ 6n/
and n ¼ nr þ n/ so that we can writeffiffiffiffiffiffiffiffiffiffiffiffiffi

1& e2
p

¼ b=a ¼ jmj=n. Thus, the only allowed orbits are
those with (quantized) eccentricity given by

enm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& m2

n2

r
; (27)

where n and m are integers satisfying n> 0 and &n < m < n
(with m 6¼ 0). Figure 4 shows the predicted orbits for n¼ 4.
Note that the circular (!¼ 0) orbits have m¼6n, giving
nr¼ 0, as expected. (The ground state is given by n¼ 1,
m¼61.)

Finally, using Eqs. (9), (16), and (22), we can find the
(quantized) energy, angular momentum, and the semi-major
and minor axes as a function of the quantum numbers n
and m:

Enm ¼ &
mrj2

2!h2

1

n2
; (28)

Fig. 3. Plane polar coordinates used in text.

Fig. 4. Sommerfeld elliptical orbits for the case n¼ 4.
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Thus, the only allowed orbits are those with (quantized) 
eccentricity given by 


corresponding de Broglie wave must be considered to have a
wavelength that varies continuously around the orbit.
However, over a small enough time interval Dt, during which
r ! r þ Dr and /! /þ D/, p can be considered to be sen-
sibly constant, in which case the wave-particle can be repre-
sented by

Wðr;/; tÞ ¼ Aðr;/Þeiðk%Ds&xDtÞ; (17)

where Aðr;/Þ is real. It is convenient to resolve the motion
into the two independent orthogonal directions, indicated by
the r̂ and /̂ directions in Fig. 3, so that

Wðr;/; tÞ ¼ Aðr;/Þei krðDsÞrþk/ðDsÞ/&xðDtÞ½ (

¼ Aðr;/ÞeiðkrDrþk/rD/&xDtÞ (18)

and the wave at the point ðr;/Þ can be represented by a prod-
uct of radial and angular functions as

Wðr;/; tÞ ¼ Are
ikrDrA/eirk/D/e&ixDt: (19)

As in the case of a circular orbit, the condition for a stable
wave pattern in this case is that the wave should return in
phase after one full revolution of the orbit. In this case, we
require

þ
rk/ d/ ¼ 2pn/ and

þ
kr dr ¼ 2pnr; (20)

where n/ and nr are integers (not necessarily equal) and the
integration is over one complete cycle. Again, we invoke the
de Broglie hypothesis p¼ h/k to get k ¼ 2p=k ¼ 2pp=h, and
thus

þ
p/r d/ ¼ n/h and

þ
pr dr ¼ nrh: (21)

These are precisely the original quantum conditions pro-
posed by Wilson, Ishiwara, and Sommerfeld [recall Eq. (1)
above], derived here using de Broglie wave concepts only.

The first of the conditions in Eq. (21) reduces to Eq. (5) in
the case of circular orbits (corresponding to nr¼ 0), the inte-
grand being identified as the angular momentum of the parti-
cle L ¼ jr ) pj ¼ rp/. Since L is a constant of the motion,
the first condition therefore becomes

L

þ
d/ ¼ Lð2pÞ ¼ n/h or L ¼ n/!h: (22)

A negative value of n/ can be interpreted as corresponding
to rotation in the opposite sense (clockwise rather than

counterclockwise in Fig. 2). The possibility of n/ being zero
was, to quote Pauling and Wilson,7 “somewhat arbitrarily
excluded, on the basis of the argument that the correspond-
ing orbit is a degenerate line ellipse which would cause the
electron to strike the nucleus.”

To integrate the second condition in Eq. (21), one notes
that

pr ¼ mr
dr

dt
¼ mr

dr

d/
d/
dt
¼ 1

r2
mrr

2 d/
dt

" #
dr

d/
¼ L

r2

dr

d/
;

(23)

so that

þ
pr dr ¼

þ
L

r2

dr

d/

" #2

d/ ¼ nrh: (24)

Then, using Eq. (11) the integral can be evaluated8 to give

nrh ¼ e2L

ð2p

0

sin2/ d/

1þ ecos/ð Þ2
¼ 2pL

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& e2
p & 1

" #
;

(25)

and substituting L ¼ n/!h from Eq. (22) then leads to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& e2
p

¼ n/

nr þ n/
¼ b

a
: (26)

We now replace nr and n/ by two new integers m ¼ 6n/
and n ¼ nr þ n/ so that we can writeffiffiffiffiffiffiffiffiffiffiffiffiffi

1& e2
p

¼ b=a ¼ jmj=n. Thus, the only allowed orbits are
those with (quantized) eccentricity given by

enm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& m2

n2

r
; (27)

where n and m are integers satisfying n> 0 and &n < m < n
(with m 6¼ 0). Figure 4 shows the predicted orbits for n¼ 4.
Note that the circular (!¼ 0) orbits have m¼6n, giving
nr¼ 0, as expected. (The ground state is given by n¼ 1,
m¼61.)

Finally, using Eqs. (9), (16), and (22), we can find the
(quantized) energy, angular momentum, and the semi-major
and minor axes as a function of the quantum numbers n
and m:

Enm ¼ &
mrj2

2!h2

1

n2
; (28)

Fig. 3. Plane polar coordinates used in text.

Fig. 4. Sommerfeld elliptical orbits for the case n¼ 4.
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where

corresponding de Broglie wave must be considered to have a
wavelength that varies continuously around the orbit.
However, over a small enough time interval Dt, during which
r ! r þ Dr and /! /þ D/, p can be considered to be sen-
sibly constant, in which case the wave-particle can be repre-
sented by

Wðr;/; tÞ ¼ Aðr;/Þeiðk%Ds&xDtÞ; (17)

where Aðr;/Þ is real. It is convenient to resolve the motion
into the two independent orthogonal directions, indicated by
the r̂ and /̂ directions in Fig. 3, so that

Wðr;/; tÞ ¼ Aðr;/Þei krðDsÞrþk/ðDsÞ/&xðDtÞ½ (

¼ Aðr;/ÞeiðkrDrþk/rD/&xDtÞ (18)

and the wave at the point ðr;/Þ can be represented by a prod-
uct of radial and angular functions as

Wðr;/; tÞ ¼ Are
ikrDrA/eirk/D/e&ixDt: (19)

As in the case of a circular orbit, the condition for a stable
wave pattern in this case is that the wave should return in
phase after one full revolution of the orbit. In this case, we
require

þ
rk/ d/ ¼ 2pn/ and

þ
kr dr ¼ 2pnr; (20)

where n/ and nr are integers (not necessarily equal) and the
integration is over one complete cycle. Again, we invoke the
de Broglie hypothesis p¼ h/k to get k ¼ 2p=k ¼ 2pp=h, and
thus

þ
p/r d/ ¼ n/h and

þ
pr dr ¼ nrh: (21)

These are precisely the original quantum conditions pro-
posed by Wilson, Ishiwara, and Sommerfeld [recall Eq. (1)
above], derived here using de Broglie wave concepts only.

The first of the conditions in Eq. (21) reduces to Eq. (5) in
the case of circular orbits (corresponding to nr¼ 0), the inte-
grand being identified as the angular momentum of the parti-
cle L ¼ jr ) pj ¼ rp/. Since L is a constant of the motion,
the first condition therefore becomes

L

þ
d/ ¼ Lð2pÞ ¼ n/h or L ¼ n/!h: (22)

A negative value of n/ can be interpreted as corresponding
to rotation in the opposite sense (clockwise rather than

counterclockwise in Fig. 2). The possibility of n/ being zero
was, to quote Pauling and Wilson,7 “somewhat arbitrarily
excluded, on the basis of the argument that the correspond-
ing orbit is a degenerate line ellipse which would cause the
electron to strike the nucleus.”

To integrate the second condition in Eq. (21), one notes
that

pr ¼ mr
dr

dt
¼ mr

dr

d/
d/
dt
¼ 1

r2
mrr

2 d/
dt

" #
dr

d/
¼ L

r2

dr

d/
;

(23)

so that

þ
pr dr ¼

þ
L

r2

dr

d/

" #2

d/ ¼ nrh: (24)

Then, using Eq. (11) the integral can be evaluated8 to give

nrh ¼ e2L

ð2p

0

sin2/ d/

1þ ecos/ð Þ2
¼ 2pL

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& e2
p & 1

" #
;

(25)

and substituting L ¼ n/!h from Eq. (22) then leads to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& e2
p

¼ n/

nr þ n/
¼ b

a
: (26)

We now replace nr and n/ by two new integers m ¼ 6n/
and n ¼ nr þ n/ so that we can writeffiffiffiffiffiffiffiffiffiffiffiffiffi

1& e2
p

¼ b=a ¼ jmj=n. Thus, the only allowed orbits are
those with (quantized) eccentricity given by

enm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& m2

n2

r
; (27)

where n and m are integers satisfying n> 0 and &n < m < n
(with m 6¼ 0). Figure 4 shows the predicted orbits for n¼ 4.
Note that the circular (!¼ 0) orbits have m¼6n, giving
nr¼ 0, as expected. (The ground state is given by n¼ 1,
m¼61.)

Finally, using Eqs. (9), (16), and (22), we can find the
(quantized) energy, angular momentum, and the semi-major
and minor axes as a function of the quantum numbers n
and m:

Enm ¼ &
mrj2

2!h2

1

n2
; (28)

Fig. 3. Plane polar coordinates used in text.

Fig. 4. Sommerfeld elliptical orbits for the case n¼ 4.
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16/03/2021 Jinniu Hu

The extension of Bohr model 
We can find the (quantized) energy, angular momentum, 
and the semi-major and minor axes as a function of the 
quantum numbers n and m: 


corresponding de Broglie wave must be considered to have a
wavelength that varies continuously around the orbit.
However, over a small enough time interval Dt, during which
r ! r þ Dr and /! /þ D/, p can be considered to be sen-
sibly constant, in which case the wave-particle can be repre-
sented by

Wðr;/; tÞ ¼ Aðr;/Þeiðk%Ds&xDtÞ; (17)

where Aðr;/Þ is real. It is convenient to resolve the motion
into the two independent orthogonal directions, indicated by
the r̂ and /̂ directions in Fig. 3, so that

Wðr;/; tÞ ¼ Aðr;/Þei krðDsÞrþk/ðDsÞ/&xðDtÞ½ (

¼ Aðr;/ÞeiðkrDrþk/rD/&xDtÞ (18)

and the wave at the point ðr;/Þ can be represented by a prod-
uct of radial and angular functions as

Wðr;/; tÞ ¼ Are
ikrDrA/eirk/D/e&ixDt: (19)

As in the case of a circular orbit, the condition for a stable
wave pattern in this case is that the wave should return in
phase after one full revolution of the orbit. In this case, we
require

þ
rk/ d/ ¼ 2pn/ and

þ
kr dr ¼ 2pnr; (20)

where n/ and nr are integers (not necessarily equal) and the
integration is over one complete cycle. Again, we invoke the
de Broglie hypothesis p¼ h/k to get k ¼ 2p=k ¼ 2pp=h, and
thus

þ
p/r d/ ¼ n/h and

þ
pr dr ¼ nrh: (21)

These are precisely the original quantum conditions pro-
posed by Wilson, Ishiwara, and Sommerfeld [recall Eq. (1)
above], derived here using de Broglie wave concepts only.

The first of the conditions in Eq. (21) reduces to Eq. (5) in
the case of circular orbits (corresponding to nr¼ 0), the inte-
grand being identified as the angular momentum of the parti-
cle L ¼ jr ) pj ¼ rp/. Since L is a constant of the motion,
the first condition therefore becomes

L

þ
d/ ¼ Lð2pÞ ¼ n/h or L ¼ n/!h: (22)

A negative value of n/ can be interpreted as corresponding
to rotation in the opposite sense (clockwise rather than

counterclockwise in Fig. 2). The possibility of n/ being zero
was, to quote Pauling and Wilson,7 “somewhat arbitrarily
excluded, on the basis of the argument that the correspond-
ing orbit is a degenerate line ellipse which would cause the
electron to strike the nucleus.”

To integrate the second condition in Eq. (21), one notes
that

pr ¼ mr
dr

dt
¼ mr

dr

d/
d/
dt
¼ 1

r2
mrr

2 d/
dt

" #
dr

d/
¼ L

r2

dr

d/
;

(23)

so that

þ
pr dr ¼

þ
L

r2

dr

d/

" #2

d/ ¼ nrh: (24)

Then, using Eq. (11) the integral can be evaluated8 to give

nrh ¼ e2L

ð2p

0

sin2/ d/

1þ ecos/ð Þ2
¼ 2pL

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& e2
p & 1

" #
;

(25)

and substituting L ¼ n/!h from Eq. (22) then leads to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& e2
p

¼ n/

nr þ n/
¼ b

a
: (26)

We now replace nr and n/ by two new integers m ¼ 6n/
and n ¼ nr þ n/ so that we can writeffiffiffiffiffiffiffiffiffiffiffiffiffi

1& e2
p

¼ b=a ¼ jmj=n. Thus, the only allowed orbits are
those with (quantized) eccentricity given by

enm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& m2

n2

r
; (27)

where n and m are integers satisfying n> 0 and &n < m < n
(with m 6¼ 0). Figure 4 shows the predicted orbits for n¼ 4.
Note that the circular (!¼ 0) orbits have m¼6n, giving
nr¼ 0, as expected. (The ground state is given by n¼ 1,
m¼61.)

Finally, using Eqs. (9), (16), and (22), we can find the
(quantized) energy, angular momentum, and the semi-major
and minor axes as a function of the quantum numbers n
and m:

Enm ¼ &
mrj2

2!h2

1

n2
; (28)

Fig. 3. Plane polar coordinates used in text.

Fig. 4. Sommerfeld elliptical orbits for the case n¼ 4.
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which is equivalent to the expression for the angular momen-
tum of the particle orbiting on a circular path quoted from de
Broglie above [Eq. (2)]. Thus, the quantum condition applied
by Bohr to the hydrogen atom is seen by de Broglie as being
equivalent to the requirement that the electron wave gener-
ates a stable wave pattern on the circle.

Applied to a particle in circular orbit under any inverse-
square-law force (with potential energy given by
UðrÞ ¼ $j=r, where j is constant), this result yields the
Bohr quantization of energy E, angular momentum L, and
orbit radius r; namely,

En ¼ $
mrj2

2!h2

1

n2
; (6)

Ln ¼ n!h; (7)

and

rn ¼
!h2

mrj
n2: (8)

Here, j ¼ Ze2=4p!0 in the case of a one-electron atom and
mr is the reduced mass of the system.

III. CLASSICAL ELLIPTICAL ORBITS

Sommerfeld and his contemporaries were troubled by the
fact that the Bohr quantum atom appeared to demand circu-
lar orbits only, and in particular by the consequence that for
any fixed energy there is only one possible value of the cor-
responding angular momentum (or two of equal magnitude if
one allows for clockwise and counter-clockwise rotations).
From the classical Kepler problem, it follows that for a fixed
energy in an elliptical orbit (Fig. 2) there are an infinite num-
ber of possible angular momentum values, each depending
on the eccentricity of the elliptical path involved. The total
energy of a particle in an elliptical orbit depends only on the
semi-major axis a and is given by

E ¼ $ j
2a
; (9)

while the angular momentum depends on the semi-minor
axis b according to

L2 ¼ $2mrEb2: (10)

Furthermore, evidence based on observation of atomic spec-
tra available at the time suggested a more complicated pic-
ture than Bohr’s, which Sommerfeld’s model was designed
to explain.

The problem of treating a particle in an elliptical orbit as a
de Broglie wave is somewhat more complicated than in the
case of circular motion. For one thing, the wave amplitude
depends on two spatial variables so that W ¼ Wðr;/; tÞ, with
the two (polar) spatial variables ðr;/Þ related by the equa-
tion of the ellipse:

r ¼ b2

að1þ e cos /Þ
¼ að1$ e2Þ

1þ e cos /
; (11)

where e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1$ b2=a2

p
is the eccentricity of the ellipse. In

addition, the magnitude of the particle’s momentum, poten-
tial energy, and kinetic energy are all continuously changing
throughout the orbit. Conservation of energy, using Eq. (9)
above, gives

p2

2mr
þ UðrÞ ¼ p2

2mr
$ j

r
¼ $ j

2a
; (12)

from which we get

p2 ¼ mrj
2

r
$ 1

a

" #
¼ mrj

2a 1þ e cos /ð Þ
b2

$ 1

a

$ %
; (13)

U ¼ $j 1þ e cos /ð Þ
að1$ e2Þ

; (14)

and

T ¼ j 1þ e2 þ 2e cos /
& '

2að1$ e2Þ
: (15)

Finally, using Eqs. (9) and (10), the semi-major axis can be
written as

a ¼ L2

mrjð1$ e2Þ
: (16)

IV. APPLICATION OF THE DE BROGLIE
HYPOTHESIS TO ELLIPTICAL ORBITS

Because the magnitude of the momentum of the particle in
an elliptical orbit varies with r and /, a function in the form
of Eq. (3) cannot represent the particle. Indeed, the

Fig. 1. Wave on a circular path.

Fig. 2. Particle on an elliptical path under a force centered at the focus.
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corresponding de Broglie wave must be considered to have a
wavelength that varies continuously around the orbit.
However, over a small enough time interval Dt, during which
r ! r þ Dr and /! /þ D/, p can be considered to be sen-
sibly constant, in which case the wave-particle can be repre-
sented by

Wðr;/; tÞ ¼ Aðr;/Þeiðk%Ds&xDtÞ; (17)

where Aðr;/Þ is real. It is convenient to resolve the motion
into the two independent orthogonal directions, indicated by
the r̂ and /̂ directions in Fig. 3, so that

Wðr;/; tÞ ¼ Aðr;/Þei krðDsÞrþk/ðDsÞ/&xðDtÞ½ (

¼ Aðr;/ÞeiðkrDrþk/rD/&xDtÞ (18)

and the wave at the point ðr;/Þ can be represented by a prod-
uct of radial and angular functions as

Wðr;/; tÞ ¼ Are
ikrDrA/eirk/D/e&ixDt: (19)

As in the case of a circular orbit, the condition for a stable
wave pattern in this case is that the wave should return in
phase after one full revolution of the orbit. In this case, we
require

þ
rk/ d/ ¼ 2pn/ and

þ
kr dr ¼ 2pnr; (20)

where n/ and nr are integers (not necessarily equal) and the
integration is over one complete cycle. Again, we invoke the
de Broglie hypothesis p¼ h/k to get k ¼ 2p=k ¼ 2pp=h, and
thus

þ
p/r d/ ¼ n/h and

þ
pr dr ¼ nrh: (21)

These are precisely the original quantum conditions pro-
posed by Wilson, Ishiwara, and Sommerfeld [recall Eq. (1)
above], derived here using de Broglie wave concepts only.

The first of the conditions in Eq. (21) reduces to Eq. (5) in
the case of circular orbits (corresponding to nr¼ 0), the inte-
grand being identified as the angular momentum of the parti-
cle L ¼ jr ) pj ¼ rp/. Since L is a constant of the motion,
the first condition therefore becomes

L

þ
d/ ¼ Lð2pÞ ¼ n/h or L ¼ n/!h: (22)

A negative value of n/ can be interpreted as corresponding
to rotation in the opposite sense (clockwise rather than

counterclockwise in Fig. 2). The possibility of n/ being zero
was, to quote Pauling and Wilson,7 “somewhat arbitrarily
excluded, on the basis of the argument that the correspond-
ing orbit is a degenerate line ellipse which would cause the
electron to strike the nucleus.”

To integrate the second condition in Eq. (21), one notes
that

pr ¼ mr
dr

dt
¼ mr

dr

d/
d/
dt
¼ 1

r2
mrr

2 d/
dt

" #
dr

d/
¼ L

r2

dr

d/
;

(23)

so that

þ
pr dr ¼

þ
L

r2

dr

d/

" #2

d/ ¼ nrh: (24)

Then, using Eq. (11) the integral can be evaluated8 to give

nrh ¼ e2L

ð2p

0

sin2/ d/

1þ ecos/ð Þ2
¼ 2pL

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& e2
p & 1

" #
;

(25)

and substituting L ¼ n/!h from Eq. (22) then leads to

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1& e2
p

¼ n/

nr þ n/
¼ b

a
: (26)

We now replace nr and n/ by two new integers m ¼ 6n/
and n ¼ nr þ n/ so that we can writeffiffiffiffiffiffiffiffiffiffiffiffiffi

1& e2
p

¼ b=a ¼ jmj=n. Thus, the only allowed orbits are
those with (quantized) eccentricity given by

enm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1& m2

n2

r
; (27)

where n and m are integers satisfying n> 0 and &n < m < n
(with m 6¼ 0). Figure 4 shows the predicted orbits for n¼ 4.
Note that the circular (!¼ 0) orbits have m¼6n, giving
nr¼ 0, as expected. (The ground state is given by n¼ 1,
m¼61.)

Finally, using Eqs. (9), (16), and (22), we can find the
(quantized) energy, angular momentum, and the semi-major
and minor axes as a function of the quantum numbers n
and m:

Enm ¼ &
mrj2

2!h2

1

n2
; (28)

Fig. 3. Plane polar coordinates used in text.

Fig. 4. Sommerfeld elliptical orbits for the case n¼ 4.
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Lnm ¼ m!h; (29)

anm ¼
!h2

mrj
n2; (30)

and

bnm ¼
m

n
an ¼ mn

!h2

mrj
: (31)

V. A NOTE ON A FULL QUANTUM-MECHANICAL
TREATMENT

The central field is of course a spherically symmetric
potential, but in classical dynamics, and by extension in the
old quantum theory, initial conditions remove this symmetry
and force the motion to take place in a plane. Sommerfeld
did attempt to extend his model to three dimensions by pos-
tulating a third quantum condition:

Þ
ph dh ¼ nhh. A conse-

quence of this postulate is that when there is a preferred
direction in the system (for example, by the application of an
external field to the atom), this condition imposes a require-
ment that the planes of the elliptical orbits take on only cer-
tain orientations—the phenomenon of “space quantization.”

Sommerfeld’s analysis was quickly overtaken by the de-
velopment of formal quantum mechanics by Heisenberg,
Jordan, Born, Dirac, and others, and by Schr€odinger’s non-
relativistic treatment of the hydrogen atom in 1926.9

Application of the Schr€odinger equation gave rise to the
same energy levels as in the Bohr and Sommerfeld

approaches but the solutions were found to depend on h as
well as r and /. While the Schr€odinger method overcomes
the limitations in the Bohr-Sommerfeld description, many of
the general features associated with the quantum theory of
atoms are anticipated in the earlier model. Thus, the analysis
outlined in this paper can provide a useful transition for stu-
dents in going from the simple Bohr model to the full solu-
tion of the Schr€odinger equation when applied to a one-
electron atom.
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The central field is of course a spherically symmetric
potential, but in classical dynamics, and by extension in the
old quantum theory, initial conditions remove this symmetry
and force the motion to take place in a plane. Sommerfeld
did attempt to extend his model to three dimensions by pos-
tulating a third quantum condition:

Þ
ph dh ¼ nhh. A conse-

quence of this postulate is that when there is a preferred
direction in the system (for example, by the application of an
external field to the atom), this condition imposes a require-
ment that the planes of the elliptical orbits take on only cer-
tain orientations—the phenomenon of “space quantization.”

Sommerfeld’s analysis was quickly overtaken by the de-
velopment of formal quantum mechanics by Heisenberg,
Jordan, Born, Dirac, and others, and by Schr€odinger’s non-
relativistic treatment of the hydrogen atom in 1926.9

Application of the Schr€odinger equation gave rise to the
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well as r and /. While the Schr€odinger method overcomes
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electron atom.

a)Electronic mail: T.deeney@ucc.ie
b)Electronic mail: ctosull@ucc.ie

1N. Bohr, “On the Constitution of Atoms and Molecules,” Philos. Mag.
6(26), 1–25 (1913).

2A. Sommerfeld, Atombau und Spektrallinien (Friedrich Vieweg und Sohn,
Braunschweig, 1919). Translation in English of the third edition by H L
Brose, Atomic Structure and Spectral Lines (Methuen, London 1923), is
available at <http://archive.org/stream/AtomicStructureAndSpectralLines/
Sommerfeld-AtomicStructureAndSpectralLines#page/n3/mode/2up>.

3W. Wilson, “The quantum-theory of radiation and line spectra,” Philos.
Mag. 29, 795–802 (1915).

4J. Ishiwara, “Universelle Bedeutung des Wirkungsquantum,” Proc. Tokyo
Math. Phys. Soc. 8, 173–186 (1915).

5A. Sommerfeld, “Zur Quantentheorie der spektrallinien,” Ann. Phys. 51,
1–94 (1916).

6L. de Broglie, “Recherches sur la Th#eorie des Quanta,” Ann. Phys. 3(10),
22–128 (1925). An English translation by A F Kracklauer (2004) is avail-
able at <http://aflb.ensmp.fr/LDBoeuvres/De_Broglie_Kracklauer.pdf>.

7L. Pauling and E. Wilson, Introduction to Quantum Mechanics (McGraw-
Hill, New York, 1935), pp. 44–45.

8H. L. Brose, Atomic Structure and Spectral Lines (Methuen, London,
1923), pp. 549–550.

9E. Schr€odinger, “Quantisierung als Eigenwertproblem (Erste Mitteilung),”
Ann. Phys. 79, 361–376 (1926).

886 Am. J. Phys., Vol. 82, No. 9, September 2014 Tony Deeney and Colm O’Sullivan 886

 This article is copyrighted as indicated in the article. Reuse of AAPT content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:
129.101.79.200 On: Tue, 26 Aug 2014 18:33:41
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The Rydberg atom 

Any atom in a highly excited state with high principal 
quantum number n is defined as a Rydberg atom 


138 7 Ultracold Rydberg Atoms and Ultralong-Range Rydberg Molecules

Fig. 7.1 Rydberg atom and
Rydberg states. Panel (a)
shows the energy level
structure of an atom, in which
Rydberg states appear before
reaching the ionization
continuum. Panel (b) shows
the classical trajectory of the
Rydberg electron, feeling a
positively charged ionic core
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• The ionization energy of the excited state of the atom is described by the Rydberg
formula − 1

2n∗2 (in atomic units), where n∗ is the effective principal quantum
number. In other words, Rydberg atoms are hydrogen-like atoms.

• In virtue of the previous point, the trajectory of the outer electron is appropriately
described through classical mechanics. That is the reason why the reader may
hear that Rydberg states behave classically.

As shown in panel (a) of Fig. 7.1, every atom shows Rydberg states near the
ionization continuum, and an atom in one of these states is labeled as a Rydberg
atom. However, in ultracold physics, when talking about Rydberg atoms, it is
assumed that a valence electron is promoted to a Rydberg state, and the motion
of this electron (Rydberg electron) is classically described as shown in panel (b) of
Fig. 7.1. In particular, the Rydberg electron feels the attractive force of a positively
charged ionic core, and as a consequence, the electron describes an elliptical orbit
around the ionic core.

However, this approach is only valid at long range, where the core electrons
do not play any role. As the Rydberg electron approaches the ionic core, the
core electrons no longer screen the Rydberg electron–ionic core interaction, thus
altering the energy of the Rydberg electron, as shown in Fig. 7.2. As a result, the
Rydberg electron feels an effective potential VR(r) = Vcore(r) − 1/r (see Fig. 7.2),
where Vcore(r) is a short-ranged potential to account for the Rydberg electron–
ionic core short-range interaction. The presence of the short-range potential imposes
a phase shift (πδµl ) on the Rydberg electron wave function with respect to the
hydrogenic one, which defines the quantum defect µl . Indeed, the quantum defect
is a fundamental quantity used to characterize Rydberg states, since the ionization
energy of a Rydberg state depends on it as

E = − 1
2(n − µl)2

. (7.1)
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In particular, the Rydberg electron feels the attractive 
force of a positively charged ionic core, and as a 
consequence, the electron describes an elliptical orbit 
around the ionic core. 
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corresponding to these letters are 1, 2, 3, 4, etc. respectively. In this notation, the orbit determined by n = 3
and nI = 1 is represented by 3s. Similarly 4d will represent the orbit n = 4 and nI = 3. These orbits are
represented in Fig. 2.6.

The transitions between the orbits n = 3 and n = 2 giving HD line can now take place in six
different ways. However, all these transitions have the same energy E3 – E2 and hence give rise to a
single frequency for the HD line, according to the frequency condition. No new lines, which would
explain the fine structure are therefore predicted.
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The velocity of an electron moving in an elliptical orbit varies from point to point in the orbit, being a
maximum when the electron is nearest to the nucleus and a minimum when it is farther away from the

nucleus. Furthermore, this velocity is quite large 
c

137
!
"

#
$ . According to the theory of relativity, the variation

of velocity means variation of mass of the electron.

Sommerfeld, including the relativistic correction in the
treatment of elliptical orbits, showed that equation of the path
of the electron was not simply that for an ellipse but was of the
form
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This is the equation of an ellipse which precesses, i.e.,
the major axis turns slowly about the focus (the nucleus) in the
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∆φ =

2π
ψ

–
2π

Sommerfeld, including the relativistic 
correction in the treatment of elliptical 
orbits, showed that equation of the 
path of the electron was not simply 
that for an ellipse but was of the form 


where, 

and # is the eccentricity (���) and the path of the 
electron is, therefore, a rosette (
	��). 

97 5.3 Sommerfeld and the !ne-structure constant

Fig. 5.3 Illustrating the precession of the elliptical orbits when the e"ects of special relativity are taken into account. This
diagram appears as Fig. 110 in Sommerfeld’s book Atombau und Spektrallinien (Sommerfeld, 1919).

where p is now the relativistic three-momentum and is quantised according to the rule∮
p dφ = nφh. p0 is defined to be the quantity p0 = Ze2/4πε0c. In the case of circular

Bohr orbits, it is straightforward to show that γ = (1 − v2/c2)1/2, in other words, the inverse
of my normal convention for the Lorentz factor γ = (1 − v2/c2)−1/2. Just for this section,
we will use γ in Sommerfeld’s sense. Inspection of (5.29) shows that, since γ ≤ 1, the orbit
does not close up after φ = 2π radians, but after γφ = 2π radians. This slight change per
orbit is illustrated by the angle %φ in Fig. 5.3. The orbits return to the standard elliptical
form however if we introduce the coordinate ψ = γφ. Sommerfeld shows that the equation
for the ellipse now becomes

1
r

= 1
a

1 + ε cos γφ

1 − ε2
, (5.31)

while the momenta corresponding to r,φ are

pφ = mr2φ̇ , pr = mṙ , (5.32)

where the momenta are relativistic three-momenta, that is, in (5.32) m = me(1 − v2/c2)−1/2.
The one important difference is that the quantisation condition in the radial direction now
corresponds to the integration over a single ellipse in the ψ coordinate, that is,

∫ 2π

φ=0
pφ dφ = nφh and

∫ ψ=2π

ψ=0
pr dr = nr h . (5.33)

Carrying out the same procedure as in the non-relativistic case, Sommerfeld found that the
ellipticities of the orbits are given by

1 − ε2 =
n2

φ − α2 Z2

[
nr +

√
n2

φ − α2 Z2
] , (5.34)

where α = e2/2ε0hc is the fine-structure constant, for reasons which will be apparent in
a moment. It is already clear that the degeneracy of the energy levels has been relieved
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It can be shown that the total energy with a principal 
quantum number n in the relativistic theory is 
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plane of the ellipse. The path of the electron is, therefore, a rosette.
It can be shown that the total energy with a principal quantum number n in the relativistic theory is
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where D�= 
e

ch

2

02H
 = 

1
137

. D is a dimensionless quantity and is called the fine structure constant.

The first term on the right hand side is the energy of the electron in the orbit with the principal
quantum number n according to Bohr’s theory and the second term is Sommerfeld’s relativity correction
arising from the rosette motion of the electron orbit with principal quantum number n and azimuthal
quantum number nI.The dependence of the total energy of the electron in its orbit as given by the
equation (2.42) results in a splitting of energy levels in the atom. For a given value of n, there will be n
components corresponding to the n permitted values of nI. Hence multiplicity of spectral lines should
appear in hydrogen atom.

1#2&($3"&-*!.,*.!"&'(&4D&5$3"

HD line is due to the transition from n = 3 state to n = 2 state of hydrogen atom. For n = 3, there are three
possible energy levels corresponding to the three values of nI = 1, 2 and 3. Similarly, there are two
possible levels for n = 2. Therefore, theoretically six transitions are possible:

33 o 22 ; 33 o��������o���������o���������o���������o���
and these transitions are shown in Fig. 2.8. Actually, the HD line has only three components. To make
experiment and theory agree, some of the transitions have to be ruled out by some selection rule. The

selection rule is that nI can change only +1 or –1 i.e.,'nI  = r 1.
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(i) Bohr’s theory failed to explain the fine structure of spectral lines even in the simplest hydrogen
atom.

The second term is Sommerfeld’s relativity correction arising 
from the rosette motion of the electron orbit with principal 
quantum number n and azimuthal quantum number n". 
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line is due to the transition 

from n = 3 state to n = 2 state of 
hydrogen atom. 
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Alkali Atom 

The alkali atoms have a weakly bound outer electron, the 
so-called valence electron, and all other (Z-1) electrons 
are in closed shells. 

2.2. ATOMIC SPECTRA 55

High-resolution spectroscopy of hydrogen-like atoms such as H, He+, Li2+, Be3+ . . . and

their isotopes continues to stimulate methodological and instrumental progress in electronic

spectroscopy. Measurements on ”artificial” hydrogen-like atoms such as positronium (atom

consisting of an electron and a positron), protonium (atom consisting of a proton and an an-

tiproton), antihydrogen (atom consisting of an antiproton and a positron), muonium (atom

consisting of a positive muon µ+ and an electron), antimuonium (atom consisting of a negative

muon µ− and a positron), etc., have the potential of providing new insights into fundamental

physical laws and symmetries and their violations.

2.2.3 Spectra of alkali-metal atoms

A schematic energy level diagram showing the single-photon transitions that can be observed

in the spectra of the alkali-metal atoms is presented in Figure 2.6. The ground-state config-

uration corresponds to a closed-shell rare-gas-atom configuration with a single valence n0s

electron with n0 = 2, 3, 4, 5 and 6 for Li, Na, K, Rb and Cs, respectively. The energetic

positions of these levels can be determined accurately from Equation (2.2). The Laporte

selection rule (Equation (2.72)) restricts the observable single-photon transitions to those

drawn as double-headed arrows in Figure 2.6. Neglecting the fine and hyperfine structures,

their wave numbers can be determined using:

ν̃ =
RM

(n′′ − δ!′′)2
− RM

(n′ − δ!′)2
. (2.74)
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Figure 2.6: Schematic diagram showing the transitions that can be observed in the single-

photon spectrum of the alkali-metal atoms.

PCV - Spectroscopy of atoms and molecules
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Muonic Atoms 
A muonic atom consists of the atomic nucleus, a negatively 
charged muon �− and the electron shell with (Z-p) 
electrons. 

Because of the large muon mass m� = 206.76 me the lowest 
possible Bohr orbit (n = 1) of the muon is for a nuclear 
charge Z e with Z = 30 only, 
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therefore decay into an excited state of the Ba+ ion, which
can be detected by further ionization into Ba++ by absorp-
tion of another photon hν2 from the second laser. The Ba++

ions are detected with time resolved techniques. This gives
information on the lifetime of the doubly excited state [7].

6.7 Exotic Atoms

Up to now we have assumed that the spatial extension of
the atomic nucleus can be neglected and the nucleus can be
treated as a point-like charge. This assumption is justified
as long as the mean nuclear radius (rN ≈ 10−15 m) is very
small compared to the mean distance 〈r〉 between electron
and nucleus, which can be estimated by the Bohr radius (r1 ≈
10−10 m) of the electrons for the lowest electron state with
n = 1.

In Sects. 5.1 and 5.7 we have already discussed that for 1S
states with l = 0 the electron wave function has its maximum
at r = 0 at the position of the nucleus. The energy of the 1S
states should therefore be affected by the spatial distributionof
the nuclear charge, in particular for atoms with a high nuclear
charge Ze. Measurements with high spectral resolution can
indeed detect energy shifts caused by the deviation of the
nucleus from a point charge, which are part of the hyperfine
shifts (Sect. 5.6).

Much larger shifts are observed in exotic atoms where one
atomic electron is replaced by a heavier particle with negative
charge and mass mx % me, such as a muon µ−, a τ lepton
τ−, a π− meson or an antiproton p−. The Bohr-radii (see
(3.85))

rn = 4πε0!2n2

Ze2µ
(6.49)

of these particles, which scale inversely proportional to the
reduced mass

µ = mxMN

mx + MN

are much smaller than for the corresponding orbits of an elec-
tron in the Coulomb field of the nucleus with charge Ze.
The influence of the spatial distribution of the nuclear charge
on the energy levels of such exotic atoms is therefore much
more pronounced. Measurements of these energy shifts give
detailed information on the spatial charge distribution and the
mass distribution within the nucleus and their dependence on
the nuclear spin.

Unfortunately the elementary particles µ−, π− or τ− are
not stable. They decay within 10−6 s to 10−8 s into other
particles. Therefore the exotic atoms only exist for a short
time. This makes their spectroscopic characterization dif-
ficult. Nevertheless it has been possible in recent years to
produce sufficient numbers of exotic atoms and to perform

accurate spectroscopic measurements of their energy states
and transition probabilities [8–10]. This will be illustrated by
some examples.

6.7.1 Muonic Atoms

A muonic atom consists of the atomic nucleus, a negatively
charged muon µ− and the electron shell with (Z − p) elec-
trons. When the muon is captured by the neutral atom with
Z electrons, the released energy (kinetic energy and binding
energy of the muon) can be transferred to the electron shell
and p electrons (p = 1, 2, 3, . . .) can leave the atom due to
the Auger effect (see Sect. 6.6.3). Because of the large muon
massmµ = 206.76me the lowest possible Bohr orbit (n = 1)
of themuon is for a nuclear charge Zewith Z = 30 according
to (6.49) only

r1(µ−) = 7.7 × 10−15 m,

which is of the same order of magnitude as the nuclear
radius (Fig. 6.45). This means that the muon experiences the
unshielded nuclear Coulomb field and the energies En of the
muonic atom levels are very much influenced by the spatial
distribution of the nuclear charge, while the other electrons
have amuch smaller effect on themuon, because their average
distance from the muon is much larger.

Measuring the wavelength of the radiation emitted when
the muon jumps from level Ei into the lower level Ek allows
the determination of the energy differences ∆Eik = Ei − Ek
and therefore the deviations of the level energies from those in
a pure Coulomb potential. These deviations are caused by the
spatial charge distribution within the nucleus. The potential

(a)

(b)

Fig. 6.45 a,b. Muonic atom. (a) Comparison of radial charge density
for the muon µ− and the electron e− in the 1s state. (b) Bohr-radius
of levels with principle quantum number n for exotic atoms, where the
electron is replaced by different muons or mesons

which is of the same order of magnitude as the nuclear 
radius. The muonic atom levels are very much influenced 
by the spatial distribution of the nuclear charge.the 
muonic atom levels are very much influenced by the 
spatial distribution of the nuclear charge 
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Muonic Atoms 

Since the mean lifetime of �− is 2.2 �s muonic atoms are 
unstable even in their ground state. For light atoms (Z < 
10) the �− decays according to the scheme 
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experienced by the muon can be expanded into a power series
of r−n , where the different terms represent the monopole
potential, the quadrupole, octopole, etc., potential. A model
calculation yields that nuclear charge distribution which fits
best the measured term energies [9]. For muonic lead atoms
(Z = 82) the photon energies are in the MeV range.

Since the mean lifetime of µ− is 2.2µs muonic atoms are
unstable even in their ground state. For light atoms (Z < 10)
the µ− decays according to the scheme

µ− → e− + νe + νµ (6.50)

into an electron, an electron antineutrino and amuon neutrino.
For heavy atoms (Z > 10) the lowest µ− orbit is already
within the nucleus. In this case the muon induces the nuclear
reaction

µ− + p → n + νµ, (6.51)

where a proton in the nucleus is converted into a neutron. The
probability of this reaction is high for the lowest muon level
and the mean lifetime of the muon is therefore much smaller
than for lighter atoms where the muon orbit is outside the
nucleus.

A possible experimental arrangement for the spectroscopy
of muonic atoms is shown in Fig. 6.46. Fast protons from a
proton synchrotron collide with a target producing an intense
beam of π− mesons, which decay during their flight within
2.2×10−8 s intoµ−+νµ forming a fast beam ofµ−. The fast
muons are sloweddown in a graphite block and are completely
stopped in two crossed thin sheets of a specific material. Here
they are captured by the atoms in the sheets forming myonic
atoms or ions in high lying levels fromwhere they can cascade
down into lower levels. The X-ray radiation, emitted during
this cascading is measured with a germanium semiconductor
detector with high energy resolution.

Meanwhile even the fine structure of energy levels in
muonic atoms and Zeeman splittings have been resolved. The
fine structure splittings are here much larger than in normal
atoms and amount to several eV. Transitions between fine
structure components can therefore be induced with visible

Fig.6.46 Generation of exotic atoms and their detection by X-ray spec-
troscopy

lasers. These measurements yield very accurate absolute val-
ues of mass and magnetic moment of the µ− muon [11,12].

6.7.2 Pionic and Kaonic Atoms

Instead of themyon, a negativeπ− meson can also be captured
by a neutral atom. The energy released by this capture process
is sufficient to eject one or several electrons from the atomic
electron shell (Fig. 6.47). For a π− meson in atomic orbits
with n < 17 the Bohr radius is already sufficiently small to
make the interaction of the π− with the electrons of the atom
negligibly small.

The nucleons (protons and neutrons) in the atomic nucleus
interact with the π− meson not only through Coulomb forces
but also through the short range, but much stronger, nuclear
force. A comparison of the energy levels in the myonic and
the pionic atoms gives information about the nuclear forces
and their radial dependence (because the lepton µ− does not
feel the strong nuclear force contrary to the π− meson).

Exotic atoms with heavier negative mesons (K−, η−)
allows probing of charge andmass distribution at even smaller
distances from the center of the nucleus. They can give infor-
mation on deviations of these distributions from a spherical
symmetry. Since the lifetime of the K− mesons is only 12ns,
measurements of the spectra of these exotic atoms becomes
more and more difficult [13].

Fig. 6.47 Capture of a µ− myon or a π− meson with following cas-
cading transitions into the final ground state

into an electron, an electron antineutrino and a muon 
neutrino. For heavy atoms (Z > 10) the lowest �− orbit is 
already within the nucleus. In this case the muon induces 
the nuclear reaction 
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where a proton in the nucleus is converted into a neutron. The
probability of this reaction is high for the lowest muon level
and the mean lifetime of the muon is therefore much smaller
than for lighter atoms where the muon orbit is outside the
nucleus.

A possible experimental arrangement for the spectroscopy
of muonic atoms is shown in Fig. 6.46. Fast protons from a
proton synchrotron collide with a target producing an intense
beam of π− mesons, which decay during their flight within
2.2×10−8 s intoµ−+νµ forming a fast beam ofµ−. The fast
muons are sloweddown in a graphite block and are completely
stopped in two crossed thin sheets of a specific material. Here
they are captured by the atoms in the sheets forming myonic
atoms or ions in high lying levels fromwhere they can cascade
down into lower levels. The X-ray radiation, emitted during
this cascading is measured with a germanium semiconductor
detector with high energy resolution.

Meanwhile even the fine structure of energy levels in
muonic atoms and Zeeman splittings have been resolved. The
fine structure splittings are here much larger than in normal
atoms and amount to several eV. Transitions between fine
structure components can therefore be induced with visible

Fig.6.46 Generation of exotic atoms and their detection by X-ray spec-
troscopy

lasers. These measurements yield very accurate absolute val-
ues of mass and magnetic moment of the µ− muon [11,12].

6.7.2 Pionic and Kaonic Atoms

Instead of themyon, a negativeπ− meson can also be captured
by a neutral atom. The energy released by this capture process
is sufficient to eject one or several electrons from the atomic
electron shell (Fig. 6.47). For a π− meson in atomic orbits
with n < 17 the Bohr radius is already sufficiently small to
make the interaction of the π− with the electrons of the atom
negligibly small.

The nucleons (protons and neutrons) in the atomic nucleus
interact with the π− meson not only through Coulomb forces
but also through the short range, but much stronger, nuclear
force. A comparison of the energy levels in the myonic and
the pionic atoms gives information about the nuclear forces
and their radial dependence (because the lepton µ− does not
feel the strong nuclear force contrary to the π− meson).

Exotic atoms with heavier negative mesons (K−, η−)
allows probing of charge andmass distribution at even smaller
distances from the center of the nucleus. They can give infor-
mation on deviations of these distributions from a spherical
symmetry. Since the lifetime of the K− mesons is only 12ns,
measurements of the spectra of these exotic atoms becomes
more and more difficult [13].

Fig. 6.47 Capture of a µ− myon or a π− meson with following cas-
cading transitions into the final ground state

where a proton in the nucleus is converted into a neutron. 
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therefore decay into an excited state of the Ba+ ion, which
can be detected by further ionization into Ba++ by absorp-
tion of another photon hν2 from the second laser. The Ba++

ions are detected with time resolved techniques. This gives
information on the lifetime of the doubly excited state [7].

6.7 Exotic Atoms

Up to now we have assumed that the spatial extension of
the atomic nucleus can be neglected and the nucleus can be
treated as a point-like charge. This assumption is justified
as long as the mean nuclear radius (rN ≈ 10−15 m) is very
small compared to the mean distance 〈r〉 between electron
and nucleus, which can be estimated by the Bohr radius (r1 ≈
10−10 m) of the electrons for the lowest electron state with
n = 1.

In Sects. 5.1 and 5.7 we have already discussed that for 1S
states with l = 0 the electron wave function has its maximum
at r = 0 at the position of the nucleus. The energy of the 1S
states should therefore be affected by the spatial distributionof
the nuclear charge, in particular for atoms with a high nuclear
charge Ze. Measurements with high spectral resolution can
indeed detect energy shifts caused by the deviation of the
nucleus from a point charge, which are part of the hyperfine
shifts (Sect. 5.6).

Much larger shifts are observed in exotic atoms where one
atomic electron is replaced by a heavier particle with negative
charge and mass mx % me, such as a muon µ−, a τ lepton
τ−, a π− meson or an antiproton p−. The Bohr-radii (see
(3.85))

rn = 4πε0!2n2

Ze2µ
(6.49)

of these particles, which scale inversely proportional to the
reduced mass

µ = mxMN

mx + MN

are much smaller than for the corresponding orbits of an elec-
tron in the Coulomb field of the nucleus with charge Ze.
The influence of the spatial distribution of the nuclear charge
on the energy levels of such exotic atoms is therefore much
more pronounced. Measurements of these energy shifts give
detailed information on the spatial charge distribution and the
mass distribution within the nucleus and their dependence on
the nuclear spin.

Unfortunately the elementary particles µ−, π− or τ− are
not stable. They decay within 10−6 s to 10−8 s into other
particles. Therefore the exotic atoms only exist for a short
time. This makes their spectroscopic characterization dif-
ficult. Nevertheless it has been possible in recent years to
produce sufficient numbers of exotic atoms and to perform

accurate spectroscopic measurements of their energy states
and transition probabilities [8–10]. This will be illustrated by
some examples.

6.7.1 Muonic Atoms

A muonic atom consists of the atomic nucleus, a negatively
charged muon µ− and the electron shell with (Z − p) elec-
trons. When the muon is captured by the neutral atom with
Z electrons, the released energy (kinetic energy and binding
energy of the muon) can be transferred to the electron shell
and p electrons (p = 1, 2, 3, . . .) can leave the atom due to
the Auger effect (see Sect. 6.6.3). Because of the large muon
massmµ = 206.76me the lowest possible Bohr orbit (n = 1)
of themuon is for a nuclear charge Zewith Z = 30 according
to (6.49) only

r1(µ−) = 7.7 × 10−15 m,

which is of the same order of magnitude as the nuclear
radius (Fig. 6.45). This means that the muon experiences the
unshielded nuclear Coulomb field and the energies En of the
muonic atom levels are very much influenced by the spatial
distribution of the nuclear charge, while the other electrons
have amuch smaller effect on themuon, because their average
distance from the muon is much larger.

Measuring the wavelength of the radiation emitted when
the muon jumps from level Ei into the lower level Ek allows
the determination of the energy differences ∆Eik = Ei − Ek
and therefore the deviations of the level energies from those in
a pure Coulomb potential. These deviations are caused by the
spatial charge distribution within the nucleus. The potential

(a)

(b)

Fig. 6.45 a,b. Muonic atom. (a) Comparison of radial charge density
for the muon µ− and the electron e− in the 1s state. (b) Bohr-radius
of levels with principle quantum number n for exotic atoms, where the
electron is replaced by different muons or mesons
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Table 6.10 Characteristic features of exotic atoms

Particle e− µ− π− K−

m/me 1 207 273 967

Bohr radius r1
in fm

5.3
Z · 104 256

Z
194
Z

54.8
Z

Term energy for
n = 1, Z = 1

−13.6eV −2.79keV −3.69keV −13.1keV

∆E(n = 2 → 1)
for Z = 20

4.1keV 837keV 1.1MeV 3.9MeV

Mean lifetime of
free particle τ/s

∞ 2.2 · 10−6 2.6 · 10−8 1.2 · 10−8

Fine structure
splitting 22P for
Z = 20, n = 2

6.6eV 1.3keV 1.8keV 6.4keV

Instead of leptons ormesons, an electron in the atomic shell
can also be replaced by negatively charged hadrons such as
the antiproton p− or theΣ− particle which have a larger mass
and therefore even smaller Bohr radii [14].

In Table 6.10 some characteristic properties of different
exotic atoms are compiled.

6.7.3 Anti-hydrogen Atoms and Other
Anti-atoms

If the proton and electron in the hydrogen atom are both
replaced by their anti-particles, the anti-proton p− and the
anti-electron= positron e+, the exotic bound system (p−e+)
of the two anti-particles can be formed, which is called anti-
hydrogen. Its production is by no means trivial but recently
the first anti-hydrogen atoms have been observed [15]. Their
detailed spectroscopy and the comparison of the energy levels
with those of the H-atom provide a stringent test of possible
differences between the absolute values of positive and neg-
ative charges, of the masses and the magnetic moments of
elementary particles and anti-particles.

In particle accelerators a large number of anti-protons p−

can be produced by high energy collisions of protons p+

with protons. Positrons can be obtained from radioactive β+-
emitters and are subsequently accelerated. Both anti-particles
are stored and accumulated in storage rings where they cir-
culate with high energies. However, only a tiny fraction of
these high energy anti-particles can be slowed down to ther-
mal energies, where they can be captured in special magnetic
traps in order to enhance the formation of anti-hydrogen. This
is a difficult task, since on one hand a large number of slow
antiparticles is needed in order to produce a sufficient number
of anti-hydrogen atoms. On the other hand collisions between
antiprotons p− and protons p+ from the residual background
gas in the trap or between positrons e+ and electrons e− will
immediately annihilate these particles by the reactions

p+ + p− → 2γ ; e+ + e− → 2γ .

After an extremely good vacuum could be achieved in the
trap anti-protons could be captured and stored for several
weeks in specially designed magnetic traps (Fig. 6.48). This
long storage time has allowed the researchers to obtain pre-
cise spectroscopic data about the charge and the magnetic
moment of the anti-proton [16]. The result of these mea-
surements was that the relative mass difference ∆m/m =
[m(p+)−m(p−)]/m(p+) and the relative charge difference
|∆q/q| are both smaller than 10−8.

Recently a research collaboration at the European high
energy center CERN also reported that anti-hydrogen atoms
had been observed, which could be stored in a sophisticated
trap design that can store both particles simultaneously for
a short time. In order to perform precision measurements, a
larger number and longer storage time of both anti-particles
is needed. Experiments for improving the situation are under-
way and first results are expected in the near future.

Slowing down anti-protons p− in a hydrogen target at low
temperatures, protonium (p+ p−), a bound system of a proton
and an anti-proton has been observed. Its reduced mass is

µ = 1/2mp = 469MeV/c2.

Fig. 6.48 Magnetic trap for anti-protons p̄ and positrons e+ to form
anti-hydrogen ( p̄e+) (www.Atrap Collaboration, CERN)
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The radius of the first Bohr orbit is 57 × 10−15 m, photon
energies for transitions between different energy levels are
in the range of keV. For instance the photons of the Balmer
α-line emitted on the transition 3p → 2s have the energy
hν = 1.7 keV.

The capture of anti-protons p− by heavy atoms has a
higher probability than capturing by light atoms. Recently,
the Lyman spectrum of the exotic atom of anti-protonic argon
was observed. This system consists of an argon nucleus with
18 protons and 22 neutrons, but instead of 18 electrons in the
atomic shell one electron is replaced by an anti-proton. The
antiproton has a much smaller Bohr radius than the electrons
and the Coulomb-interaction between the electrons and the
anti-proton is therefore small. Transitions between excited
energy levels and the lowest level of the anti-proton produce
the Lyman series with energies of the emitted photons in the
range between 20–200keV. These energies can be measured
with high accuracyusing germaniumsemiconductor detectors
[15]. They give valuable information about the interaction of
the anti-proton with the protons and neutrons in the atomic
nucleus.

6.7.4 Positronium andMuonium

Positronium is a hydrogen-like system consisting of an elec-
tron e− and a positron e+. Its investigation gives very inter-
esting information about a pure leptonic system of two light
particles with equal masses, which have opposite charges and
magnetic moments. Since the reduced mass µ = 1/2me is
only about half of that in the hydrogen atom the radii of the
Bohr orbits are twice as large. Both particles circulate around
the center of mass, which is located in the middle between
the two particles. The sum of kinetic and potential energy is
about one-half of that in the hydrogen atom. Accurate mea-
surements of the spectral lines emitted from excited states of
the system allow one to prove whether the electron is indeed
a point-like charge [16].

The positronium can be produced by recombination of
slow positrons and electrons. Fast positrons from a radioac-
tive 58Co source (β+-emitter) aremonochromatized byBragg
reflection at the (110)-surface of a tungsten single crystal and
are then slowed down by an electric bias field. The slow
positrons can be stored in a magnetic bottle (Fig. 6.49a),
where positive voltages at both ends of the bottle prevent the
positrons from escaping the bottle. By high negative voltage
pulses they can be extracted and impinge as a positron pulse
onto an aluminum foil. Here they can capture electrons to

(a)

(b)

Fig. 6.49 (a). Generation of a positronium e+e−. (b) Level scheme of
e+e−

form positronium. By heating the foil, the positronium can
evaporate from the foil and pass through a pulsed laser beam,
where it can be optically excited into various levels if the
laser wavelength λ is tuned to the corresponding transition
wavelength λik .

Positronium is one of the few systemswhere the lifetime of
the ground state is smaller than that of excited states, because
in the 1S state the wave functions of the two particles overlap
and therefore the particles can come into contact and annihi-
late by the process

e+ + e− → 2γ .

Since the center ofmass of the positronium is nearly at rest, the
two γ -quanta with the energy hν = 0.5MeV are emitted into
opposite directions and are detected by a germanium detector.

Since the magnetic moments of electron and positron have
the same magnitude but opposite sign, the magnetic inter-
action between the two particles is much larger than the
hyperfine interaction in the hydrogen atom, where the small
nuclear magnetic moment only causes a small splitting of
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Classical Explanation 

Penetrating and Non-Penetrating Orbits as shown in figure-10.5: 

The first is the case when the outer electron has a non penetrating orbit, as in the 
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 2) Penetrating orbit 

On the other hand, if the orbit of the outer electron penetrates inside the core of 

the atom, the problem is much more complex, simple solution by Somerfield, is 

this, 
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Effective nuclear charge
The effective nuclear charge (often symbolized as Zeff ) is 
the net positive charge experienced by an electron in a 
multi-electronic atom.
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