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Blackbody Radiation ;%’ z £ %7

If the temperature were increased still further, the color
would progress through orange, yellow, and finally white.
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Star brightness vs. temperature
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Blackbody Radiation

Thermal equilibrium: one body absorbs thermal energy at
the same rate as it emits it.

Blackbody: it absorbs all the radiation falling on it and
reflects none. (idealized case)

The simplest way to construct a blackbody is to drill a
small hole in the wall of a hollow container.
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Blackbody Radiation

The Kirchhoff's law: the radiation properties of the
blackbody are independent of the particular material of
which the container is made.

Spectral distribution: properties of intensity versus
wavelength at fixed temperatures.

The intensity:
e,=Jw,T)

is the total power radiated per unit area per unit
wavelength at a given temperature.
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Blackbody Radiation (% z £ %

919 6

Measurements of intensity for a blackbody are displayed
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Measurements of intensity for a blackbody are displayed
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Fig. Spectral intensity distribution of Blackbody Radiation vs
Wavelength Intensity Maximum shifts to shorter wavelengths as
temperature increases.
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Blackbody Radiation

Two important observations should be noted:

1. The maximum of the distribution shifts to smaller
wavelengths as the temperature is increased.

2. The total power radiated increases with the temperature.

The first observation is expressed in Wien's displacement law:
AmaxT = 2.898 x 107° m - K

where Amax iS the wavelength of the peak of the spectral
distribution at a given temperature.

Wilhelm Wien received the Nobel Prize in 1911 for his

discoveries concerning radiation.
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Blackbody Radiation

We can quantify the second observation by integrating the

quantity intensity over all wavelengths to find the power per
unit area at temperature T:

etotal = [](I/, T)dl/ — 0'T4

Stefan-Boltzmann law: )
€total — aogl

with the constant
o =5.6705 x 107® W/(m? - K*)
The emissivity € is simply the ratio of the emissive power of

an object to that of an ideal blackbody and is always less
than 1.
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Blackbody Radiation

It is more convenient to consider the spectral energy density,
or energy per unit volume per unit frequency of the radiation
within the blackbody cavity, u(v, T ).

Because the cavity radiation is isotropic and unpolarized, one
can average over direction to show that the constant of
proportionality between J(v, T) and u(v, T) is c/4, where c is
the speed of light. Therefore, n n V

&
— s e

Jw, T)=u(v, T)cl4 B
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Blackbody Radiation ;éj’ z £ %’

An important guess as to the form of the universal function
u(f, T) was made in 1893 by Wien and had the form
u, T) = Av3e PV/T

where A and B are constants. This result was known as Wien's

exponential law; it resembles and was loosely based on
Maxwell’s velocity distribution for qas molecules.

Q Experimental
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Blackbody Radiation
In his 1900 attempt, Rayleigh focused on understanding the

nature of the electromagnetic radiation inside the cavity.

When the cavity is in thermal equilibrium, the
electromagnetic energy density inside the cavity is equal to
the energy density of the charged particles in the walls of
the cavity.

The average total energy of the radiation leaving the cavity
can be obtained by multiplying the average energy of the
oscillators by the number of modes (standing waves) of the
radiation in the frequency interval v to v+dy:

87 V2
N@V)=—3
C
W

5



Blackbody Radiation

So the electromagnetic energy density in the frequency
range v to v+dvis given by

8712

u(v, ) = NO)(E) = —

(£),

where <E>is the average energy of the oscillators present on
the walls of the cavity. According to the equipartition
theorem of classical thermodynamics, all oscillators in the
cavity have the same mean energy, irrespective of their

frequencies:
B [ Ee E/MTqE B

[o- e E/FTdE = KT,

(£)
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Blackbody Radiation

Rayleigh-Jeans formula:
8v?

u(v, T) = 3 kT
C
It is the best formulation that classical theory can provide to
describe blackbody radiation.

When Q-
A— 0 u(A, T)dA :FkBTd/\

the total energy of all configurations is infinite. In 1911 Paul
Ehrenfest dubbed this situation the “ultraviolet catastrophe,”
and it was one of the outstanding exceptions that classical

physics could not explain.
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Blackbody Radiation

1200 K |
\
- '\ Rayleigh-Jeans
\/ formula
oy
k% \
Sr \
2 \
= \
et \
\
L \
Experimental data
| | | | | | | | /\,
0 2000 4000 6000 8000

Wavelength (nm)
W



Max Plank
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Max Plank
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Blackbody Radiation

Planck’s radiation law:

87 12 h
(v, T) = TV V

c3 e /kT _

He could arrive at agreement with the experimental data
only by making two important modifications of classical
theory:

1. The oscillators (of electromagnetic origin) can only have
certain discrete energies determined by
E, = nhv
where n is an integer, f is the frequency, and h is

called Planck’s constant and has the value
h = 6.6261 x 1073%J - s
W



Blackbody Radiation

A discrete summation corresponding to the discreteness of the
oscillators’ energies«:

D nhve v/ kT B hv
(E) = ZZO:O e—nhv/kT — — hv/kT _ 1’

2. The oscillators can absorb or emit energy in discrete
multiples of the fundamental quantum of energy given
by AFE = hv

Planck found these results quite disturbing and spent several
years trying to find a way to keep the agreement with
experiment while letting h—0. Each attempt failed, and

Planck’s quantum result became one of the cornerstones of

modern science.
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Cosmic microwave background
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Blackbody Radiation

Problem: show that Wien's displacement law follows from
Planck’s radiation law.

Solution: To find the value of the Planck radiation law for a
given wavelength, we set

dv
di

_ 8zhe 1 dii(2, T) /64 = 0,
25 ehc/ikT — 1

he e/ AmaxkT
AmanT <6h0/>\maka _ 1) — 57

hC h —3
xr = )\maka t-.ﬁ—-ﬂw )\max = 1 966k = 2.898 x 10 m - K
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Photoelectric Effect

While Heinrich Hertz was
performing his famous
experiment in 1887 that

confirmed Maxwell’s
electromagnetic wave
theory of light, he noticed

that when ultraviolet light e
fell on a metal electrode, a \\u i Z &
charge was produced that 7/"’@ \a\\%

separated the leaves of his

electroscope.
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Photoelectric Effect ‘% % £ %;;7

N\
/1919

The photoelectric effect is one of several ways in which
electrons can be emitted by materials.

The methods known now by which electrons can be made to
completely leave the material include:

1. Thermionic emission: Application of heat allows electrons to gain enough
energy to escape.

2. Secondary emission: The electron gains enough energy by transfer from
a high-speed particle that strikes the material from outside.

3. Field emission: A strong external electric field pulls the electron out of
the material.

4. Photoelectric effect: Incident light (electromagnetic radiation) shining
on the material transfers energy to the electrons, allowing them to escape.
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Experimental Results

Incident light falling on the emitter ejects electrons. Some
of the electrons travel toward the collector (also called the
anode), where either a negative (retarding) or positive
(accelerating) applied voltage V is imposed by the power

SUPPIY. (\f\’hght

Collector

—» -0------)-----~H
Emitter / AT

Vacuum tube

A ) Ammeter
Power supply
O O

(Voltage V)
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Photoelectric Effect % %] /’

We call the ejected electrons photoelectrons. The minimum
extra kinetic energy that allows electrons to escape the
material is called the work function ¢. The work function is

the minimum binding energy of the electron to the material

Element ¢ (eV) Element ¢ (eV) Element ¢ (eV)
Ag 4.64 K 2.29 Pd 5.22
Al 4.20 Li 2.93 Pt 5.64
C 5.0 Na 2.36 A% 4.63
Cs 1.95 Nd 3.2 Zr 4.05
Cu 4.48 Ni 5.22
Fe 4.67 Pb 4.25
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Experimental Results

The pertinent experimental facts about the photoelectric
effect are these:

1. The kinetic energies of the photoelectrons are independent
of the light intensity.

Photocurrent Light frequency f = constant
9= 34,
d=24,
d=Jd,

| 14

—V 0 Applied voltage
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Experimental Results

2. The maximum Kinetic energy of the photoelectrons, for a
given emitting material, depends only on the frequency of
the light.

Photoelectric
current Photon intensity { = constant
h=J=s
Vg
2
J3
=T 4
—Vor = Voo =V
o 02 Applied voltage
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Experimental Results J% il K g

3. The smaller the work function ¢ of the emitter material,

the lower is the threshold frequency of the light that can
eject photoelectrons.

eVO

Li
A
Retarding s
potential
energy
Slope = &
o, l /
’o' ’o' ’,x Jo
o: R ot Light frequency
g R
'¢
4
1 4
4
’¢
\Intercept = —¢
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Experimental Results

4. When the photoelectrons are produced, however, their
number is proportional to the intensity of light

Light frequency f = constant
Voltage V = constant

Photoelectric
current

Light intensity
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Experimental Results

5. The photoelectrons are emitted almost instantly ( 3*10-%)
following illumination of the photocathode, independent of
the intensity of the light.

Except for result 5, these experimental facts were known in
rudimentary form by 1902, primarily due to the work of
Philipp Lenard, who had been an assistant to Hertz in 1892
after Hertz had moved from Karlsruhe to Bonn.

Lenard, who extensively studied the photoelectric effect,
received the Nobel Prize in Physics in 1905 for this and
other research on the identification and behavior of
electrons.
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Classical Interpretation

1. Classical theory allows electromagnetic radiation to eject
photoelectrons from matter.

2. Classical theory predicts that the total amount of energy
in a light wave increases as the light intensity increases.

3. Classical theory cannot explain that the maximum kinetic
energy of the photoelectrons depends on the value of the
light frequency v and not on the intensity.

4. The existence of a threshold frequency is completely
inexplicable in classical theory.

5. Classical theory does predict that the number of

hotoelectrons ejected will increase with intensity.
16/03/2022 Jinniu Hu _;



Einsteins Theory

1. Albert Einstein was intrigued by Plancks hypothesis that
the electromagnetic radiation field must be absorbed and
emitted in quantized amounts.

2. Einstein took Planck’s idea one step further and suggested
that the electromagnetic radiation field itself is quantized

3. We now call these energy quanta of light photons.
According to Einstein each photon has the energy quantum

E = hv

where v is the frequency of the electromagnetic wave

associated with the light, and h is Planck’s constant.
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Einsteins Theory

4. Einstein proposed that in addition to |’rs well-known
wavelike aspect, amply exhibited in interference
phenomena, light should also be considered to have a
particle-like aspect.

The conservation of energy requires that

hy = qb -+ Ek
We want to experimentally detect the maximum value of
the kinetic energy. 1

hv = ¢ T imUIZnax

The retarding potentials are thus the opposing potentials

needed to stop the most enerlge’ric electrons.
2

eV = imvmax
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Quantum Interpretation

The kinetic energy of the electrons depends only on the

light frequency and the work function of the material.

1
—mvi  =eVp=hv—¢

2 max

which proposed by Einstein in 1905, predicts that the
stopping potential will be linearly proportional to the light
frequency, The slope is independent of the metal used to
construct the photocathode. This equation can be rewritten

1
as eVo = —mv2, = h(v —1p)

2 Imax

The frequency v,represents the threshold frequency for

the photoelectric effect. (when the kinetic energy of the
electron is precisely zero).

e 16003/202 2 I U —=.



Quantum Interpretation

In 1916 Millikan reported data that confirmed Einstein's

prediction.
4

K .« (€V)

4 6 S 10 12
Frequency (X1014 Hz)
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Wave properties of matter

1924, De Broglie established the wave properties of
particles. His fundamental relationship is the prediction

h
A= —

p
That is, the wavelength to be associated with a particle is

given by Planck’s constant divided by the particle’s
momentum. For a photon in Einsteins special theory of
relativity

E = pc
and quantum theory
E = hv
SO , he
C —= V) —= —
P A
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Wave properties of matter

De Broglie extended this relation for photons to all
particles. Particle waves were called matter waves by de

Broglie, and the wavelength is now called the de Broglie
wavelength of a particle.

Example: Calculate the de Broglie wavelength of
(a) a tennis ball of mass 57 g traveling 25 m/s and
(b)an electron with kinetic energy 50 eV.

Solution:

: h 6.63x 1073
For the t ball === — 4.7 x 1073
(a)For the tennis ball ECavEE x m

(b) For the electron

\ é _ hc 1240 ev - nm — 017nm

P V2m2E 242 X 0.511 X 10° x 50 (eV)?
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Bohr's Quantization Condition

Represent the electron as a standing wave in an orbit
around the proton. The condition for a standing wave in this
configuration is that the entire length of the standing wave
must just fit around the orbit's circumference.

nA = 2mr
where r is the radius of the orbit. Now we use the de

Broglie relation for the wavelength and obtain
h

n\A = 27r = n—

p
The angular momentum of the electron in this orbit is L=rp,

so we have, using the above relation,
nh
L=rp=— =nh
27
W
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Electron Scattering J% il X g

/1919

In 1925 a laboratory accident led to experimental proof for
de Broglie’s wavelength hypothesis by C. Davisson and L. H.

Germer.
l Lk A l Filament

Movable
electron

7_1 detector
Electron
beam -
--~  Scattered electrons
Target
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Electron Scattering 4% Gl K g

The relationship between the incident electron beam and
the nickel crystal scattering planes is shown

Intensity = radial distance along dashed
line to data at angle ¢

Peak

44 eV 48 eV 54 eV 64 eV 68 eV
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Bragg Law (% % £ %7

The atoms of crystals like NaCl form lattice planes, called
Bragg planes. It is possible to have many Bragg planes in a
crystal, each with different densities of atoms.

«

“““
““““““
. . .
. . -
e N

.
“‘
o

. .
“““
.
.* .*
. .*
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Bragg Law

There are two conditions for constructive interference of
the scattered matter wave of electron:

1. The angle of incidence must equal the angle of
reflection of the outgoing wave.

2. The difference in path lengths (2d sin0) shown lower

panel must be an integral number of wavelengths.

Incident
plane
wave
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Bragg's Law

Bragg’s Law with condition 2
nA = 2dsin 6

The integer n is called the order of reflection, following
the terminology of ruled diffraction gratings in optics.

Incident beam

In the Bragg law, 20 is the angle

between the incident and exit beams. .

Therefore
O =m— 20 =2«

o,
/
S Y
/ /
/ ®
A
/
/
/

So

nA = 2dcosa = 2D sin a cos «
= Dsin ¢
W



Electron scattering

For nickel the interatomic distance is D=0.215 nm. If the
peak found by Davisson and Germer at 50° was n=1, then
the electron wavelength should be

A = 0.215sin(507/180) = 0.165 nm

Courtesy of David Follstaedt, Sandia National Laboratory

Omikron/Photo Researchers, Inc.
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Wave motion

The simplest form of wave has a sinusoidal form; at a fixed
time (say, t=0) its spatial variation looks like

2
U(z,t)|_o = Asin (7%)

The function ¥(x, r) represents the instantaneous amplitude

or displacement of the wave as a function of position x and
time t. W (x, t)

Uto — (=0
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Wave motion

As time increases, the position of the wave will change, so
the general expression for the wave is

U(x,t) = Asin [%T(x — vt)]
A traveling wave satisfies the wave equation
P’V 10°V
ox2  v? Ot2

We can write wave function more compactly by defining the

wave number k and angular frequency « by
2w 2w 2T
k= — = — d = —
7 R
as - Phase
U(x,t) = Asin [kx — wt + ¢| dss onstant
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Wave motion (% % £ %’;7

According to the principle of superposition, we add the

displacements of all waves present.

T
Sum = sin 6 + sin<0 + —)
(a) 2.5~ 20

C (b)
0 A / \ / \

\\\ \\\
| | | | | J
2 3 4ar bar 67

w
Sum = sin 6 — sin(6 + —
um S sm< 20)

1.5~

—25

0 T
5.5 Sum = sin 6 + 4 sin 6 5 Sum = sin<ﬁ> + sin(2>
(©) S @  2oC 3 3
—55L | | | | | |
0 T 27 3 4 bar 67
1 1
Sum = sin(g) + = sin(360) — = sin(0.96) 2.5
_ 3 2 2
(e) L )
AV )
N S AN 7 0
NN N N
—95L | | | | | I —-2.5 I I I | |
0 T 27 37 4 b 677 0 T 2
Theta (0) Theta ()
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Wave motion

If we add many waves of different amplitudes and
frequencies in particular ways, it is possible to obtain what
is called a wave packet.

The important property of the wave packet is that its net
amplitude differs from zero only over a small region Ax

Ax

We can localize the position of a particle in a particular
region by using a wave packet description

16/03/2022 Jinniu Hu ==



Wave motion

Let us examine in detail the superposition of two waves,

U(x,t) =Vq(x,t) + Ya(z,t)

Ak A
= 2A cos (7:1: — %t) coS (kavT — wayt)
where,

Ak = kl —kg,Aw = w1 —wg,kav = (kl —|—]€2)/2,an = (wl +w2)/2

The combined wave oscillates within this envelope with the
wave number ko and angular frequency way.

The envelope is described by the first cosine factor, which
has the wave number Ak/2 and angular frequency Aw/2.

16/03/2022 Jinniu Hu =



Wave motion

Phase velocity,

Way

Uph = I

Group velocity, A
W
YV

In contrast to the pulse or wave packet, the combination of
only two waves is not localized in space. However, for
purposes of illustration, we can identify a “localized region”

%AkA:z: =TT

where, Ax= X2_X1, and X1and Xxzrepresent two consecutive

points where the envelope is zero
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Wave motion

Similarly, for a given value of x we can determine the time
At over which the wave is localized and obtain

AWAL = 27

If we are to treat particles as matter waves, we have to be
able to describe the particle in terms of waves.

An important aspect of a particle is its localization in space.

That is why it is so important to form the wave packet that
we have been discussing.
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Wave motion

Gaussian Wave Packet are often used to represent the
position of particles, because the associated integrals are

relatively easy to evaluate.

U(z,0) = p(z) = Ae 2K«

L(k)

cos(kox)
e

A

/
/

A

|

Gaussian

k

(a)

n/
A

\\L
\
\

AkAx = 1
2

<-A X

(b)
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Uncertainty Principle

We learned that it is impossible to measure simultaneously,
with no uncertainty, the precise values of k and x for the
same particle. The wave number k may be rewritten as

p
k=<
h

in the case of the Gaussian wave packet,

h
ApAz = —
pax 9

Heisenberg’s uncertainty principle can therefore be written

Aps Ax > g

It is possible to have a greater uncertainty in the values of
px and x, but it is not possible to know them with more

recision than allowed by the uncertainty principle.
16/03/2022 5mmu Fu 'LL



Uncertainty Principle

Consider a particle for which the location is known within a
width of | along the x axis. The uncertainty principle
specifies that Ap is limited by

h h
A >
P2 5A. oAr ~ 1

the minimum value of the kinetic energy ,

2 2 2
Pmin > (Ap) > h
2m —  2m  — 2ml?

Note that this equation indicates that if we are uncertain

Emin —

as to the exact position of a particle, for example, an
electron somewhere inside an atom of diameter |, the
particle can't have zero kinetic energy.
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Uncertainty Principle

Energy-Time Uncertainty Principle

apar s

Example: Calculate the minimum kinetic energy of an
electron that is localized within a typical nuclear radius of

6*10°m.

Solution:

3pZ . 3(Ap)? _ 3h? 3 x197°
Emin — = > Z — = 791 MeV
2m om Smr2  8%0.511 % 62 ©
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Electron Double-Slit Experiment % %l L

In 1961 C. Jonsson of Tubingen, Germany, succeeded in
showing double-slit interference effects for electrons

(a) 20 counts (b) 100 counts

Simulation and photos courtesy of Julian V. Noble.

(c) 500 counts (d) ~4000 counts
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Probability and Wave Functions

How can we interpret the probability of finding the electron
in the wave description?

We used a function ¥(x, t) named as wave function to

denote the superposition of many waves to describe the
wave packet.

The quantity

(2, y,2,1)[
is called the probability density and represents the
probability of finding the particle in a given unit volume at

a given instant of time
W



Probability and Wave Functions

In general, ¥(x, y, z, t) is a complex quantity and depends

on the spatial coordinates x, y, and z as well as time t.

We are interested here in only a single dimension y along
the observing scree and for a give time t. The probability
of observing an electron in the interval between y and
y+dy at a given time

P(y)dy = [ (y,t)[*dy

Normalization condition

[ Paay= [ wopa =1

— OO — OO
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The Copenhagen Interpretation

Max Born, one of the founders of the quantum theory, first
proposed this probability interpretation of the wave
function in 1926.

1. The uncertainty principle of Heisenberg

2. The complementarity principle of Bohr: It is not
possible to describe physical observables
simultaneously in terms of both particles and waves.

3. The statistical interpretation of Born, based on
probabilities determined by the wave function
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The Schrodinger Wave Equation

The Schrodinger wave equation in its time-dependent form
for a particle moving in a potential V in one dimension is

L OW(x,t)  h? O%U(z,t)
th ot 2m  0x? V¥t

Both the potential V and wave function ¥ may be functions

of space and time, V(x, t) and ¥(x, t).

The three-dimensions Schrodinger is fairly straightforward

(

g t h?
ha (xé:iljzj ) — —%VZ\P(x,y,z,t) _I_V\Ij(w)y?Z?t)
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Properties of Valid Wave Functions J% z £ g

1. In order to avoid infinite probabilities, must be finite
everywhere.

2. In order to avoid multiple values of the probability,
must be single valued.

3. For finite potentials, ¥ and 0¥/0x must be continuous.

This is required because the second-order derivative

term in the wave equation must be single valued.

(There are exceptions to this rule when V is infinite.)
4. In order to normalize the wave functions, ¥ must

approach zero as x approaches *oo.
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Time-Independent Schradinger Equation

In many cases (and in most of the cases discussed here),
the potential will not depend explicitly on time. The
dependence on time and position can then be separated in
the Schrodinger wave equation. Let

U(z,t) = () f(1)

We insert this wave function to Schrodinger equation

() P = O TVE) 4y )

We divide by yw(x)f(t) to yield

L1 05 _ R 1 o)
Mo~ amut ow V)
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Time-Independent Schrodinger Equation

It follows that each side must be equal to a constant
(which we label B), because one variable may change
independently of the other.

2 1 o) _ g

f(t) ot

From this equation we determine f to be
f(t) _ e—z’Bt/h
If we compare this function for f (t) to the free-particle

wave function that has the time dependence !, we see

that B=hw=E. Therefore
B2 0%(x)
—o P+ V (@)h(e) = Bi()
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Operator

To find the expectation value of p, we first need to
represent p in terms of x and t. Let’s consider the wave
function of the free particle,

U(x,t) = etk —wi)
If we take the derivative of wave function with respect to

X, we have U (.t
0V(z, 1) = kWU (x,t)
ox

After rearrangement, this yields

L OV (x,t)
U(z,t)] = —ih

pl¥ (2, )] = —ih=—

Postulate 3:
An observable is represented by a linear and hermitian

operator that is written as A in quantum mechanics
W



Operator

An operator, A, is a mathematical instruction, which when
applied to a mathematical object, say |, gives another
mathematical object ¢ of the same nature. It is symbolically

written as A
Ay = ¢

A simple operator, for instance, may contain the instruction
for just taking the derivative of a function. Suppose we cal
this operator D. Then, for a given function {(x):

dl/f
Dy(x) = — = ¢ (x).
Or, in shorthand notation, we Jus’r write

Dy(x) = ¢(x)
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Operator

Another operator could be the instruction to obtain a new
function ¢(x) by multiplying a given function {(x) by its
independent variable x, that is

¢ (x) = xy(x)
In other words, the independent variable x can also be
looked upon as an operator.

o (x) =2y (x) = xy(x)

inear operators: If, for the given scalars « and § and
unctions {(x) and ¢(x), the operator A satisfies the relation

Alay(x)+Bo(x)) = aAy(x)+BAd(x)
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Operator

If the action of an operator A on a function ¢(x) is to
multiply that function by some constant a:
Ad(x) =a¢(x)

we say that the constant a is an eigenvalue of the operator
A, and we call $(x) an eigenfunction of A.

An operator can have more than one eigenvalues.

The set of all possible eigenvalues of an operator
constitutes the so-called eigenvalue spectrum (or, simply
spectrum) of the operator.
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Operator

Given an operafor A, let us define an operator AT by

+o0
/ 0 ( )) dx = /_ } (ATo (7)) w(7) d’x.
The operator At is called the operator hermitian conjugate
(adjoint) to the operator A.

If an operator A is equal to its hermitian conjugate
operator, that is,

At =4,
it is called a hermitian operator. On the other hand, if
AT = -4,

then the operator A is called anti-hermitian.
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Operator

We may ask why do we use hermitian operators to
represent dynamical variables in quantum mechanics.

As we shall see later, in quantum mechanics, it is postulated
that if we measure a dynamical variable A of a system in a
given quantum state |, the result will be one of the
eigenvalues of the operator A that represents the dynamical
variable.

Since the results of measurement are real numbers (in

appropriate units), the eigenvalues of operator A must be

real.
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Operator

The eigenvalues of a hermitian operator are real.
Consider a hermitian operator A and its eigenvalue equation

Ay, (F) = o, (F), 7= (x,7,2).
As stated earlier, ), are in general complex. Now, since A is

hermitian, we+ have N
vi(Aw)dx = [ (Aw) v, dx

— 00 —0Q

Using the eigenvalue equf’rion for A, we have

(A =20) [ Wiy dx=0

For the non-trivial solutions to the eigenvalue equation,
fj: W, Wi dx # 0
and we get:
A=A
O3 O T T —



Operator (% z £ %’;7
The eigenfunctions of a hermitian operator, corresponding
to distinct eigenvalues, are orthogonal.

The eigenvalues of an anti-hermitian operator are either
purely imaginary or equal to zero.

Dynamical variables Corresponding operators
in classical mechanics in quantum mechanics
Coordinates: { ’ { ’
X,y z X,y z
g _ .h§
Momentum: { p l 9 0 2 0
Pxs py, Pz —lhm, _lh8_y’ _lha_z
. FXp
L d d
Ly = yp: —zpy i (ya_z_za_y)
Angular momentum: 3 3
Ly =2IPx —XP; —ih (Za _xa_z)
L; = xpy—yp
‘ g * —ih (xa% — y%)
=2 = A
Energy: H = £ +V (7) —%Vz +V(7)
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TISE in one dimension

The TISE in one spatial dimension takes the form:

0 L y(x)o(x) = Eo ().

2m ox2
where x € (-c0,+00) is the independent variable. The nature

and the properties of the solutions to this equation depend
on the interrelationship between the total energy, E, of the
particle and the potential V (x).

Consider an arbitrary form of the potential V (x), which is
general enough to allow for the illustration of all the
desired features. Without any loss of generality, the
potential has been assumed to remain finite at spatial
infinities: lim, , .V(x) =V, lim .V (x) =V,

02O D T —



TISE in one dimension

and it has a minimum Vi, at some point. The character of
the energy states of the particle is completely determined
by the energy E of the particle in comparison with the

asymptotic values of the potential.

T V(x)

. E>Viand V,
Continuum states

N<kE<V,
o m——
. i ) ' |
< Bound states | :
|
i o
! ! |
S v v ¥ ,
X; 0 Xy X3 X
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TISE in one dimension (% z £ g
Bound states: Bound states occur whenever the particle is

confined (or bound) at all energies to move within a finite
and limited region of space.

T V(x)

Continuum states

E> 7V and V,
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TISE in one dimension

Scattering states: If the total energy of the particle is
either greater than V,and less than V,or greater than both
V.and V., the particle’s motion is not confined to a finite
region of space and the states of the particle, corresponding
to these ranges of the total energy, are called scattering
states. T Vo

E>Viand V,

Continuum states

X1 0 X2 X3
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TISE in one dimension

Important properties of bound state energy levels and the
wave functions in one dimension:

1. The bound state energy levels of a system in one
spatial dimension are discrete and nondegenerate.

2. In general, the nth bound state wave function, ¢.(x), in
one spatial dimension has n nodes (that is, ¢,(x)
vanishes n times), if n = O corresponds to the ground
state and (n - 1) nodes if n = 1 corresponds to the

ground state.

16/03/2022 Jinniu Hu =



The Free Particle Solution

A free particle represents a typical example of a stationary
state that corresponds to an unbounded motion (scattering
state) both along the positive and the negative x directions.
In this case, the external potential is absent, that is, V (x) =
O, and the TISE reads

2 &6 (x)
2m  dx?

d*¢ (x)

:E(P(x) = dx2

+k*9(x) =0,

where -
K = %E > 0.
7

This equation has two linearly independent solutions:
0 () = €, 9y (x) =
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The Free Particle Solution

The general stationary state solution is the linear
superposition given by

l//(x,t) :A(+)ei(kx—a)t) _|_A(_)e—i(kx+a)t),

where A, and A are arbitrary, in general complex, constants.

If we use the de Broglie formula, the solution can be written
as | |
v(x,t) :A(_|_) en(PA—E1) —|—A(_) ¢ 7 (PXHED),

The first term in the above equation represents a particle
traveling to the right (positive x direction) and the second
term represents a particle traveling to the left.
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The Free Particle Solution

Three problems about the solution of free particle:

1. Firstly, the probability densities corresponding to either
solutions are constant that is, they depend neither on x
nor on t.

2. The second difficulty is in an apparent discrepancy
between the speed of the wave and the speed of the

o E nhk  _P_Tk

particle it is supposed to represent.v,=—=_=-".v=, =3, =2

3. The third difficulty is that the free particle wave
function cannot be normalized:

oo , , [+
/ () dx = Ay dx — oo

—O0Q
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Infinite Square-Well Potential

Infinite square well

V()_OO x=0,x= L
* 0 0< x<L

0 L
Position
The Schrodinger equation in the well
d? 2mE 5
d? = kY
where,
2mb
= h2
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Infinite Square-Well Potential

A suitable solution to this equation
Y(x) = Asinkx + Bcoskx

where A and B are constants used to normalize the wave
function. The wave function must be continuous at x=0 and
x=L, therefore

B =0

kL =nm
The wave function is now

nmIx

Yy () = Asin (T)’ n=123,...
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Infinite Square-Well Potential

A is determined by the normalization condition

L
A2/ sin (@) _ 1
. L

>
A=4/2
L

The normalized wave function becomes

2
Yn(2) =/ 7 sin (n—zx) n=123,. ..

The quantized energy levels
n27T2h2
2mL2
the integer n is a quantum number

and

b, =

n=1,23,...
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Infinite Square-Well Potential

JAVAVA\ I Bl
Yol N N g
N\
/\/\ 25E1
Yol Yy
N—" 16 E;
9 E,
/B e — ¢12/\ 4 E,
E
0 L 0 L :
Position
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The Schrédinger Equation for H ({5

PR

S
)

/9

To a good approximation the potential energy of the
electron-proton system is electrostatic:

V(r) =

€

—471'507“
We rewrite the three-dimensional time-independent
Schrodinger Equation

o1 O*Y(x,y, 2) N O*P(x,y, 2) N O*P(x,y, 2)

2m(x,y, 2) Ox? 0y? 0722 =E-Vir)

The potential in this case is due to the central force. To
take advantage of the radial symmetry, we transform to
spherical polar coordinates.
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The Schrodinger Equation for H

Relationship between spherical polar coordinates and
Cartesian coordinates

x = rsin 0 cos ¢
y = rsin 0 sin ¢
z = rcos 0

7"=\/x2+y2—|- 22

—1 %
/A

(Polar angle)

¢ = tan ! % (Azimuthal angle)
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The Schrodinger Equation for H {% 3 £ %,_.57

The Schrodinger equation in spherical polar coordinate

(r 37“) + r2sin 6 00 <81n939> + 2 5in2 § 062 + 72 (E—-V))=0

The wave function is now a function of r, 0, ¢. This equation
is separable, meaning a solution may be found as a product
of three functions, each depending on only one of the
coordinates r, 0, ¢,

(r,0,¢) = R(r)f(0)g(¢)

Radial equation

1 d [ ,d 2 K210+ 1
_—_G&§>+iﬂE—V— LD R g

r2 dr dr h? 2 12
W
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The Schrodinger Equation for H

R

/9

Angular equation

1 d (. . df m? B
Sin(g@(51n9@)+[l(l+l)— . ]f—O

Principal Quantum Number n

Orbital Angular Momentum Quantum Number |

L=+I(l+1)h
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The Schrodinger Equation for H {% 3 £ %_.57

/1919

Magnetic Quantum Number m,

LZ:mlh
l;Z
A
n=1,2,3,4,... Integer
opl - [=0,1,2,3,...,n—1 Integer
m;=—l,—l+1,...,0,1,...,0—1,1 Integer
il f me =1

— —L=W{({+1)h
= =\/éﬁ

m€=0

Quantized energy of hydrogen

m€=—l

w/ e \°1
s RTINS _ by = —3 )
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The Schrodinger Equation for H  (&j): 4% S %ﬁ

/1919

Hydrogen Atom Radial Wave Functions

n € R, ()
1 0 2 e 7/ %
(ag)®2 Laguerre polynomials
( 7") /260
2 0 2 — —
a /) (2ay)”*
r e—r/?ao
2 1 — s
ay V'3(2ay)
1 2 r r? ) _
3 0 27 — 18— + 2— |¢ 73
(ao)?)/? 81\/5( a, aOQ ¢
1 4 r\ r
3 1 6 — — | —¢ /3
(a)** 81V6 ( Clo) Ay ‘
S 2 1 4 72 8—7/3610

(ay)** 81V30 a,
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The Schrodinger Equation for H ;

91

Normalized Spherical Harmonics Y (0, ¢) = f(6)g(¢)

2V
1 0 1/3 0
5 e
1
1 +1 e i neé ]
2N 27
1 /5
0 = [=(8 =1
° 4 77( cos™ 0 )
1 /15
*1 F—+/—sin 6 g ~¢
° +2 2 "
1 /15
i+ - 2 )
2 =2 2\ 27 n-6e
1 /7
3 0 —/—(5 0—3 0
4 77'( ¢ )
1 /21
3 *1 T/ — 5 -1 ¢
T n 6( 0 )
1 /105
3 *2 1”277 sin? 6 cos 0 ¢3¢
1 /35
3 +3 ¥\ sin’0 £
8N o
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1=3

m=0
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The wave function of hydrogen

W4 x Y

Hydrogen Wave Function

Probability density plots.
2 >"” (n—1-1)!

J— .—p/2 1L21+1 ) - Yo (9, 0
nao ) e’ P () Yin (0, 9)

J
L/
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Expectation Values

For the statistical description of properties of a many
particle system one has to define average values, which
depend on the distribution of these properties over the
particles of the system. The mean velocity in a system of
particles with velocity dggfribu’rion f (v) is defined by

V= f vf (v)dv.

v=0

The mean square velocity

V2 = f vzf(v) dv
v=0
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Expectation Values

In quantum mechanics we use wave functions to calculate
the expected result of the average of many measurements
of a given quantity.

Any measurable quantity for which we can calculate the
expectation value is called a physical observable.

If we make many measurements of the particle at x axis,
we may find the particle N; times at x;, N2 times at x2, Ni
times at xj, and so forth. The average value of x,
Nixi + Noxg + Naxz +... > . Nz,

N1+ No+ N3+ ... SN
O3 O T T —

€T =



Expectation Values

We can change from discrete to continuous variables by
using the probability P(x, t) of observing the particle at a
particular x. The previous equation then becomes

7 xP(x)dx

[°. P(x)dx
In quantum mechanics we must use the probability

T —

distribution given in wave function

(z) = /_ U (2, )W, ) da

The same general procedure can be used to find the
expectation value of any function g(x)

@)= [ g s

— OO
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Homework

The Physics of Atoms and Quanta

5.2, 5.3, 5.5, 5.13, 5.14, 6.4, 6.7, 6.8
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Exercise class

1.Show that the Planck radiation law agrees with the
Rayleigh- Jeans formula for large wavelengths.

16/03/2022 Jinniu Hu =



Exercise class

1.Show that the Planck radiation law agrees with the
Rayleigh- Jeans formula for large wavelengths.

Solution: We follow the strategy and find the result for
the term involving the exponential:

1 ! KT
/M — [ hce ( he )21 ] hc
l+—+ | —=) =+ — 1
ART ART ) 2
for large A

So the intensity becomes

orcih \kT B 2mek’l’
Ao he M\

RN T) =
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Exercise class

2. Light of wavelength 400 nm is incident upon lithium (¢=

2.93 eV). Calculate (a) the photon energy and (b) the stop-
ping potential V,.
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Exercise class

2. Light of wavelength 400 nm is incident upon lithium (¢=

2.93 eV). Calculate (a) the photon energy and (b) the stop-
ping potential V,.

Solution: (a) . _ he _ 1.24 X 10° 310 oV

A 400

(b) For the stopping potential,

eVo=hv —¢=310—293=0.17 eV
Vo =017V
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Exercise class

3. (a) What frequency of light is needed to produce
electrons of kinetic energy 3.00 eV from illumination of
lithium?

(b) Find the wavelength of this light and discuss where it is
in the electromagnetic spectrum.
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Exercise class

3. (a) What frequency of light is needed to produce
electrons of kinetic energy 3.00 eV from illumination of
lithium?

(b) Find the wavelength of this light and discuss where it is
in the electromagnetic spectrum.

1
Solution: (a) hv = ¢ + §mv§nax = 5.93 eV
E  593x1.6x10""

V = —

h  6.626 x 10—34
C

3.0 x 108
b p— — p—
o A T T xaen

This is ultraviolet light, because the wavelength 210 nm is
below the range of visible wavelengths 400 to 700 nm
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Exercise class

4. Determine the de Broglie wavelength for a 54 eV
electron used by Davisson and Germer.
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Exercise class

4. Determine the de Broglie wavelength for a 54 eV
electron used by Davisson and Germer.

Solution: the kinetic energy of electron
2

p
— = eV
2m ’
The de Broglie wavelength
A=t 0167 um
P V2mc2eV
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Exercise class

5. In introductory physics, we learned that a particle (ideal
gas) in thermal equilibrium with its surroundings has a
kinetic energy of 3kT/2. Calculate the de Broglie
wavelength for

(a) a neutron at room temperature (300 K) and

(b) a “cold” neutron at 77 K (liquid nitrogen).
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Exercise class

5. In introductory physics, we learned that a particle (ideal
gas) in thermal equilibrium with its surroundings has a
kinetic energy of 3kT/2. Calculate the de Broglie
wavelength for

(a) a neutron at room temperature (300 K) and

(b) a “cold” neutron at 77 K (liquid nitrogen).

Solution: the Kinetic energy of particle

p? ~ 3kT
2m 2
The de Broglie wavelength
h hc A(300 K) = 0.145 nm

A= P BmEET 70 K) = 0.287 nm
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