Quantum mechanics

apter V Quantum Mechanics in Three
Spatial Dimensions
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Schrodinger equation in Cartesian Coordinates f (% "z’ﬂ ]:, g
L

The Schrodinger equation, for a particle of mass m, in
three spatial dimensions reads as

. all/(?vt) I & -
ih 5 = Hy(7,1),

where H is the Hamiltonian operator, given by
=)
N P -
H = . + V(7).

the three-dimensional momentum operator:

A — — A é; A é) ~ é9
fe v, V=il 1% 2
e RS TR

Therefore, the Hamiltonian operator takes the form

2

A —
H:_—Vz V ) ’
5V +V(xy.2)
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Schrodinger equation in Cartesian Coordinates

where , , ,
- 0 s, .

2 — -
Vo= dx? * dy? + 7%

is the Laplacian (Laplace’s operator) in Cartesian coordinates.

If the potential is time independent, the three-dimensional
Schrodinger equation can also be solved by the method of
separation of variables.

w(7.0) = gu(F)e 7P,
where E is the total energy. The function ¢(r,t) satisfies the

following time-independent Schrodinger equation
2

T 520@) + V@) = Eo (7).

2m
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Schrodinger equation in Cartesian Coordinates

For the special case of a potential, V (x, y, z), that can be
written in the form

V(7)) =Vi(x) +Va(y) +V3(z2),

the three-dimensional TISE reduces to a system of one-
dimensional TISE. Indeed, if we write the solution in the
form

therefore,
1 d*X W1 d*Yy
—— — — 4V - — —+V
2m X dx? 1)+ 2m Y dy? + z(y)]
+ _ h_z l d2_2_|_v( ) — F
2m 7 dz? AN
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Schrodinger equation in Cartesian Coordinates f (% "z’ﬂ ]:, g

/1919

This is possible only if each of these terms is a constant
such that their sum is equal to E. In other words,

Tom X a2 TV =E
1 d*y

—% ? d—)/2 V2()’) =k,
1 d*z

—% Z d—Z2 V3(Z):E3,

where E,, E,and E, are constants such that

Ey+E,+E3; =E.
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The Free Particle Solution % £ /’

Consider a particle of mass m moving freely in space in the
absence of any external force field.

W d*X 1
_ 22 X(x) = —e™,
2m dx? EiX, ) V2an

B d2Y
—— —— =EyY,
2m dy?
W d*zZ
- — —C =E3Z
2m dz? .

where

k3 =2mE;/n°,j = 1,23 =x,y,z and E; = I°k;/2m.
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The Free Particle Solution

As a result, the solution to the free TISE is given by
1 ikyx ikoy iksz 1 ik-7
(27)372 fretavelta — (zn)s/zek
The total energy of the particle E is given by the sum of
the energy eigenvalues E, E.and E.:

W(x,y,2) =

e

E—E Byt By (@2 =

=L+ L2+ 3—%( [Tk + 3)—% :

We note here that the energy, E, depends on the
magnitude of the wave vector k but not on its direction.

Hence, different orientations of k satisfying the condition

k| = \/k% + k5 + k3 = const.,
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The Free Particle Solution

Thus, the solution to the TISE, for this special case of zero
potential, is given by
1

l//ié(?at) _ (271_)3/2 eiklxeikzyeikgze—i%t — (2751)3/2 ei(fé-?—wt),

The orthonormality condition, for the wave functions reads

— - 1 Froo i_’__’/ 7 - -
W (O (0) = s [ = 5G-)

—0Q

A free particle is represented by the following three-
dimensional wave packet:

—

)= [TaGnwEodk= [ A EFo0 gy
l[/(l’,l) o (275)3/2 o ( ’t)llfié(r’t) o (277:)3/2 o ( ’t)e >
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The Infinite Rectangular Well Potential 1% S %7

Consider a spinless particle confined to move in an infinite

rectangular potential well given by

{ 0 for O0<x<a,0<y<bO<z<c

V 9 9 —
(x Y Z) +oo  elsewhere

The normalized solution of the three-dimensional
Schrodinger equation

3 T T T
Wi nons (X, 3,2) = 1/ he sin <n17x> sin (%y) sin (%z) , ny,no,n3 = 1,23, ...

The corresponding energies are given by

B _hznz n%+n%+n%
1723 2m \a? b2 2’
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The Infinite Rectangular Well Potential e 4% ‘7"4 /:' %7

If a =b =c =L, the potential is called the infinite cubic
well potential of side L. In this case, the wave functions
are

8 . mrm7 ) nym ) n3m
Wi nons (X,7,2) = 73 8in (Tx> sin (Ty) sin (TZ) , ny,no,n3 = 1,2.3,...

and the corresponding energy eigenvalues are given by

nm? 2, .2, .2
Eyingny = L2 (nl +n2+n3), ni,ny,ny =1,2,3,...

Note that most of the energy levels in the cubic well
potential are degenerate.
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The Infinite Rectangular Well Potential 5 4% ‘%ﬁ /:’ %7

The ground state, with n,=n,=n,=1 and energy

3% 2

Einn = ,
=57

is not degenerate.

The first excited state is characterized by three sets of
quantum numbers (n,n.,n,) = (2,1,1), (n,n.,n;) = (1,2,1) and
(n,n.,n;) = (1,1,2) and its energy is given by

6n° 1’

2mL? "’

Since the same value energy corresponds to three distinct
sets of quantum numbers n,, n,and n,, the first excited

state is three-fold degenerate.
W

Eri1 = Epp1 = E1p =
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The Infinite Rectangular Well Potential 5

44 .Y

The corresponding wave functions are as follows:
W1 (x,y,z) = \/gsin (%x) sin (%y) sin (%z> :
8 . /m N\ . (2 \ . (&
V21 (X, y,2) = \/;sm (Zx> sin (Ty) sin (Zz> :
vi2(x,y,2) = \/gsin (%x) sin (%y) sin (%z) :
The second excited state is again characterized by three
sets of quantum numbers (n,n.,n;) = (2,2,1), (n,n.,n;) =

(2,1,2) and (n,n,,n.) = (1,2,2), and it is also threefold
degenerate with energy

K2 12

221 212 122 Yl 2
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The Infinite Rectangular Well Potential 5 4% LIES %7

5

The Energy levels and their degeneracies for the Infinite
Rectangular Well Potential

EnxnynZ/El (nx, ny, nz) 8n
3 ain 1
6 211), (121), (112) 3
9 (221), (212), (122) 3
11 311), (131), (113) 3
12 (222) 1
14 (321), (312), (231), (213), (132), (123) 6

Degeneracy occurs only when there is a symmetry in the
problem. For the present case of a particle in a cubic box,
there is a great deal of symmetry, since all three
dimensions are equivalent.
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The Anisotropic Oscillator % %z £ %7

Consider a particle of mass m moving in a three-dimensional
anisotropic oscillator potential

1

A 1 N A | n
V(x,p,z) = Ema))%Xz + Ema)in + —ma)gZz.

Its Schrodinger equation separafes into three equations
n? d?X(x) 5
o2 T 2ma)x X(x) = ExX(x),

with similar equations for Y(y) and Z(z). The eigenenergies

and wave function corresponding to the potential can be
expressed as

1 1 1
Enenyn. = Eny + En, + Ep, = (nx + 5) ho, + (ny + E) hw), + (nz + 5) ho.,

annynz (xa ya Z) — an (x)Yny ()/)an (Z)a
W




The Spherical Coordinates

The transformation from the Cartesian system to the

spherical system of coordinates is given by the following set
of equations

x=rsinBcos@Q,y =rsinOBsin@,z =rcos0,
where

r=+/x2+y2+z2, 6 =cos”! (E

o= (3)- o= (7).

X

<

S
<V

------
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The Spherical Coordinates 4% %z £ %7

/1919

Using the transformation formulae, we obtain
d d cosBcosp J sing o

aZSIHOCOSQDBr_F r 900 rsin® d@’
J - . d cosOsing d  cosgp O
gy~ SmOsIne S T o T sing 99
i—cosG& ~sinf J

oz dr r 00

The unit vectors of the spherical system of coordinates can
also be calculated to be
7 = (sin @ cos @i+ sin O sin@ j 4 cos O k) ,

0 = (CQSGCOS(pf—I—cosGsin(pf—sin@fc),

A\
.
.

(— sin @i 4 cos (p])

¢
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The Spherical Coordinates

Taking these results into account, the gradient operator, can

be written as

Vol ol Lo L 0
V00 Y rsine g

The Laplacian (Laplace operator),v2=A,can now be written as

%2—ii 21 + L_d sinGi + ! o
~2ar\ or r2sin@ 06 a0 r2sin” @ d Q2
As a consequence, in spherical coordinates, the time-
independent Schrodinger equation takes the form

(19 [(,00 1 9 (/. 0d¢ 1 9%¢ B
“om [r—za ( E)* Z5in6 90 (S“’"%) T 7o 8(,02] TV(re=E.
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Spherically Symmetric Potentials

If the potential is spherically symmetric, that is it is
independent of the angles 6 and ¢ and depends only on

the radial distance r, the radial and angular variables in the
Schrodinger equation can be separated.

¢(r,0,¢p) = R(r)Y(0, p)
Therefore,

Ld (pdRY 2mr, o (LT L9 (G090 1 O],
Rar\" ar) 12 Y [sin000 \"" " 96 ) " sin2eoe?|

The first term in this equation is just a function of r,
while the second term is a function of 6 and ¢ only.

Since the sum of these terms is zero, each of them must

be equal to the same constant with opposite signs.
01/11/2021 Jinniu Hu u_



Spherically Symmetric Potentials

We take this separation constant to be I(l + 1). There, | will
represent the orbital quantum number. The value of the
angular momentum of the particle in a given state with
quantum number | is

AL+ 1),
Thus, we have the system of differential equations, one
each for the radial part R(r) and the angular part Y(6, ¢)

of the wave function

1[ 1 o0 (. 9Y 1 9%
Y [sin@ 00 (s1n9%> + sin’ 0 8(p2] =—t(l+1).
01/11/2021 Jinniu Au 25—




Solution of the Angular Part

The equation about the angular part is

1 9 (. dY 1 9%y
030 (smeﬁ) + 20907 —L(L+1)Y.

This can be rewritten in a more familiar form as

N SN ¢ . 2 Y
smeﬁ (sm9ﬁ> +4(£41)sin” 0Y + J07 0.
Separating the variables
Y(0,0) =0(0)P(9),
Therefore,
1[. 3 (. do o, 1dD
5 [smﬂﬁ (Sln9%>] +4(£+1)sin 9+5d—q)2 = 0.
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Solution of the Angular Part

Since the sum of theses terms is zero, each term must be
equal to the same constant but with opposite signs. Taking
this separation constant as m?, we get

d dv
sin 6 — (sin@—) +0(L+1)sin” 0 ¥ = m?

oL, 26
1 d*® , d*®
——— = . d =0.
B dg? m :>d(p2—|—m

The solution of second equation is
P(@) =",
where m is a number and we have omitted the constant of

integration

01/11/2021 Jinniu Hu ==,



Solution of the Angular Part

Since when ¢ advances by 2u, we return to the same point
in space, we have

P(p+21) =D(@) = MO = ime
It gives that m is an integer:
exp (2izm) =1,  m=0,+1,4£2,43,...

The & equation can be reduced to the standard form of the
Legendre equation by the change of variable x = cos6 . Its

solutions are

¥ (0) =AP" (x), x=rcos#,
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Solution of the Angular Part

where A is a constant and Pm(x) are the associated
Legendre polynomials. They are given by

where P(x) are the Legendre polynomials defined by

1 4, ,
P) = 3 g 1)

with | as a non-negative integer. This formula is known as
the Rodriguez formula. Therefore

if [m| > £, then P)" (x) = 0.
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Solution of the Angular Part

This in turn says that for any given |, thereare (21 + 1)

possible values of m:
0=0,1,2,..; m=—L,(—L+1),(—0+2),(—0+3),...,—1,0,1,....(£—1),L.
So, for a given | there is a (2| + 1)-fold degeneracy with

respect to the quantum number m. The normalized angular
wave functions are given by

Y;/"(0,0) = 8\/<2€+ D) (€= |m])! P"(cos@)e™?,

4w (0+ |m|)!

where
€= (—1)"form>0and € =1 for m <O.
The functions Y(0,0) are called spherical harmonics. Its

normalization condition is
T 21
/ do sin9/ do Y/ (0,9) =1,
0 0
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Solution of the Radial Part

The radial equation for a given | for R can be written as

d ( »dRyy ) 2mr?
Z 0y _
dr dr h2

(V(r)—E)Ry =1(14 1)Ryy,

where we have introduced an additional subscript n for the
radial wave function R. n is called the principal quantum

number. This equation can be simplified further by changing

the variables:
une(r) = rRy(r).

We have
ang o (dung/dl’) B Uyyp rzang o rdung _
dr r r?’ dr  dr nt
S\ )= r(d“upe/dr?).
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Solution of the Radial Part

Therefore, , i

d*u,y  2m he(0+1)

) + - E—-V(r)— Sy ] upe(r) =0.
This equation for the radial function u,(r) can be solved
only if the potential, V (r), is prescribed.

It is customary to introduce an effective potential, V..(r), by

nA (04 1)
2mr?

9

Veff(r) = V(r) -+

and rewrite the radial equation as

d*u,; 2m

dr? t 72 [E —Verr(r)]une(r) = 0.
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Solution of the Radial Part

The effective potential

Veﬁ(r)
1 DR
. 2Mr?
0 e o
[=3
|=2
[=1 ot Vir)
Veﬁ(r) - l.. 0
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Solution of the Radial Part

This equation is similar to the one-dimensional Schrodinger
equation with the difference that the effective potential V.
has an extra term

h2e(0+1)/2mr?.
This term is called the repulsive or centrifugal potential
that tries to throw the particle away from the centre.

The radial wave function, R,(r), must be finite everywhere
from r = O to r = co. Consequently, the function u,(r) must
satisfy

limu,;(r) = limrR,,(r) = 0.
r—0 r—0

Note that for the bound states to exist, the potential V(r),

must be attractive.
W



Solution of the Radial Part

Once we solve the radial wave equation for a given V (r),
the full wave function will be given by

Ontm (1,6,9) = Rue(r) Y;"(60,0).

The normalization condition for the total wave function
reads as

%) T 27
/ dr/ dGSinG/ do r* |¢n€m(r,99¢)|2
0 0 0

Io%e) T 27
:/ r? \Rng(r)|2dr/ d9sin9/ do|Y(0,¢0)|* = 1.
0 0 0
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Solution of the Radial Part

Since the spherical harmonics are already normalized, we
have

T 27
/ a0 [ dg sin@ [Y(6,0)] = 1.
0 0

Therefore, to have the full wave function normalized to
unity, we have to simply normalize the radial wave function,

/ r? |Rue(r)|* dr = 1.

0

The probability of finding the particle in the volume

element n 2
lemen Py(r)dr = (/ sin 0d 0 d(p\l//ngm(r.O,(p)|2) r* dr
0 0

T 27
— Ry (r)[? P dr/ / (Y7(6,0)) Y'(0,9) sinf dO dg
0 0

= |Rue(r)|> r* dr.
01/11/2021 Jinniu Au e ——



Solution of the Radial Part

Since the spherical harmonics are already normalized, we
have

T 27
/ a0 [ dg sin@ [Y(6,0)] = 1.
0 0

Therefore, to have the full wave function normalized to
unity, we have to simply normalize the radial wave function,

/ r? |Rue(r)|* dr = 1.

0

The probability of finding the particle in the volume

element n 2
lemen Py(r)dr = (/ sin 0d 0 d(p\l//ngm(r.O,(p)|2) r* dr
0 0

T 27
— Ry (r)[? P dr/ / (Y7(6,0)) Y'(0,9) sinf dO dg
0 0

= |Rue(r)|> r* dr.
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The Free Particle Solution

Consider a particle of mass m moving freely in space,

1 ad [,00 1 9 (. d¢ 1 d%]
2m [ﬁg (r E) T 25in6 96 (Smeﬁ) * r2sin” 0 8(/)2] =E¢.

The variables separate and the solution can be represented
as

Okem(r,0,0) = Ru(r)Y["(0,9).

Note that in the given case of a free particle the energy,
takes continuous values and hence the radial wave function
is characterized by the continuous index K.

The radial wave function, R.(r), satisfies

— | r
dr dr

) + kzrszg = €(€ + I)ng.
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The Free Particle Solution

Introducing p = kr, we have

d*Rie(p) 2 dRy(p) ((L+1) _
a* ' p dp +<1_ p? )ng(p)—O.

This is the spherical Bessel equation whose general solution,
for any k, is given by

Rie(p) =Arji(p) +Bemy(p).£ =0,1,2,3,...

where j(o) and n(p) are the spherical Bessel functions and

the spherical Neumann functions, respectively. They are
given by

1 d° ) sin p ( 1 d° ) cosp
. / 14

= (—p J(p) =—(—p :
]K(P) ( ) (Pﬁ lpg 0 E( ) ( ) pg lpg 0
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The Free Particle Solution

The asymptotic forms of these functions for p - 0 and o —
co are, respectively, given by

, 20, 20—1)! 1

je(p) = %Sin (P — %t) n(p) = —%cos (p — %ﬂ:) (p — o0).

Note that for p -+ O, the Neumann function blows up. As a
result, we have

Orem (0, 6,9) = Agje(kr)Y;" (6, 0),
This degeneracy corresponds to the spherical symmetry in
the momentum space: all directions of k are equivalent.
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The Free Particle Solution

Recall that the free particle solution in Cartesian
coordinates is proportional to plane wave, which can be
expanded in terms of the spherical Bessel functions as

L e
=YY cmijelkr)Y["(6,9),

where ¢, are arbi’rra%?"é:o_ngsfan’rs. Thus, the solution for a
free particle in spherical coordinates is completely
equivalent to the free particle solution in Cartesian
coordinates.

For the particular case of propagation along the z-axis
(kiz), m=0 anood we get

kT = ghreosd Y it (2¢+1)jo(kr)Py(cos 6); >con =i (20+1).
(=0
W




The Finite Spherical Well Potential

A particle of mass m is moving under the influence of the
following potential
—Vo, for r<a

0, for r>a,
In terms of the function u,(r) = rR,(r), the radial equations

of Schrodinger equation can then be written as

d*un [(I+1)
ot () =0.0<r<a),

Vi(t) =

d’u, , 1(1+1
drzg + | (iky)* — ( 3 )] uy(r) =0,(r>a).

For the first equation, its solution is

(7)
u r
R (r) = "l%() = Agje(kir).
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The Finite Spherical Well Potential

The solution of second equation is

" (1)

Rr(zf (r) = ung—r(r) = Dyhy(iky),

where,
hy(ika) = jo(ikor) +ing(ikir)
is the Hankel function that asymptotically behaves as
ek /ras r — +oo.
Therefore, the radial wave function of the particle for the
given potential, can be written as
Agjikir), r<a
Ry(r) = { |
Dyhy(ikor), 1> a,
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The Free Particle Solution

\REEX

The spherical Bessel functions as

Bessel functions j; (»)

Neumann functions 7;(r)

Jo(r) = 3 no(r) = —=2-
]1(’/,) 2 _ corsr nl(’”) — ;’2 — Siﬂ
Ja(r) = (% — %) sinr — 3‘;# ny(r) = (% — %) cosr — —2 sin r
A A
1
Jo(r) 0.5 1L no(r) 21 ()

J1(r)
0.5 117

N\ 2()

|
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The Finite Spherical Well Potential

The continuity of the wave function and its first derivative
at r = a leads to the transcendental equation

1j2(k1a) _ kth(ikza)

je(kia) he(ikya)’

for the determination of the energy eigenvalues. The
solution is usually found numerically.

The constants A and D, are related through
Ayji(kia) = Dyhy(ikoa).

The full bound state wave functions are given by

k

( jﬁ(kl’")ng(G,QD), r<a
Ru(r) =Ap < o
l{f(iklza)hﬁ(ikﬂ)yem(@"P), r>a,

\
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The Hydrogen Atom

A hydrogen atom consists of a proton in the nucleus and an
electron orbiting around it, which is held in its orbit by the
attractive Coulomb force.

Leftr.= (x.,y.,2z.) andT, = (x,Y,,z,) be the position vectors for

the electron and the proton, respectively. Let R = (X,Y,Z)
be the position vector of the centre of mass, defined by
MeFe + MyF)

me +mp,
and let r=(x, y, z)=r.-r,represent the relative position
vector. The Schrodinger equation of Hydrogen atom is

oY (7o, 7ot ) oo, R oo
.h €s" D> — . Vz . —Vz V —»e,—» ,Z_ .
I 5 ome ¢ 2m, » HV(r) | w(7e,7p.t)

R =
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The Hydrogen Atom

It is easy to check that
1 - 1 - I - |
Bl v2 T vo R v S vo
M, e T m, ' M R 4
M — me —I_mpa ,LL — memp

me+my,
where M and ¢ are the total and the so-called reduced

mass, respectively. The Laplace’s operators are given by

w2 O
R=ox2 " gy2 = 972’

and

. 82 82 82
2
Vi = dx? * dy? * 07

r
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The Hydrogen Atom

We look for the stationary state solutions of the
Schrodinger equation in the form

.E
W(?ea?pat) — W(?e,?p)e_l%ta

where E.is the total energy of the system. Taking into
account that, in the SI units, the Coulomb potential

between the electron and proton is given by
62

V(r)=

therefore,
- K e
[ 2m, P 2m, ¢ 47r80\7e—?p|]"’(re’rp) ry(7e7y)

It can be rewritten in the centre of the mass system as

hZ =, h2 = 82 . .
ELCI V> R Vol R7) = Erw(R7).
[ oM R o 47r80r] Y(R.7) = Ery(R.7)
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The Hydrogen Atom

Since the potential depends only on the relative
coordinate r, we expect the variables to separate and look
for the solution in the form

y(R.7) = @(R) (7).

We have
. LR - T+ | =Er
This leads to the following pair of equations
I 0k - B ()
00+ e o) =B,
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The Hydrogen Atom

where

Er = Egr+ E,.
The first equation can be interpreted as the stationary
Schrodinger equation of a free particle of mass M.
Consequently, the normalized solution of this equation is
written as

5 1 —iK-R
qD(R) — We ’

The Coulomb potential is spherical symmetric, the second
equation is convenient to be solved in spherical coordinate.

1 ad [,00 1 9 (. 0d¢ 1 9% 2
"o [r—za ( E) T 25in6 96 (Smeﬁ) T e a<p2] " anar? ~EO
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The Hydrogen Atom

Since the potential is spherically symmetric, the general
solutions (with an arbitrary value of |) are given by

¢(r,0,9) = Ru(r) Y/"(0,9),
The radial wave function R,(r) satisfies

% (rzdRZzi(r)> + [l + 2701 PR (r) = L0+ 1)Ruc (1),

where

2UE 2
A=HE = K

20T Amegh?’

Let us introduce the dimensionless independent variable

p=21 —2r/-1. ro=1/v—1.

ro
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The Hydrogen Atom

Therefore
d’Ru(p) | 2dRu(p) ( I a1 €(€+1))
+ = +| =+ —— Ru(p) =0
dp> ' p dp 4 Ap P2 (P)
For o — oo, it reduces to
d2Rn€<p> 1 -

which has simple solutions R,(r) = exp(+0/2). Consequently,
we look for the solution of above equation in the following
form

Ru(p) = e P 2uy(p),
where the function u,(p) must obey the boundary
conditions.
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The Hydrogen Atom

Finally, we obtain the following differential equation for
the function u,(p)

&1y (2 )dung K a )1 e(£+1)]
L (220 PO =0,
dp? " \p dp VA Jp pr ™

The form of the equation suggests that we look for the
solution in the form

e (p) = p’ Z Cij,
j=0

where v, ¢,c,,C;,... are constants to be determined. The
value of y will be determined from the requirement that
the function u,is finite everywhere.
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The Hydrogen Atom

After differentiating the u,, we have

5 4D ri- 0924 27 07 F e+ o

Jj=0 j=0 =0
- 0% 1 €(£+1)] .
+ Cj ——1>—— Yt —.
];O ! [(\/—l P p2 P
Or,

iocj [(y+ ) (y+j+1)—L(0+1)] p}/+j—2

— C: f}/_|_j_|_1 _ p}/—k]—l.
J-Zo it Yy
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The Hydrogen Atom

The coefficients before identical powers of p, on both
sides of the equation, must be equal. Therefore,

(Y(y+1)—£(l+1))co=0= (y(y+1)—£(£+1)) =0.
It has two possible solutions
y=+{ or y=—({+1).
If we take the solution vy = —(l + 1), then the series in
would start with the term c,/p+ that goes to infinity for o
— 0. Therefore, we omit it and take v = |. As a result,

i ci[(6+7)(L+j+1)—L(L+1)] pti~2

(o]

0%
=) ci|(l+j+1)——=

Lo )= 7=x)P
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The Hydrogen Atom

Since the coefficient for j = 0 on the left-hand (LHS) side
of above equation is zero, the series on the LHS starts
with j = 1. If we change the dummy index of summation
to j + 1, we have

LHS =Y cjpi [(€4j+1) (C+j+2)—£(e+1)] pth,
i=()

Therefore,
o . . . . . . _L / -1 _

Recursion relation for the coefficients of the series

(4j+1)— )

T D (2 )
W




The Hydrogen Atom

The ratio c,./c; for large values of ]

lim Gl = lim [(€—|—j—|—1)—((x/ _l)} :l
o cj e () (G H2) —L(0+1)

On the other hand, the ratio a../a, for the series
oo k

eP = Z%ak

Iim e — lim K 1 1
k—oo  d, k—oo (kK+1)! k—l—l k

It must truncate at some appropriate term. This is

is

possible only if, for some value j = j.., the numerator in
becomes zero, that is,

(04
P l+1)— —— =0,
(n )~ =
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The Hydrogen Atom

where n,= j,..is the maximum value of j for which ¢, .,= O.
The number n.is called the radial quantum number.

Introducing a new quantum number, n, by the relation
n=n,+¢+1,
we get that

(04
— — .

Nayy
n is called the principal quantum number. It allows us to
write the recursion relation for the coefficients of the

polynomial as
. (L4 j+1)—n]
T+ D) (04 j+2)—0(e+1)

C‘j.
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The Hydrogen Atom

Further, we have

Or,

QUE ( e )2
2 \dmeni?)

Therefore, the possible values of energy are

P u 2\’ 1
" 2K 4me n?

We see that the energy depends only on the principal

quantum number n. The possible values of |, for a given n,
are: 1 =0,1, 2, 3, .., n-l.
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The Hydrogen Atom

The energy states of a hydrogen atom are usually
described by the triplet of quantum numbers n, |, and m,
as in other cases considered earlier.

Note that all the energy states of hydrogen, except the
ground state with n =1 and | = O, are degenerate.

For a given value of n, there are n possible values of |
(0,1,2,3,...,n-1) and for every | there are 2l + 1 values of

m from -l to +l. Therefore, the degeneracy g is given by

n—1

g=Y (204+1)=1434+5+...4+(2n—1).
(=0
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The Hydrogen Atom

This series is an arithmetic series with n terms and the
common difference d = 2. Hence, the sum is given by

n—1

g= Z(2€+1):g[2><1+(n—1)><2]:
(=0
Consequently, the stationary state energies and the
corresponding wave functions of the hydrogen atom are,

respectively, g —_ ( &2 )z 1 )

2h2 47{80 ?,(n = 1,2,3,...

i

Yt (7,0, 0) = G (1,0, @) e 151" = Ry (r)Y"(6, @) e 15,

Ru(r) = e~"/" < ‘ Z €jP ) e/ (nao) Z K (HGO)J’

A [(L+j+1)—n] .
T i) U+ j+2)— e+ 1)
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The Hydrogen Atom

CEEER

Ground state: For the ground state of hydrogen, n =1, | =
0 and m = 0. Therefore, the wave function is given by

2 1 —r/a 1
G100(r,0,0) = /a0 —

e

e—r/ao
/a(3) VAarn nag

First excited state: Here, n = 2 and | can take two values

O and 1.

11 r I S ) Y
r,0,0) = 1= Yo r/200  Poi—1(r.0,0) = —e sin Qe '?,
P200(r. ) 3 Var ( 2a0) 8. /a3 40
24/ 4y 0
1 1 F —r/2a
(1 _ L) o—7/2a0 $210(r,0,0) = 3 a—oe cos 0,
8717a(3) 2a9 44/21ay
1 r
$11(r,0,0) = — —

e /290 gin 9 e'?.
8\/7ra(3) ao
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The Hydrogen Atom (% 3 £ %7

/1919

The first few radial wave functions, R,(r), are presented

— e /2a0
Ry (r) 24(3)(106
2 2r 2 r 2 —r/3a
Rao(r) = — 1_%+ﬁ(%) e~/
0
R3(r) = 8 _(1__)8_/30
s1(r) 27,/6a3 6
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The Hydrogen Atom (% %z £ %

7
n [ Orbitals m n E,
! 0 S 0 1 —e?/(2aq)
2 0 s 0 4 —e?/(8ap)
1 p —-1,0,1
3 0 s 0 9 —e? /(18ap)
1 p —-1,0,1
2 d -2,-1,0,1,2
4 0 s 0 16 —e? /(32ay)
1 p —-1,0,1
2 d -2,—-1,0,1,2
3 f -3,-2,-1,0,1,2,3
5 0 s 0 25 —e?/(50aq)
1 p —-1,0,1
2 d -2,-1,0,1,2
3 f -3,-2,-1,0,1,2,3
4 g —4,-3,-2,-1,0,1,2,3,4
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The Hydrogen Atom

Using these Laguerre polynomials, the normalized wave
function of the hydrogen atom can be written as:

0.0 \/(20>3 e ()

The g+ Laguerre polynomial is given by

d? B
L,(x) = exﬁ(xqe *).
and
p _ p d’
Lq—p(x) (_1) W Q(x)
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The Hydrogen Atom

Hydrogen Wave Function

Probability density plots.
2 >"” (n—1-1)!

i /2,0 T2H (VY (9.0
nag 271[(n+1)!]( PL 21 (P) - Yim (9, 0)

J
L/
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The Hydrogen Atom
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The Hydrogen Atom (% %z £ %7

The spectrum of hydrogen: In principle, if the hydrogen
atom is in one of the stationary states, it will reside there

Energy (eV)

n=6 E=-038eV
n=>5s E=-054eV
n=4 E=-085eV
n=3 vy E=-151eV

Paschen series

n=2 YYVYY E=_340V
Balmer series

n=1 YYYVY VY E=-13.6eV
Lyman series
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The Hydrogen Atom

The energy of the radiation, E,, is equal to the difference
in energy of the stationary states involved in the

transition:
1 1
E»}/:El—Ef:El <nz—2> )

I nf
where E;and E;are the energy of the final and the initial
stationary states, respectively, and

o) 2
___H €
Br=op (47r80)

is the energy of the ground state (n = 1). The energy of a
photon is E.= hv , where h is the Planck’s constant.
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The Isotropic Harmonic Oscillator

Consider a particle of effective mass v moving in isotropic

harmonic oscillator potential

1
V(I") = 5“0)27"2,

where u is the mass, » is the angular frequency of the

oscillator and r is the radial distance from the origin.

We start with the Schrodinger equation in spherical
coordinates

a(P 1 a(P 1 aZ(P ) 5
2u [r28r( 8r>+rzsin9 26 (Sm989)+r28in 29 92 "" S HOTT ¢ =E9p.
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d>u  2u 1 5, KH(+1)
i 1’ E—Euw tT 2172 ]u(r)—().
For r - 0, we get
d*u  ((0+1
T ) u(r) =0.

Let us look for u(r) in the form rs. We then obtain
s(s—1)—4({+1)=0,

which has two solutions s=-| and s=|+1.Since u-~rblows up

at r=0, it is excluded due to the standard conditions, we
conclude that in the vicinity of r = 0, we should have u-r+
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The Isotropic Harmonic Oscillator :

We can define some new quantities

IX0) ho
o T and >

e

The radial equation will become as

d*v 2(0+1) dv B
d—p2‘|‘( o —2p)%+(7t—2€—3)v—0.

and the new variable

with

u(p) = p'tte P 2y(p). A =2E/ho.

01/11/2021
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The Isotropic Harmonic Oscillator

We look for the solution in terms of an infinite series
v(p) = i ap p?,
p=0

where a, are constant expansion coefficients. Finally, we
can obtain

(o o]

Z’o (p+1)(p+2)apsa+(20+2) (p+2)apso+ (A —20—3—-2p)a,] p?

- (2€—|—2)a1%=0.
To hold both the terms must separately be equal to zero.
This leads to a,= 0, and the recursion relation for the

expansion coefficients

B (20+2p+3—1)
2= G52 (TG T

01/11/2021 Jinniu Hu ==,
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The Isotropic Harmonic Oscillator

As a result, we obtain the solution of the radial equation
u(p) =p e P 2v(p), vip) =Y a,p’, p=024,....
P

For o = oo, the above solution diverges as exp(p2) unless

the infinite series is terminated at some term. Clearly,

this can be achieved if

2F
20+2k+3—-A=0. = l:%:2€—|—2k—|—3.

The above condition leads to the energy eigenvalues of
the oscillator associated with a given value of |:

3
Ek,g:ha) (k—|—€‘|— 5) )
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The Isotropic Harmonic Oscillator

As a result, we obtain the solution of the radial equation
u(p) =p e P 2v(p), vip) =Y a,p’, p=024,....
P

For o = oo, the above solution diverges as exp(p2) unless

the infinite series is terminated at some term. Clearly,

this can be achieved if

2F
20+2k+3—-A=0. = l:%:2€—|—2k—|—3.

The above condition leads to the energy eigenvalues of
the oscillator associated with a given value of |:

3
Ek’g:h(x) (k—|—€—|— 5) )

where Kk is any even positive integer or zero.
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The Isotropic Harmonic Oscillator

If we introduce the quantum number n = k + |, the energy
levels of the 3D isotropic oscillator can be written as

3
E,=hw — 1,
<n-|—2>

Therefore, n can take any positive integer values or zero.
Taking into account that for even n, | can take (n/2+1)
values: 0,2,4,...,n, while for odd n, it can take [(n-1)/2+1]

values: 1,3,5,...,n, the degeneracy of the energy levels is
calculated to be

1 2
Eheven = Z (20+1) = (nt1)(n+ ), for even n,
(=02,4,...n 2
1 2
8nygy = (20+1) = (n+ )2(n+ ), for odd n.

/=1,35,...n

01/11/2021 Jinniu Hu ==,
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The Isotropic Harmonic Oscillator

Ground state: The ground state corresponds to n = O for

which | = k = 0.

2 mao\ 3/4 _mw.2
¢000:7r1/4( - ) e 2" Yoo (60,0).

First excited state: It corresponds to n = 1. Since Kk has to
be even, we have | =1 and k = O.

8 ()] 5/4 mo
¢11m=\/3ﬁ (mh ) re_Z_hrzYm(O,GD), m=—1,0,1.

Second excited state: It corresponds to n = 2. Since k has
to be even, we have two pairs of k and |: (2,0) and (0,2).

4 (mw>7/4 y _mo 2
r
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The Isotropic Harmonic Oscillator z< %‘ ,ﬁ P %7

79\9

Energy levels E,and degeneracies g,for an isotropic
harmonic oscillator

n E, NI m 2n
0 2 he 00 0 1
1 2w 01 +1,0 3
2 Iho 10 0 6
02 +£2,+1,0
3 Shao 11 +1,0 10
03 £3,+£2,£1,0
20+ )= > 1 2> I==(n+2 le 1 2).
:(),22:(1+)z<>22;1 +l%z L+ 2) . S+ 1)1 +2)
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Exercise

1. Calculate the average distance of the electron from the
nucleus in the ground state of the hydrogen atom. Also,
calculate the average values of the potential and kinetic
energies in the ground state of the hydrogen atom.
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Exercise

1. Calculate the average distance of the electron from the
nucleus in the ground state of the hydrogen atom. Also,
calculate the average values of the potential and kinetic
energies in the ground state of the hydrogen atom.

Solution: The average value (r) of the distance of the
electron from the nucleus is given by

_ f?’|¢(?)|2d’(: _ 1 ~ —2r/agy .2 on " .
(r) = Tlo@Rde (nag)/o re r dr/o d(p/o dOsin 6

Aw [ 4w 3lat 3
= / e 203 gy = 0 = Za.
0

(na)) ral (2~ 2
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Exercise

UN/
{.V‘\Qp

The average value of potential is

e’ 1 e’ e’ e’ U &2\’
(U) =— = = - = 5 =2 '
ey \ r 4mepag 4mey dregh

o2 \dne
Since

9

1 2\ |2 1 =1 —2r/agy 2 o .
/ ¢ (F)|7dT = — / —e O dr/ dq)/ sin0d 6
r (wag) Jo 1 0

— 47 1 /wff_zr/aorafr:i :
(ma3) Jo

The average value of potential is

(TY=E, —(U)= —E = & ( ¢ )2.

~ 212 \ dre
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Exercise

2. At t=0, the wave function of a hydrogen atom is given by

y(r,0,¢) = \%45300(”,9,(0) + \%%11(”,9,%0) + \%‘Pm(r,e,fp)-

(a) What is the wave function at any t > 0? (b) If a
measurement of energy is carried out in this state, what
values would result and with what probabilities?
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Exercise

2. At t=0, the wave function of a hydrogen atom is given by
1 1 |
,0,0) = — ,0, — ,0, — ,0,0).
y(r,6,9) ﬂ¢300(” Q)+ \@¢311(7’ Q)+ \@%22(? )
(a) What is the wave function at any t > 0? (b) If a
measurement of energy is carried out in this state, what
values would result and with what probabilities?

Solution: (a) The wave function at any t > O would be
1 1 1 ;
w(r,0,0,t) }ﬁ%oo(”aea‘l’) + \ﬁ%ll(”»@,([)) + \%45322(’%9,90)] e i,
where E,= E,/9 = -13.6/9 eV.
(b) Since the wave function is normalized and it is an
eigenfunction of the Hamiltonian, the measurement of

energy will give E, with probability 1.
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Exercise

3. A NaCl crystal has certain negative ion vacancies
behaving like a free electron, inside a volume having
dimensions of the order of a lattice constant (0.1 nm).
Estimate the longest wavelength of electromagnetic
radiation absorbed strongly by these electrons.
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Exercise

3. A NaCl crystal has certain negative ion vacancies
behaving like a free electron, inside a volume having
dimensions of the order of a lattice constant (0.1 nm).
Estimate the longest wavelength of electromagnetic
radiation absorbed strongly by these electrons.

Solution: Energy levels for a free electron confined to a
cubic box having each side of length L are given

h2m?
“om2\

The ground state energy is:
3n°n®  3(1.054x 107*)*(3.14)°
2ml*  2x9.11x107°(10710)?

(nd +ni +n3)

Epqp = =1.8x 107 Joules.

E111 =112.5€V.
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/1919

The energy of the first excited states is:

6n’n®  3n*m?
2mL*  ml’

211 —

The longest wave length for transition from the ground
state to the first excited state is given by:

c_ ch
v (Ex1—Em)
3x10% x6.626x 107

A= e =1.104x 10 m
1.8x10

A=

01/11/2021 Jinniu Hu ==,



