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The spectra of helium
1.  Two sets: 

    parahelium

    orthohelium

2. Orthohelium has fine 

    structure

3.The energy difference 
between the ground state 
and the lowest excited 
state in helium is relatively 
large. 



6Atoms with More Than One Electron

In atoms with more than one electron additional problems
arise that are caused by mutual electrostatic and magnetic
interactions between the electrons. In addition, we are now
confronted with new symmetry principles that are valid if
two electrons are exchanged. These stem from the fact that
electrons cannot be distinguished from each other.

We will first study these phenomena for the helium atom,
which represents the simplest systemwith two electrons. This
will help us understand the building up principle for the struc-
ture of electron shells for larger atoms. We will see that the
electron configurations for all atoms can be obtained from the
minimum energy principle, the correct coupling of the differ-
ent angular momenta of the electrons and the observation of
certain symmetry rules. This results in the determination of all
possible energy states of the atoms and the characterization
of these states by quantum numbers.

6.1 The Helium Atom

The helium atom consists of a nucleus with charge +Ze =
+2e and mass mK ≈ 4mH and of two electrons each with
charge q = −e. The spatial distribution of the two elec-
trons depends on their wave function ψ(r1, r2), which is
a function of the spatial coordinates r1 = (x1, y1, z1) and
r2 = (x2, y2, z2) of the two electrons. Their distances from
the nucleus are r1 = |r1| and r2 = |r2| and their mutal dis-
tance is r12 = |r1 − r2|.

The potential energy of the electrons is then:

Epot = − e2

4πε0

(
Z
r1

+ Z
r2

− 1
r12

)
. (6.1a)

The operator of the kinetic energy in the center of mass
system is

Êkin = − !2

2µ
(∆1(r1)+ ∆2(r2))

with µ = memK

me + mK
(6.1b)

where the operator ∆i acts on the coordinate ri . Since mK ≈
7300me, we can use the approximation µ ≈ me = m. The
Schrödinger equation is then:

− !2

2m
∆1ψ(r1, r2) − !2

2m
∆2ψ(r1, r2)

+ Epotψ(r1, r2) = Eψ(r1, r2). (6.2)

The last term on the left side is the potential energy, which is
no longer spherically symmetric as in the hydrogen atom, but
depends on the angle α between the radius vectors ri to the
electrons, because of their mutual repulsion. From Fig. 6.1
we can derive the relation

r212 = |r1 − r2|2 = r21 + r22 − 2r1r2 cosα.

We therefore can not separate the total wave function into a
radial part and an angular part, as we could in the case of one-
electron systems. This implies that the Schrödinger equation

Fig. 6.1 The helium atom
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Therefore, this Schrödinger equation is no longer solvable 
analytically and we have to use approximations. 
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minimum. This means: The sum of kinetic energy and 
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188 6 Atoms with More Than One Electron

(6.2) is no longer solvable analytically and we have to use
approximations.

6.1.1 ApproximationModels

Because of the mutual repulsion, the charge distribution of
the electrons will be such, that the total energy becomes a
minimum. This means: The sum of kinetic energy and poten-
tial energy, due to electron-electron repulsion and attraction
between the electrons and the nucleus becomes a minimum.
On the time average is 〈r12〉 > 〈r1〉 = 〈r2〉

In a first crude approximation we can therefore neglect the
last term in (6.1a). Then we can separate the wave function
into the product

ψ(r1, r2) = ψ1(r1)ψ2(r2). (6.3)

Inserting this into the Schrödinger equation (6.2) yields two
separate equations for the two electrons

− !2

2m
∆1ψ1(r1) − e2

4πε0

Z
r1

ψ1(r1) = E1ψ1(r1)

− !2

2m
∆2ψ2(r2) − e2

4πε0

Z
r2

ψ2(r2) = E2ψ2(r2) (6.4)

with E1+ E2 = E . Each of these equations is identical to the
(5.8) for the one electron system and can be solved accord-
ingly.

With Z = 2 we obtain in this approximation for the total
energy of the two electrons in the lowest state with n = 1:

EHe(1s) = −2Z2EH = −2 · 4 · 13.6 eV
= −108.8 eV.

The experimental value for this energy that is necessary to
remove both electrons from the atom (this means to convert
the He atom into the doubly charged ion He++) is, however,
only Eexp = 78.98 eV.

The neglection of the electron repulsion therefore intro-
duces an absolute error of 30eV, i.e., a relative error of about
40%.

A much better approximation is obtained by a model that
assumes that each of the two electrons moves in the Coulomb
potential of the nucleus, shielded by the charge distribution
of the other electron (which is assumed to have a spherically
symmetric time average). The resulting potential for each
electron is then a spherically symmetric Coulomb potential
generated by the effective charge Qeff = (Z − S)e (Fig. 6.2).
The quantity S (0 ≤ S ≤ 1) is called the shielding constant.

For total shielding S = 1 one would need the energy EH
to remove the first electron from the atom. The remaining ion

Fig. 6.2 Partial shielding of the
nuclear charge +Ze by the
negative charge distribution
ρel(e2) = −e|ψ1s(r2)|2 of a 1s
electron

He+ now has the nuclear charge +2e and the binding energy
of the second electron is therefore −Z2EH = −4EH. The
total ionization energy of the He atom is then

EHe(1s) = −EH − 4EH = −5EH = −68 eV, (6.5)

which comes much closer to the experimental value EHe =
−78.983 eV. For a shielding constant S = 0.656 the experi-
mental value is exactly reproduced. In our model the correct
energy is therefore obtained for an effective nuclear charge
of Zeffe = +1.344 e. This implies that about 33% of the real
nuclear charge +2e is shielded for one electron by the other
electron in the 1s state.

Note
The shielding for an electron in higher energy states (for
instance the 2s or 2p state) by an 1s electron can be much
larger, because the spatial charge distribution for the higher
state has only small values within the 1s distribution of the
shielding electron.

The spatial charge distribution of the shielding electron in
the 1s state is given by

&el = −eψ∗
2 (1s)ψ2(1s). (6.6)

The potential energy of the other electron is then

Epot(r1) = − e2

4πε0



 Z
r1

−
∫

ϑ

∫

ϕ

∫

r2

ψ∗
2ψ2

r12
dτ2



 . (6.7)

In a first approximation we can assume that the charge distri-
bution of the shielding electron is not changed much by the
presence of the second electron. This means that we can take
the unperturbed hydrogenic wave functions for its spherically
symmetric spatial distribution. This yields for the potential
energy

The helium in quantum mechanics
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In a first crude approximation we can therefore neglect the 
last term in potential energy. Then we can separate the 
wave function into the product 
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generated by the effective charge Qeff = (Z − S)e (Fig. 6.2).
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He+ now has the nuclear charge +2e and the binding energy
of the second electron is therefore −Z2EH = −4EH. The
total ionization energy of the He atom is then

EHe(1s) = −EH − 4EH = −5EH = −68 eV, (6.5)

which comes much closer to the experimental value EHe =
−78.983 eV. For a shielding constant S = 0.656 the experi-
mental value is exactly reproduced. In our model the correct
energy is therefore obtained for an effective nuclear charge
of Zeffe = +1.344 e. This implies that about 33% of the real
nuclear charge +2e is shielded for one electron by the other
electron in the 1s state.

Note
The shielding for an electron in higher energy states (for
instance the 2s or 2p state) by an 1s electron can be much
larger, because the spatial charge distribution for the higher
state has only small values within the 1s distribution of the
shielding electron.

The spatial charge distribution of the shielding electron in
the 1s state is given by
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In a first approximation we can assume that the charge distri-
bution of the shielding electron is not changed much by the
presence of the second electron. This means that we can take
the unperturbed hydrogenic wave functions for its spherically
symmetric spatial distribution. This yields for the potential
energy
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(6.2) is no longer solvable analytically and we have to use
approximations.

6.1.1 ApproximationModels

Because of the mutual repulsion, the charge distribution of
the electrons will be such, that the total energy becomes a
minimum. This means: The sum of kinetic energy and poten-
tial energy, due to electron-electron repulsion and attraction
between the electrons and the nucleus becomes a minimum.
On the time average is 〈r12〉 > 〈r1〉 = 〈r2〉

In a first crude approximation we can therefore neglect the
last term in (6.1a). Then we can separate the wave function
into the product
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Inserting this into the Schrödinger equation (6.2) yields two
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with E1+ E2 = E . Each of these equations is identical to the
(5.8) for the one electron system and can be solved accord-
ingly.

With Z = 2 we obtain in this approximation for the total
energy of the two electrons in the lowest state with n = 1:

EHe(1s) = −2Z2EH = −2 · 4 · 13.6 eV
= −108.8 eV.

The experimental value for this energy that is necessary to
remove both electrons from the atom (this means to convert
the He atom into the doubly charged ion He++) is, however,
only Eexp = 78.98 eV.

The neglection of the electron repulsion therefore intro-
duces an absolute error of 30eV, i.e., a relative error of about
40%.

A much better approximation is obtained by a model that
assumes that each of the two electrons moves in the Coulomb
potential of the nucleus, shielded by the charge distribution
of the other electron (which is assumed to have a spherically
symmetric time average). The resulting potential for each
electron is then a spherically symmetric Coulomb potential
generated by the effective charge Qeff = (Z − S)e (Fig. 6.2).
The quantity S (0 ≤ S ≤ 1) is called the shielding constant.

For total shielding S = 1 one would need the energy EH
to remove the first electron from the atom. The remaining ion

Fig. 6.2 Partial shielding of the
nuclear charge +Ze by the
negative charge distribution
ρel(e2) = −e|ψ1s(r2)|2 of a 1s
electron

He+ now has the nuclear charge +2e and the binding energy
of the second electron is therefore −Z2EH = −4EH. The
total ionization energy of the He atom is then

EHe(1s) = −EH − 4EH = −5EH = −68 eV, (6.5)

which comes much closer to the experimental value EHe =
−78.983 eV. For a shielding constant S = 0.656 the experi-
mental value is exactly reproduced. In our model the correct
energy is therefore obtained for an effective nuclear charge
of Zeffe = +1.344 e. This implies that about 33% of the real
nuclear charge +2e is shielded for one electron by the other
electron in the 1s state.

Note
The shielding for an electron in higher energy states (for
instance the 2s or 2p state) by an 1s electron can be much
larger, because the spatial charge distribution for the higher
state has only small values within the 1s distribution of the
shielding electron.

The spatial charge distribution of the shielding electron in
the 1s state is given by

&el = −eψ∗
2 (1s)ψ2(1s). (6.6)

The potential energy of the other electron is then

Epot(r1) = − e2

4πε0



 Z
r1

−
∫

ϑ

∫

ϕ

∫

r2

ψ∗
2ψ2

r12
dτ2



 . (6.7)

In a first approximation we can assume that the charge distri-
bution of the shielding electron is not changed much by the
presence of the second electron. This means that we can take
the unperturbed hydrogenic wave functions for its spherically
symmetric spatial distribution. This yields for the potential
energy

The approximation solutions



18/04/2022 Jinniu Hu
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In a first approximation we can assume that the charge distri-
bution of the shielding electron is not changed much by the
presence of the second electron. This means that we can take
the unperturbed hydrogenic wave functions for its spherically
symmetric spatial distribution. This yields for the potential
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The experimental value for this energy that is necessary to 
remove both electrons from the atom (this means to convert 
the He atom into the doubly charged ion He++) is, however, 
only Eexp= 78.98 eV. The neglection of the electron repulsion 
therefore introduces an absolute error of 30 eV, i.e., a 
relative error of about 40%. 
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A much better approximation is obtained by a model that 
assumes that each of the two electrons moves in the 
Coulomb potential of the nucleus, shielded by the charge 
distribution of the other electron (which is assumed to have 
a spherically symmetric time average). The resulting 
potential for each electron is then a spherically symmetric 
Coulomb potential generated by the effective charge
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In a first approximation we can assume that the charge distri-
bution of the shielding electron is not changed much by the
presence of the second electron. This means that we can take
the unperturbed hydrogenic wave functions for its spherically
symmetric spatial distribution. This yields for the potential
energy
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In a first approximation we can assume that the charge distri-
bution of the shielding electron is not changed much by the
presence of the second electron. This means that we can take
the unperturbed hydrogenic wave functions for its spherically
symmetric spatial distribution. This yields for the potential
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For total shielding S = 1 one would need the energy EH to 
remove the first electron from the atom. The remaining ion 
He+ now has the nuclear charge +2e and the binding energy 
of the second electron is therefore −Z2EH= −4EH. The total 
ionization energy of the He atom is then 
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In a first approximation we can assume that the charge distri-
bution of the shielding electron is not changed much by the
presence of the second electron. This means that we can take
the unperturbed hydrogenic wave functions for its spherically
symmetric spatial distribution. This yields for the potential
energy

which comes much closer to the experimental value EHe = 
−78.983 eV. For a shielding constant S = 0.656 the 

experimental value is exactly reproduced. In our model the 
correct energy is therefore obtained for an effective 
nuclear charge of Zeff e = +1.344 e. 

The approximation solutions
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The coupling of electrons
The electron configuration is the distribution of electrons 
of an atom in atomic orbitals. 

For the two-electron atom, we label the electrons 1 and 2. 
The total angular momentum J is the vector sum of the four 
angular momenta: 

nl, nln0l0, nln0l0n00l00, . . .

~J = ~l1 +~l2 + ~s1 + ~s2

There are two schemes, called LS coupling and jj coupling, 
for combining the four angular momenta to form J. The 
decision of which scheme to use depends on relative 
strengths of the various interactions. We shall see that jj 
coupling predominates for heavier elements. 
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The coupling of electrons
The LS coupling scheme, also called Russell-Saunders 
coupling, is used for most atoms when the coupling between 
the orbital angular momenta of electrons is strong.

If the interaction energies 

between the orbital magnetic moments of electrons ei  and ej 

and 
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energy. These integrals describe the contributions of interac-
tions between the different configurations ψi , represented by
the one-electron functions (6.38b) to the energy.

In the sum (6.38c) only functions ψk with the same sym-
metry and the same spin are included. Otherwise the integrals
〈ψi |H |ψk〉 vanish.

6.5 Electron Configurations and
Couplings of Angular Momenta

Besides electrostatic interactions, the magnetic interactions
between the magnetic moments of electrons must also be
taken into account. These much smaller interactions cause
a splitting of the energy states into fine structure components.
While for one-electron atoms there are only two fine structure
components for all levels with l ≥ 1, corresponding to the two
different orientations of the electron spin s with respect to the
orbital angular momentum l (see Sect. 5.6.3), there might be
more than two components in multielectron atoms. The man-
ifold of fine structure components of a given state (n, l) is
called a multiplet.

The different electrons characterized by their one-electron
wave function, are labeled according to their principal quan-
tum number n and the quantum number l of their orbital angu-
lar momentum. The electron configuration describes these
quantum numbers for all electrons of the atom. For instance,
the electron configuration 1s22s2p represents a four-electron
atom with two electrons in the 1s state with n = 1 and l = 0,
one in the 2s statewith n = 2 and l = 0 and one in the 2p state
with n = 2 and l = 1. The configuration 2s22p3 of a seven-
electron atom has two electrons in the filled 1s state (which
are not included in the labeling, because it is self-evident that
the 1s shell has to be occupied in the ground state of atoms
with more than one electron), two electrons in the 2s state
and three electrons in the 2p state. The total quantum num-
bers of the atomic state depend on the quantum numbers of
the individual electrons and on the couplings of their angular
momenta.

6.5.1 Coupling Schemes for Electronic Angular
Momenta

The way the orbital angular momenta li and the spins si of
the individual electrons are coupled to form the total angular
momentum J of the atom, depends on the energetic order of
the different interactions. We will discuss two limiting cases.

(a) L-S Coupling
If the interaction energies

Wli l j = ai j li · l j (6.39a)

between the orbital magnetic moments of electrons ei and e j
and

Wsi s j = bi j si s j (6.39b)

between their spin moments are large compared to the inter-
action energy

Wli s̄i = cii li si (6.39c)

between orbital magnetic moment µli = µBli and spin
moment µs = gsµBsi of the same electron, then the orbital
angular momenta li of the different electrons couple to a total
orbital momentum

L =
∑

li with |L| =
√
L(L + 1)! (6.40a)

and the individual spins si to a total spin

S =
∑

i

si with |S| =
√
S(S + 1)! (6.40b)

of the atomic state. The total angular momentum of the elec-
tron shell is then

J = L+ S with |J| =
√
J (J + 1)!. (6.40c)

This limiting coupling case is named L − S coupling
(Fig. 6.25). The electron configuration with total orbital

Fig. 6.25 Vector model of L-S coupling
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Besides electrostatic interactions, the magnetic interactions
between the magnetic moments of electrons must also be
taken into account. These much smaller interactions cause
a splitting of the energy states into fine structure components.
While for one-electron atoms there are only two fine structure
components for all levels with l ≥ 1, corresponding to the two
different orientations of the electron spin s with respect to the
orbital angular momentum l (see Sect. 5.6.3), there might be
more than two components in multielectron atoms. The man-
ifold of fine structure components of a given state (n, l) is
called a multiplet.

The different electrons characterized by their one-electron
wave function, are labeled according to their principal quan-
tum number n and the quantum number l of their orbital angu-
lar momentum. The electron configuration describes these
quantum numbers for all electrons of the atom. For instance,
the electron configuration 1s22s2p represents a four-electron
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with n = 2 and l = 1. The configuration 2s22p3 of a seven-
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are not included in the labeling, because it is self-evident that
the 1s shell has to be occupied in the ground state of atoms
with more than one electron), two electrons in the 2s state
and three electrons in the 2p state. The total quantum num-
bers of the atomic state depend on the quantum numbers of
the individual electrons and on the couplings of their angular
momenta.

6.5.1 Coupling Schemes for Electronic Angular
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The way the orbital angular momenta li and the spins si of
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and
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between their spin moments are large compared to the inter-
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between orbital magnetic moment µli = µBli and spin
moment µs = gsµBsi of the same electron, then the orbital
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L =
∑

li with |L| =
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and the individual spins si to a total spin

S =
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si with |S| =
√
S(S + 1)! (6.40b)

of the atomic state. The total angular momentum of the elec-
tron shell is then

J = L+ S with |J| =
√
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This limiting coupling case is named L − S coupling
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Figure 8.11 (a) Two electrons having orbital angular momentum quantum numbers of 1 and 2 
combine to form L values of 1, 2, 3. (b) Two electrons having spin angular quantum numbers of 
1/2 and "1/2 form S values of 0 and 1.

What are the L, S, and J values for the first few excited states 
of helium?

Strategy The lowest excited states of helium must be 
1s12s1 or 1s12p1—that is, one electron is promoted to either 
the 2s1 or 2p1 subshell. It turns out that all excited states of 

helium are single-electron states, because to excite both 
electrons requires more than the ionization energy. We 
expect the excited states of 1s12s1 to be lower than those of 
1s12p1, because the subshell 2s1 is lower in energy than the 
2p1 subshell.

 EXAMPLE 8 .7

Figure 8.12 S and L are antialigned and form J ! L # S. Both S 
and L precess about J, while J precesses about the z axis.

Consider the values L ! 3 and S ! 1 in Example 8.5, and 
choose the minimum value of J. Draw the coupling of the 
vectors for the case of no magnetic field. Show the preces-
sion of the vectors.

Strategy We showed in Figure 8.6a how the vectors com-
bine in LS coupling. In this case we have the situation in 
which L and S are antialigned, because we are considering 
only the minimum value of J.

Solution We are using the situation in Example 8.5 where 
L1 and L2 are aligned to form the maximum value of L, and 
S1 and S2 are aligned to form the maximum value of S. But 
the value of J is a minimum. The vectors L and S both pre-
cess about J. The vector J precesses around the z axis; only 
the component Jz is fixed in space. We show the result in 
Figure 8.12.

 EXAMPLE 8 .6

J 
L 

S

z
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L1 =
p

l1(l1 + 1)~
L2 =

p
l2(l2 + 1)~

L =
p

l(l + 1)~

l = |l1 � l2|, |l1 � l2|+ 1, |l1 � l2|+ 2, . . . , |l1 + l2|

m = m1 +m2

where,
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The coupling of two electrons
For the case of two electrons in a single subshell, the total 
spin angular momentum quantum number may be S=0 or 1. 


For a given value of L, there are 2S+1 values of J, because J 
goes from L-S to L+S (for L>S ). 


The value of 2S+1 is called the multiplicity of the state. 


The notation nl discussed before for a single-electron atom 
becomes 


n2S+1LJ

The letters and numbers used in this notation are called 
spectroscopic or term symbols. 
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190 6 Atoms with More Than One Electron

ψa
atom = ψ1(a)ψ2(a) − ψ2(a)ψ1(a) ≡ 0. (6.14)

Thismeans: The probability to find two electronswith parallel
spins in the same state (n, l,ml) is zero.

Two electrons with the same quantum numbers
(n, l,ml) are described by the symmetric spatial wave
function ψ s

atom.

6.1.3 Consideration of the Electron Spin

Based on the experimental facts (fine structure and the anoma-
lous Zeeman effect) described in the preceding chapter we
know that each electron has a spin s with a value |s| =√
s(s + 1)!, where the spin quantum number s takes the

value s = +1/2 and a component sz = ms! where the
spin projection quantum number ms can only have the val-
ues ms = +1/2 or ms = −1/2. We will describe these two
possible spin orientations by spin functions χ+(ms = +1/2)
and χ−(ms = −1/2). The correct mathematical description
of these functions, which are represented by vectors with two
components (spinors), is not important for the following con-
siderations.

The spin state of the atom where both electrons have par-
allel spins must be described by symmetric spin functions.
There are 3 possible ways to form symmetric spin functions:

χ s
1(1, 2) = c1χ+(1)χ+(2) and

χ s
2(1, 2) = c2χ−(1)χ−(2), (6.15)

χ s
3(1, 2) = c3

[
χ+(1)χ−(2)+ χ−(1)χ+(2)

]
.

which remain unchanged, when the two electrons are
exchanged.

If we normalize the spin functions (|χ∗χ |2 = 1), the coef-
ficients in (6.15) become c1 = c2 = 1; c3 = 1/

√
2. This gives

the three normalized symmetric spin functions (Fig. 6.4a)

χ s
1(1, 2) = χ+(1)χ+(2); Ms = ms1 + ms2 = +1

χ s
2(1, 2) = χ−(1)χ−(2); Ms = ms1 + ms2 = −1

χ s
3(1, 2) =

1√
2

[
χ+(1)χ−(2)+ χ+(2)χ−(1)

]
Ms = 0,

(6.16)

which describe atomic states with total electron spin S =
s1+ s2, its amount |S| = √

S(S + 1)!, the total spin quantum
number S = 1, and the total spin projection quantum number
Ms = ms1 + ms2 = 0,±1.

(a)

(b)

Fig. 6.4 a,b. Vector model of (a) the three triplet sublevels with S = 1,
MS = 0,±1 and (b) of the singlet level with S = 0

The total electron spinSwith |%S| =
√
2·! has three pos-

sible projections onto the quantization axis with quan-
tum numbers MS = 0,±1. If the electron spin inter-
acts with other angular momenta or with external fields,
the corresponding atomic state splits into three compo-
nents. We therefore name such states triplet states.

The antisymmetric wave function

χa = χ+(1)χ−(2) − χ+(2)χ−(1) (6.17)

represents an atomic state with total electron spin-quantum
number S = 0 and therefore MS = 0, which we call a singlet
state (Fig. 6.4b).

The total wave function of an atomic state can now be
written as the product

ψtotal = ψab(r1,ϑ1,ϕ1, r2,ϑ2,ϕ2) · χ(S,MS) (6.18)
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number S = 1, and the total spin projection quantum number
Ms = ms1 + ms2 = 0,±1.

(a)

(b)

Fig. 6.4 a,b. Vector model of (a) the three triplet sublevels with S = 1,
MS = 0,±1 and (b) of the singlet level with S = 0

The total electron spinSwith |%S| =
√
2·! has three pos-

sible projections onto the quantization axis with quan-
tum numbers MS = 0,±1. If the electron spin inter-
acts with other angular momenta or with external fields,
the corresponding atomic state splits into three compo-
nents. We therefore name such states triplet states.

The antisymmetric wave function

χa = χ+(1)χ−(2) − χ+(2)χ−(1) (6.17)

represents an atomic state with total electron spin-quantum
number S = 0 and therefore MS = 0, which we call a singlet
state (Fig. 6.4b).

The total wave function of an atomic state can now be
written as the product

ψtotal = ψab(r1,ϑ1,ϕ1, r2,ϑ2,ϕ2) · χ(S,MS) (6.18)

The total electron spin S has 
three possible projections onto 
the quantization axis with 
quantum numbers MS = 0,±1.

An atomic state with total 
electron spin-quantum number 
S = 0 and therefore MS = 0, 
which we call a singlet state 



18/04/2022 Jinniu Hu

The coupling of two electrons
For two electrons we have singlet states (S=0) and triplet 
states (S=1), which refer to the multiplicity 2S+1. 


Consider two electrons: One is in the 4p and one is in the 
4d subshell. For the atomic states shown 
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As an example of the optical spectra obtained from two-electron atoms, we 
consider the energy-level diagram of magnesium in Figure 8.10 (page 288). The 
most obvious characteristic of this figure is that we have separated the energy 
levels according to whether they are S ! 0 or S ! 1. This is because allowed transi-
tions must have "S ! 0, and no allowed transitions are possible between singlet 
and triplet states. This does not mean that it is impossible for such transitions to 
occur. Transitions that are not allowed, called forbidden transitions, occur, but 
with much lower probability than allowed transitions.

   Spectroscopic
S L J Symbol

 1 1 41P1

0 (singlet) 2 2 41D2

 3 3 41F3

  2 43P2

1 (triplet) 1 1 43P1

  0 43P0

  3 43D3

1 (triplet) 2 2 43D2

  1 43D1

  4 43F4

1 (triplet) 3 3 43F3

  2 43F2

Tab le  8 .2    Spectroscopic Symbols for Two 
Electrons: One in 4p and One in 4d

4p

Unperturbed!
state

Spin-spin!
correlation!

energy
# Spin-orbit!

energy#Residual!
electrostatic!

energy
#

4d

S ! 1
(Triplets)

S ! 0

1P

1D

1F

1P1

3P0,1,2

3D1,2,3

3F2,3,4

1
0

2

1
2
3

2
3

4

1D2

1F3

3P

3D

3F

(Singlets)

Figure 8.9 Schematic diagram indicating the increasing fine-structure splitting due to different 
effects. This case is for an atom having two valence electrons, one in the 4p and the other in the 4d 
state. The energy is not to scale. From R. B. Leighton, Principles of Modern Physics, New York: McGraw-
Hill (1959), p. 261. Used with permission.
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The fine structure
The energy of a fine structure component is 

210 6 Atoms with More Than One Electron

angular momentum L and total spin S results (depending
on the coupling of L + S = J) in different fine structure
components of a multiplet, which only differ in their quantum
number J . The number of possible fine structure components
equals the smaller of the two numbers (2S + 1) or (2L + 1),
because this gives the number of possible relative orientations
between the two vectors S and L, and therefore the number
of different couplings L+ S = J.

The energy of a fine structure component is

EJ = E(n, L , S)+ C · L · S, (6.41)

where the last termgives the coupling energy of the interaction
between total orbital angular momentum L and total spin S.
The coupling constant C is given in units of [1 kg−1 m−2].

Because of the vector relation

J2 = (L+ S)2 = L2 + S2 + 2L · S (6.42)

we obtain for the fine structure coupling energies

C · L · S

= 1
2
C[J (J + 1) − L(L + 1) − S(S + 1)]!2. (6.43)

The labeling of a fine structure component is n2S+1 L J .

Examples

33P1 (n = 3, S = 1, L = 1, J = 1);
42D3/2 (n = 4, S = 1/2, L = 2, J = 3/2),

The following nomenclature is used in accordance with
the labeling of levels in one-electron atoms:

L = 0 : S-terms; L = 1 : P-terms;
L = 2 : D-terms, . . . .

Note
Unfortunately the letter S is used in the literature for two
different things, namely, for the total electron spin and for
levels with L = 0.

Examples

1. The electron configuration with L = 2 and S = 1 results
in three fine structure components with quantum num-
bers J = 1, 2, 3 (Fig. 6.26a). The corresponding vector

couplings are shown in Fig. 6.26b. The energies of the fine
structure components are calculated according to (6.41)–
(6.43)

EJ (n, L , S, J )

= E(n, L , S)+ C/2[J (J + 1) − 6 − 2]!2

= E(n, L , S)+ 2C!2 for J = 3

= E(n, L , S) − 1C!2 for J = 2

= E(n, L , S) − 3C!2 for J = 1

The fine structure components are not equally spaced!
2. The number of fine structure components is 2S+1 if L > S

or 2L + 1 if S > L .
3. The configuration with L = 1 and S = 3/2 has three

possible fine structure components with J = 5/2, 3/2 and
1/2. The components are labeled 4P5/2, 4P3/2, and 4P1/2.

For L-S coupling, the fine structure splitting ∆EFS =
EJ − EJ ′ is small compared to the energetic separation
of levels with different values of L or S. In the spectrum
of an atom, following L-S coupling, one recognizes
a distinct multiplet structure of narrow fine structure
components (Fig. 6.27).

• The fine structure constant C is largest for the low-
est atomic levels (small values of n) with L #= 0
and S #= 0. The magnitude of the multiplet splitting
decreaseswith increasing principal quantumnumber
n (Fig. 6.28).

• L-S coupling is valid mainly for light atoms with
small Z values. Quantum mechanical calculations
show that the fine structure constant C is propor-
tional to

C ∝ Z4/n3, (6.43y)

while the energy separation between levels with dif-
ferent values of L only increases with Z2/n3.

• For large Z values, the fine structure splittings
become comparable with the separation of levels
with different L values and the validity of the L-S
coupling scheme breaks down.

Note that the weighted average of the energies of all fine
structure components

The energy of a fine structure component is where the last 
term gives the coupling energy of the interaction between 
total orbital angular momentum L and total spin S. The 
coupling constant C is given in units of [1 kg-1 m-2].
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The coupling of two electrons
A schematic diagram showing the relative energies of these 
states appears 
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As an example of the optical spectra obtained from two-electron atoms, we 
consider the energy-level diagram of magnesium in Figure 8.10 (page 288). The 
most obvious characteristic of this figure is that we have separated the energy 
levels according to whether they are S ! 0 or S ! 1. This is because allowed transi-
tions must have "S ! 0, and no allowed transitions are possible between singlet 
and triplet states. This does not mean that it is impossible for such transitions to 
occur. Transitions that are not allowed, called forbidden transitions, occur, but 
with much lower probability than allowed transitions.

   Spectroscopic
S L J Symbol

 1 1 41P1

0 (singlet) 2 2 41D2

 3 3 41F3

  2 43P2

1 (triplet) 1 1 43P1

  0 43P0

  3 43D3

1 (triplet) 2 2 43D2

  1 43D1

  4 43F4

1 (triplet) 3 3 43F3

  2 43F2

Tab le  8 .2    Spectroscopic Symbols for Two 
Electrons: One in 4p and One in 4d

4p

Unperturbed!
state

Spin-spin!
correlation!

energy
# Spin-orbit!

energy#Residual!
electrostatic!

energy
#

4d

S ! 1
(Triplets)

S ! 0

1P

1D

1F

1P1

3P0,1,2

3D1,2,3

3F2,3,4

1
0

2

1
2
3

2
3

4

1D2

1F3

3P

3D

3F

(Singlets)

Figure 8.9 Schematic diagram indicating the increasing fine-structure splitting due to different 
effects. This case is for an atom having two valence electrons, one in the 4p and the other in the 4d 
state. The energy is not to scale. From R. B. Leighton, Principles of Modern Physics, New York: McGraw-
Hill (1959), p. 261. Used with permission.
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The coupling of two electrons
As an example of the optical 
spectra obtained from two 
electron atoms, we consider 
the energy-level diagram of 
magnesium. 


The choice rules of transitions 
(for LS coupling scheme) are

288 Chapter 8 Atomic Physics

The two electrons in magnesium outside the closed 2p subshell are 3s2. 
Therefore, the ground state of magnesium is 31S0 (S ! 0, L ! 0, and J ! 0). The 
33S1 state (S ! 1, J ! 1) cannot exist because ms ! 1/2 for both electrons in order 
to have S ! 1, and this is forbidden by the exclusion principle. A 3S1 state is al-
lowed if one of the electrons is in a higher n shell. The energy-level diagram of 
Figure 8.10 is generated by one electron remaining in the 3s subshell while the 
other electron is promoted to the subshell indicated on the diagram. The al-
lowed transitions (for the LS coupling scheme) are

  ¢L ! " 1      ¢S ! 0

  ¢J ! 0, " 1    1   J ! 0 S J ! 0 is forbidden 2  (8.14)

A magnesium atom excited to the 3s3p triplet state has no lower triplet state 
to which it can decay. The only state lower in energy is the 3s2 ground state, 
which is singlet. Such an excited triplet state may exist for a relatively long time 

Figure 8.10 Energy-level dia-
gram for magnesium (two-
electron atom) with one electron 
in the 3s subshell and the other 
electron excited into the n/ sub-
shell indicated. The singlet and 
triplet states are separated, be-
cause transitions between them 
are not allowed by the #S ! 0 se-
lection rule. Several allowed tran-
sitions are indicated.
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The coupling of two electrons
jj coupling scheme predominates for the heavier elements, 
where the nuclear charge causes the spin-orbit interactions 
to be as strong as the forces between the individual spin 

and the individual orbit angular momentum. The coupling 
order becomes 


and then

212 6 Atoms with More Than One Electron

Fig. 6.29 Energetic sequences of the different interactions with the corresponding level splittings in the case of L-S coupling for the example of
the (n1 p)1(n2d)1 configuration

The singlet levels show no fine structure (because the total
spin is zero), while the triplet states split into three fine struc-
ture components. The splitting is largest for the largest L value
(see (6.41)).

The different fine structure components are labeled by the
quantum number J , which is given in Fig. 6.29, together with
the degeneracy 2J + 1.

(b) j-j Coupling
If the interaction energy

Wli si = cii li si (6.44)

between the magnetic moment of an electron due to its orbital
angular momentum and its spin moment becomes larger than
the magnetic interactions

Wli l j = ai j li l j or Wsi s j = bi j si s j

between different electrons, the order of couplings changes.
Now li and si initially couple to form the resultant angular
momentum

ji = li + si (6.45a)

of the electron ei , and the vectors ji of the different electrons
couple to the total angular momentum J of the atomic state

J =
∑

ji . (6.45b)

This limiting coupling case, which is mainly observed for
heavy atoms with large Z values, is called j-j coupling. The
vector coupling diagram is shown in Fig. 6.30.

Note
In the limiting case of j-j coupling the total orbital angular
momentum L and the total spin S are no longer defined,
although the individual vectors li and si are known. There are
no longer S,P,D . . . levels and also no distinction between
singlet, doublet or triplet levels can be made. The only well-
defined “good” quantum number is J for the total angular
momentum J with |J| = (J (J + 1))1/2!. Levels with equal
quantum numbers li for the individual electrons but different
spins si no longer form narrowly spaced fine structure com-
ponents of multiplets but are energetically mixed with levels
of different li .

The spectra of such atoms with large Z numbers are there-
fore confusing and not easy to assign. The spectrum is very

Fig. 6.30 Vector model of j-j coupling
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In the limiting case of j-j coupling the total orbital angular 
momentum L and the total spin S are no longer defined, 
although the individual vectors li and si are known. There are 
no longer S, P, D . . . levels and also no distinction between 
singlet, doublet or triplet levels can be made. 
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The coupling of two electrons

6.5 Electron Configurations and Couplings of Angular Momenta 213

Fig. 6.31 Section of the emission spectrum of iron atoms in the near
UV

crowded as can be seen in the example for the iron spectrum,
from which a small section is shown in Fig. 6.31.

Examples
The tin atom Sn (Z = 50), has the ground state configuration
5s25p2. When one of the two p electrons is excited into the
6s level, the electron configuration (5s2, 5p, 6s) is obtained
with L = 1, S = 1, and J = 0, 1, 2.

If the 6s electron is completely removed, the Sn+ ion with
the configuration (5s2, 5p) results in the 5p2P state, which
shows a fine structure splitting of the same magnitude as the
(5s25p, 6s) configuration of the Sn atom. This demonstrates
that themain part of the fine structure splitting is caused by the
interaction of the p electron with the other electrons, because
the p electron submerges into the electron shell of theSn atom.
Only the minor part is due to spin-orbit coupling between the
6s and the 5p electron. This is a further indication for j- j-
coupling [3].

For most atoms, intermediate coupling cases apply, which
are between pure L-S coupling and j-j coupling. In Fig. 6.32
the transition from L-S coupling for the carbon atom (Z = 6),
over the intermediate coupling for Germanium (Z = 32) to
the j-j coupling for lead Pb (Z = 82) is illustrated.

The total number of possible levels for a given electron
configuration (li , si ) is the same for the two limiting cases. It is
therefore possible to draw for the transition from L-S coupling
to j-j coupling in such a diagram unambiguously connecting
lines for levels with a given J -value. Such a diagram is called
correlation diagram (Fig. 6.33).

6.5.2 Electron Configuration and Atomic States

In this section we will discuss how the different atomic states
and their spectroscopic assignment can be deduced from the
electron configurations.

From the building-up principle, discussed in Sect. 6.2 it
follows that in the case of L-S coupling the total orbital angu-
lar momentum L = ∑

li for a filled electron shell must
be zero, because for each quantum number l, all levels with
projection quantum numbers ml (−l ≤ ml ≤ +l) are occu-
pied. This means that all possible orientations of the orbital
angular momentum are realized and therefore the vector sum
L =∑ li must be zero.

Since this shell is filledwith pairs of electronswith antipar-
allel spins, according to the Pauli principle, the total spin
S = ∑

si must also be zero. This is illustrated in Fig. 6.34
for the neon atom.

All noble gases in their ground states have the quantum
numbers L = S = J = 0, their ground state is 1S0.
For all other atoms the values of L and S can be deter-
mined by counting only electrons in unfilled shells. All
filled shells with a given principal quantum number n
do not affect the angular momenta of the unfilled shells.

Fig. 6.32 Transition range
between L-S coupling and j-j
coupling for equivalent states of
atoms in the fourth column of the
periodic table

j   j-coupling
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The allowed transitions
The allowed transitions for a single-electron atom are 


The choice rules of transitions for jj coupling are
�j = 0,±1 �J = 0,±1

(J = 0 ! J 0 = 0 forbidden)

�l = ±1 �mj = 0, ± 1

�j = 0, ± 1

The choice rules of transitions (for LS coupling scheme) are

�L = ±1 �S = 0

�J = 0,±1 (J = 0 ! J = 0 forbidden)

The parity requirement X
li �

X
lf = ±1
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Selection rules
A classical oscillating electric dipole 


emits the average power, integrated over all directions � 
against the dipole axis 
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2. In the brightest spot of a high-pressure mercury lamp in
the maximum of the intense mercury emission line at λ =
253.7nm the photon number permode is about 10−2. Even
here the induced emission plays a minor role compared
with the spontaneous emission.

3. Within the optical resonator of a helium-neon laser (out-
put power 1mW through the output mirror with transmit-
tance of 1%), which oscillates in a single mode, the photon
number in this mode is about 107! Here, the spontaneous
emission into this mode is completely negligible. Note,
however, that the total spontaneous emission within the
Doppler-width of the neon transition at λ = 632.18nm,
which is distributed over 3× 108 modes of the active vol-
ume of 1 cm3 and is emitted into all directions, exceeds
1W and is therefore stronger than the induced emission.

Note
When using the angular frequency ω = 2πν instead of ν,
the unit frequency interval dω = 2π dν is larger by a factor
of 2π . Since w(ν) dν must be equal to w(ω) dω, the spectral
energy density

wω(ω) =
!ω3

π2c3
1

e!ω/kT − 1
= wν(ν)/2π

of the radiation field is then smaller by this factor. The ratio
of the Einstein coefficients

Aik/B
(ω)
ik = !ω3

π2c3

is then also smaller by the factor 2π . However, the ratio

Aik/
(
B(ω)
ik wω(ω)

)
= Aik/

(
B(ν)
ik wν(ν)

)

of spontaneous to induced emission rates remains the same.

7.1.2 Transition Probabilities, Einstein
Coefficients andMatrix Elements

The relation between transition probabilities and the quantum
mechanical description by matrix elements can be illustrated
in a simple way by a comparison with classical oscillators
emitting electromagnetic radiation.

A classical oscillating electric dipole (Hertzian dipole)
with electric dipole moment

p = qr = p0 sinωt

emits the average power, integrated over all directions ϑ

against the dipole axis (Fig. 7.3a) [1]

P = 2
3

p2ω4

4πε0c3
with p2 = 1

2
p20 . (7.11)

The emitted radiation power is therefore proportional to the
average of the squared dipole moment. The quantummechan-
ical pendant can be rigorously derived by time-dependent per-
turbation theory, which is, however, beyond the scope of this
book. We will therefore use a more intuitive way.

During the absorption or emission of a photon the atom
undergoes a transition between two levels |i〉 and |k〉, i.e it
changes its eigenstate in time.Therefore it cannot be described
by the stationary Schrödinger equation (4.6), but we have to
use the time-dependent Schrödinger equation (4.8).
With the time-dependent wavefunction

Ψ (r, t) = ψ(r) · e−i(Ek/!)·t = ψ(r) · e−iωk ·t (7.12a)

for the state |k〉 with energy Ek, every linear combination

) = *ckψk〉e−i(Ek/!)·t (7.12b)

is also a solution of equation (4.8). If we replace the classical
average dipole moment by the quantum mechanical expres-
sion

−e · ∫Ψ ∗ · r · Ψ dτ = −e**c∗
i ck · e−iωk ·t ∫ ψ∗

i rψkdτ

(7.13)

only those terms in (7.13)with i &= k donot vanish. The reason
for this is that |ψi|2 is an even function but r an odd function
of the coordinates x,y,z. Since the integral extends over the
whole coordinate space it vanishes for an odd integrand.

In the classical model a periodically oscillating dipole
moment emits radiation.

In analogy to the classical expression for the average dipole
moment we define the integral

(a) (b)

Fig. 7.3 (a) Spatial radiation characteristics of a classical oscillating
electric dipole. (b) The expectation value 〈pk〉 = −e〈rk〉 of the quantum
mechanical dipole moment in level |k〉, determined by its wave function
ψk
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Fig. 7.3 (a) Spatial radiation characteristics of a classical oscillating
electric dipole. (b) The expectation value 〈pk〉 = −e〈rk〉 of the quantum
mechanical dipole moment in level |k〉, determined by its wave function
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In analogy to the classical expression for the average dipole 
moment we define the integral 
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Mik = −e ∫ψ∗
i rψkdτ (7.14)

as transition dipole moment for a transition between
the atomic states |i〉 and |k〉 where the two indices
i = (ni , li ,mli ,msi ) and k = (nk, lk,mlk,msk) are abbre-
viations for the four quantum numbers of each state. The
vector r is the radius vector of the electron from the origin at
the atomic nucleus (Fig. 7.3b).

The integration extends over the three spatial coordinates
of the electron. The volume element is dτ = dx dy dz in
Cartesian coordinates or dτ = r2 dr sin ϑ dϑ dϕ in spherical
coordinates.

If the statistical weights gi and gk of levels |i〉 and |k〉 are
equal it follows that Mik = Mki.

We can define the average squared transition dipole
moment by

〈|Mik |2〉 =
1
2
(|Mik | + |Mki |)2 = 2|Mik |2.

Replacing the average classical dipole moment 〈p2〉 in
(7.11) by 〈|Mik|2〉 we obtain the average radiation power,
emitted by an atom in level 〈i | on the transition 〈i | → 〈k| as

〈Pik〉 =
4
3

ω4
ik

4πε0c3
|Mik |2, (7.15)

which is equivalent to the classical expression (7.11) for the
radiation power of the Hertzian dipole, if the average p2 is
replaced by 2|Mik |2.

Ni atoms in level 〈i | emit the average radiation power
〈P〉 = Ni 〈Pik〉 on the transition 〈i | → 〈k| with frequency
ωik .

Using the Einstein coefficient Aik for spontaneous emis-
sion, which gives the probability per second that one atom
emits a photon on the transition 〈i | → 〈k| the average power
emitted by Ni atoms (Fig. 7.4) is

〈P〉 = Ni Aikhνik = Ni Aik!ωik . (7.16)

The comparison of (7.15) with (7.16) yields the relation

Fig. 7.4 Mean radiation power 〈Pik〉 emitted by Ni excited atoms as
fluorescence on the transition |i〉 → |k〉

Aik =
2
3

ω3
ik

ε0hc3
|Mik |2 (7.17)

between the Einstein coefficient Aik and the transition
moment Mik . If the wave functions ψi , ψk of the two
states involved in the transition, are known, the spontaneous
transition probability Aik can be calculated from (7.17) and
therefore the total radiation power emitted by Ni atoms in
level 〈i | on the transition 〈i | → 〈k| can also be calculated.

The transition dipole moments Mik for all possible tran-
sitions between arbitrary levels i , k = 1, 2, . . . , n can be
arranged in an n × n matrix. The Mik are therefore called
Matrix elements. If some of the matrix elements are zero,
the corresponding transition does not occur. One says that
this transition is “not allowed” but “forbidden.” The absolute
square |Mik |2 of the matrix element is directly proportional to
the probability of the transition 〈i | → 〈k|, i.e., of the intensity
of the corresponding line in the atomic spectrum.

Note
Equation (7.17), called the dipole approximation (see
appendix) is only valid, when the wavelength λ of the
radiation is large compared to the dimensions of the dipole.
This is completely analogous to the classical case of the
Hertzian dipole.

For visible light this is readily fulfilled since λ ≈ 500nm
is very large compared to the average size r ≈ 0.5nm of
the emitting atomic dipole. This means that r/λ ≈ 10−3.
However, the dipole approximation is no longer valid for X-
rays when the wavelength becomes smaller than 1 nm.

The experimental arrangement for measuring the emitted
radiation power is depicted in Fig. 7.5. The radiation, emitted
from the atoms in the light source is collected by a lens and
imaged onto the entrance slit of a spectrograph, which has
the transmission T (ω). A detector behind the spectrograph
receives the signal

S(ω) = Ni 〈Pik〉 ε dΩ T (ω)η(ω), (7.18)

where Ni is the number of emitting atoms in level 〈i |, 〈Pik〉
is the average power emitted by a single atom into the solid
angle 4π , d, is the solid angle accepted by the spectrograph,
ε is the fractional area of the image of the light source that
passes through the entrance slit of the spectrograph, T (ω)
is the transmission of the spectrograph and η is the spectral
efficiency of the detector.

Generally, the image of the light source is larger than the
width of the entrance slit, which implies that ε < 1. Here,
an optical fiber bundle can be used to increase the total light

as transition dipole moment for a transition between the 
atomic states, i and k.
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Selection rules
It follows that for the spontaneously emitted radi- ation 
only those transitions |i ⟩ � |k ⟩ are allowed for which the 
transition dipole matrix element is not zero. This means that 
at least one of the components 
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Since Ex = Ey = Ez = 1
3 |E| →

< |E · r|2 > = 1
3
E2 · |r|2. (7.23)

Using the relationw = 1
2ε0|E0|2 between the spectral energy

density w and the electric field E of the radiation field, we
can write (7.21b) for isotropic radiation fields as

dPki

dt
= 2πe2

3ε0!2

∣∣∣∣

∫
ψkrψi dτ

∣∣∣∣
2

wν(ν), dν (7.24)

where we have replaced the index n by k and the total energy
density w is related to the spectral energy density by w =∫
wν(ν) dν.
Comparing this result with (7.2) we obtain for the Einstein

coefficient Bki for absorption

B(ν)
ki = 2

3
π2e2

ε0!2

∣∣∣∣

∫
ψ∗
k rψi dτ

∣∣∣∣
2

. (7.25)

Note The expression for B(ν)
ik , where the frequency is given

in the unit ν[s−1] differs by the factor 2π from B(ω)
ik given in

the unit ω = 2π · ν.

B(ν)
ki = 2π2

3ε0!2
|Mki |2; B(ω)

ki = π

3ε0!2
|Mki |2

with Mki = e ·
∫

ψ∗
i rψk dτ .

A comparison of (7.25) and (7.17) again yields the relation
(7.9b) between the Einstein coefficients Aik and Bik .

7.2 Selection Rules

Not every transition that be would possible according to the
energy conservation rule (7.1) is actually observed in atomic
spectra. The reason for this is that besides energy conser-
vation, the conservation of angular momentum and certain
symmetry rules must also be obeyed. This is all included in
the transition matrix elements.

7.2.1 Selection Rules for Spontaneous Emission

From (7.16) it follows that for the spontaneously emitted radi-
ation only those transitions |i〉 → |k〉 are allowed for which
the transition dipole matrix element

Mik = e
∫

ψ∗
i rψk dτ (7.26)

is not zero. This means that at least one of the components

(Mik)x = e
∫

ψ∗
i xψk dτ

(Mik)y = e
∫

ψ∗
i yψk dτ (7.27)

(Mik)z = e
∫

ψ∗
i zψk dτ

must be different from zero.
We will illustrate this for the hydrogen atom. In order to

make the calculation not too complicated we will disregard
the electron spin and only deal with the spatial part of the
wave function, since in the matrix elements discussed so far
we have only used the spatial part of the wave functions and
the integration extends only over the spatial coordinates.

The hydrogenous wave functions are, according to Sect.
5.1.3:

ψn,l,ml =
1√
2π

Rn,l(r)Θ l
m(ϑ)e

imlϕ . (7.28)

For linearly polarized light with the electric field vector
E = {0, 0, E0} only the z-component of Mik contributes to
the spontaneous emission. We choose the z-axis as quantiza-
tion axis. With z = r cosϑ the z-component becomes

(Mik)z =
1
2π

∞∫

r=0

Ri Rkr3 dr ×
π∫

ϑ=0

Θ lk
mk

Θ li
mi

sin ϑ cosϑ dϑ

×
2π∫

ϕ=0

ei(mk−mi )ϕ dϕ. (7.29)

Only those transitions 〈i | → 〈k| appear in the spectrum, for
which all three factors are nonzero.

For circularly polarized light emitted into the z-direction
the x- and y-components ofMik can contribute to the transi-
tion probability. The electric field vector for circularly polar-
ized σ+-light can be written as E+ = Ex + iEy and for
σ−-light is E− = Ex − iEy . Therefore only the x- and
y-components of the matrix element (7.26) contribute to
the transitions. Forming the linear combinations (Mik)x ±
i(Mik)y of the matrix elements we obtain from (7.27) with
x = r sin ϑ cosϕ and y = r sin ϑ sin ϕ

(Mik)x + i (Mik)y =
1
2π

∞∫

r=0

Ri Rkr3 dr

×
π∫

ϑ=0

Θ li
mi

Θ lk
mk

sin2 ϑ dϑ

must be different from zero. 
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Selection rules
The hydrogenous wave functions are 
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Since Ex = Ey = Ez = 1
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< |E · r|2 > = 1
3
E2 · |r|2. (7.23)

Using the relationw = 1
2ε0|E0|2 between the spectral energy

density w and the electric field E of the radiation field, we
can write (7.21b) for isotropic radiation fields as

dPki

dt
= 2πe2

3ε0!2

∣∣∣∣

∫
ψkrψi dτ

∣∣∣∣
2

wν(ν), dν (7.24)

where we have replaced the index n by k and the total energy
density w is related to the spectral energy density by w =∫
wν(ν) dν.
Comparing this result with (7.2) we obtain for the Einstein

coefficient Bki for absorption

B(ν)
ki = 2

3
π2e2

ε0!2

∣∣∣∣

∫
ψ∗
k rψi dτ

∣∣∣∣
2

. (7.25)

Note The expression for B(ν)
ik , where the frequency is given

in the unit ν[s−1] differs by the factor 2π from B(ω)
ik given in

the unit ω = 2π · ν.

B(ν)
ki = 2π2

3ε0!2
|Mki |2; B(ω)

ki = π

3ε0!2
|Mki |2

with Mki = e ·
∫

ψ∗
i rψk dτ .

A comparison of (7.25) and (7.17) again yields the relation
(7.9b) between the Einstein coefficients Aik and Bik .

7.2 Selection Rules

Not every transition that be would possible according to the
energy conservation rule (7.1) is actually observed in atomic
spectra. The reason for this is that besides energy conser-
vation, the conservation of angular momentum and certain
symmetry rules must also be obeyed. This is all included in
the transition matrix elements.

7.2.1 Selection Rules for Spontaneous Emission

From (7.16) it follows that for the spontaneously emitted radi-
ation only those transitions |i〉 → |k〉 are allowed for which
the transition dipole matrix element

Mik = e
∫

ψ∗
i rψk dτ (7.26)

is not zero. This means that at least one of the components

(Mik)x = e
∫

ψ∗
i xψk dτ

(Mik)y = e
∫

ψ∗
i yψk dτ (7.27)

(Mik)z = e
∫

ψ∗
i zψk dτ

must be different from zero.
We will illustrate this for the hydrogen atom. In order to

make the calculation not too complicated we will disregard
the electron spin and only deal with the spatial part of the
wave function, since in the matrix elements discussed so far
we have only used the spatial part of the wave functions and
the integration extends only over the spatial coordinates.

The hydrogenous wave functions are, according to Sect.
5.1.3:

ψn,l,ml =
1√
2π

Rn,l(r)Θ l
m(ϑ)e

imlϕ . (7.28)

For linearly polarized light with the electric field vector
E = {0, 0, E0} only the z-component of Mik contributes to
the spontaneous emission. We choose the z-axis as quantiza-
tion axis. With z = r cosϑ the z-component becomes

(Mik)z =
1
2π

∞∫

r=0

Ri Rkr3 dr ×
π∫

ϑ=0

Θ lk
mk

Θ li
mi

sin ϑ cosϑ dϑ

×
2π∫

ϕ=0

ei(mk−mi )ϕ dϕ. (7.29)

Only those transitions 〈i | → 〈k| appear in the spectrum, for
which all three factors are nonzero.

For circularly polarized light emitted into the z-direction
the x- and y-components ofMik can contribute to the transi-
tion probability. The electric field vector for circularly polar-
ized σ+-light can be written as E+ = Ex + iEy and for
σ−-light is E− = Ex − iEy . Therefore only the x- and
y-components of the matrix element (7.26) contribute to
the transitions. Forming the linear combinations (Mik)x ±
i(Mik)y of the matrix elements we obtain from (7.27) with
x = r sin ϑ cosϕ and y = r sin ϑ sin ϕ

(Mik)x + i (Mik)y =
1
2π

∞∫

r=0

Ri Rkr3 dr

×
π∫

ϑ=0

Θ li
mi

Θ lk
mk

sin2 ϑ dϑ
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Selection rules
For circularly polarized light emitted into the z-direction 
the x- and y-components of Mik can contribute to the 
transition probability. The electric field vector for circularly 
polarized �+-light can be written as E+ = Ex + iEy and for �−-
light is E-= E − iE .
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the integration extends only over the spatial coordinates.
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the x- and y-components ofMik can contribute to the transi-
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σ−-light is E− = Ex − iEy . Therefore only the x- and
y-components of the matrix element (7.26) contribute to
the transitions. Forming the linear combinations (Mik)x ±
i(Mik)y of the matrix elements we obtain from (7.27) with
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×
2π∫

ϕ=0

ei(mk−mi+1)ϕ dϕ (7.30a)

(Mik)x − i(Mik)y =
1
2π

∞∫

r=0

Ri Rkr3 dr

×
π∫

ϑ=0

Θ li
mi

Θ lk
mk

sin2 ϑ dϑ

×
2π∫

ϕ=0

ei(mk−mi−1)ϕ dϕ. (7.30b)

7.2.2 Selection Rules for theMagnetic Quantum
Number

The last factor in thematrix elements (7.29) for linearly polar-
ized light is always zero, except for mi = mk . This gives the
selection rule

(Mik)z $= 0 only for ∆m = mi − mk = 0. (7.31)

The last integrals in (7.30a) and (7.30b) for circular polarized
light show that (Mik)x + i(Mik)y $= 0 only for mk = mi − 1
and (Mik)x − i(Mik)y $= 0 only for mk = mi + 1 (Fig. 7.7).

In conclusion, we obtain for transitions Ei → Ek the
selection rules for the change ∆m = mi − mk of the
magnetic quantum number m

∆m = ±1 for circularly polarized light (7.32a)

∆m = 0 for linearly polarized light. (7.32b)

Fig.7.7 Transitions with∆m = 0 (emission of linearly polarized light)
and ∆m = ±1 (circular polarization). Quantization axis is the z-axis

Fig.7.8 Linearly polarized light with average photon spin s = 0 as the
superposition of σ+ and σ− light

Table 7.1 Change ∆m of the magnetic quantum number m under
absorption or emission of photons

Photon Absorption Emission

σ+: sphot ↑↑ k ∆m = +1 ∆m = −1
σ−: sphot ↓↑ k ∆m = −1 ∆m = +1
π :

〈
sphot

〉
= 0 ∆m = 0 ∆m = 0

This selection rule also follows from the conservation of
angular momentum for the system atom + photon. For σ+

light, the photon spin is sz = +1!, pointing in the +z direc-
tion. When the photon is emitted into the z-direction the atom
has to decrease the z component of its angular momentum by
the same amount (Fig. 7.7). For σ− light, the photon spin is
sz = −1!, giving rise to atomic transitions with ∆m = −1.
Since linearly polarized light can be regarded as superposition
of σ+ and σ− light, the expectation value for the photon spin
is the quantum mechanical average of −! (for σ−-light and
+! (for σ+-light and is therefore zero (Fig. 7.8). This implies
that the z-component of the atomic angular momentum does
not change during a π -transition.

We can this also explain by the following argument:
The electric field vector E points into a direction perpen-

dicular to the z-direction,which is our quantization axis. Since
Ez = 0 the z-component of the transition dipolemoment van-
ishes.

For the emission of light Ei → Ek + hν, the angular
momentum mi! in the initial state must be equal to the sum
of angular momentum mk! in the final state and the photon
spin (Table 7.1).

When the atom is placed in an external staticmagnetic field
B = {0, 0, Bz}, which causes the degenerate magnetic sub-
levels to split into Zeeman components, one observes for the
light emitted into the field direction, two circularly polarized
components. In the direction perpendicular to the magnetic
field direction, one observes three linearly polarized compo-
nents, one polarized in the z direction, which is due to the
component (Mik)z with ∆m = 0, and two due to the sum
(Mx + iMy)+ (Mx − iMy) = 2Mx with∆m = ±1 (Fig. 7.9)
(see also Sect. 5.2).
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This selection rule also follows from the conservation of
angular momentum for the system atom + photon. For σ+

light, the photon spin is sz = +1!, pointing in the +z direc-
tion. When the photon is emitted into the z-direction the atom
has to decrease the z component of its angular momentum by
the same amount (Fig. 7.7). For σ− light, the photon spin is
sz = −1!, giving rise to atomic transitions with ∆m = −1.
Since linearly polarized light can be regarded as superposition
of σ+ and σ− light, the expectation value for the photon spin
is the quantum mechanical average of −! (for σ−-light and
+! (for σ+-light and is therefore zero (Fig. 7.8). This implies
that the z-component of the atomic angular momentum does
not change during a π -transition.

We can this also explain by the following argument:
The electric field vector E points into a direction perpen-

dicular to the z-direction,which is our quantization axis. Since
Ez = 0 the z-component of the transition dipolemoment van-
ishes.

For the emission of light Ei → Ek + hν, the angular
momentum mi! in the initial state must be equal to the sum
of angular momentum mk! in the final state and the photon
spin (Table 7.1).

When the atom is placed in an external staticmagnetic field
B = {0, 0, Bz}, which causes the degenerate magnetic sub-
levels to split into Zeeman components, one observes for the
light emitted into the field direction, two circularly polarized
components. In the direction perpendicular to the magnetic
field direction, one observes three linearly polarized compo-
nents, one polarized in the z direction, which is due to the
component (Mik)z with ∆m = 0, and two due to the sum
(Mx + iMy)+ (Mx − iMy) = 2Mx with∆m = ±1 (Fig. 7.9)
(see also Sect. 5.2).
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Since Ex = Ey = Ez = 1
3 |E| →

< |E · r|2 > = 1
3
E2 · |r|2. (7.23)

Using the relationw = 1
2ε0|E0|2 between the spectral energy

density w and the electric field E of the radiation field, we
can write (7.21b) for isotropic radiation fields as

dPki

dt
= 2πe2

3ε0!2

∣∣∣∣

∫
ψkrψi dτ

∣∣∣∣
2

wν(ν), dν (7.24)

where we have replaced the index n by k and the total energy
density w is related to the spectral energy density by w =∫
wν(ν) dν.
Comparing this result with (7.2) we obtain for the Einstein

coefficient Bki for absorption

B(ν)
ki = 2

3
π2e2

ε0!2

∣∣∣∣

∫
ψ∗
k rψi dτ

∣∣∣∣
2

. (7.25)

Note The expression for B(ν)
ik , where the frequency is given

in the unit ν[s−1] differs by the factor 2π from B(ω)
ik given in

the unit ω = 2π · ν.

B(ν)
ki = 2π2

3ε0!2
|Mki |2; B(ω)

ki = π

3ε0!2
|Mki |2

with Mki = e ·
∫

ψ∗
i rψk dτ .

A comparison of (7.25) and (7.17) again yields the relation
(7.9b) between the Einstein coefficients Aik and Bik .

7.2 Selection Rules

Not every transition that be would possible according to the
energy conservation rule (7.1) is actually observed in atomic
spectra. The reason for this is that besides energy conser-
vation, the conservation of angular momentum and certain
symmetry rules must also be obeyed. This is all included in
the transition matrix elements.

7.2.1 Selection Rules for Spontaneous Emission

From (7.16) it follows that for the spontaneously emitted radi-
ation only those transitions |i〉 → |k〉 are allowed for which
the transition dipole matrix element

Mik = e
∫

ψ∗
i rψk dτ (7.26)

is not zero. This means that at least one of the components

(Mik)x = e
∫

ψ∗
i xψk dτ

(Mik)y = e
∫

ψ∗
i yψk dτ (7.27)

(Mik)z = e
∫

ψ∗
i zψk dτ

must be different from zero.
We will illustrate this for the hydrogen atom. In order to

make the calculation not too complicated we will disregard
the electron spin and only deal with the spatial part of the
wave function, since in the matrix elements discussed so far
we have only used the spatial part of the wave functions and
the integration extends only over the spatial coordinates.

The hydrogenous wave functions are, according to Sect.
5.1.3:

ψn,l,ml =
1√
2π

Rn,l(r)Θ l
m(ϑ)e

imlϕ . (7.28)

For linearly polarized light with the electric field vector
E = {0, 0, E0} only the z-component of Mik contributes to
the spontaneous emission. We choose the z-axis as quantiza-
tion axis. With z = r cosϑ the z-component becomes

(Mik)z =
1
2π

∞∫

r=0

Ri Rkr3 dr ×
π∫

ϑ=0

Θ lk
mk

Θ li
mi

sin ϑ cosϑ dϑ

×
2π∫

ϕ=0

ei(mk−mi )ϕ dϕ. (7.29)

Only those transitions 〈i | → 〈k| appear in the spectrum, for
which all three factors are nonzero.

For circularly polarized light emitted into the z-direction
the x- and y-components ofMik can contribute to the transi-
tion probability. The electric field vector for circularly polar-
ized σ+-light can be written as E+ = Ex + iEy and for
σ−-light is E− = Ex − iEy . Therefore only the x- and
y-components of the matrix element (7.26) contribute to
the transitions. Forming the linear combinations (Mik)x ±
i(Mik)y of the matrix elements we obtain from (7.27) with
x = r sin ϑ cosϕ and y = r sin ϑ sin ϕ

(Mik)x + i (Mik)y =
1
2π

∞∫

r=0

Ri Rkr3 dr

×
π∫

ϑ=0

Θ li
mi

Θ lk
mk

sin2 ϑ dϑ
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Pauli exclusion principle
Pauli exclusion principle: No two electrons in an atom may 
have the same set of quantum numbers 


n, l, ml, ms

Pauli’s exclusion principle applies to all particles of half-
integer spin, which are called fermions, and can be 
generalized to include particles in the nucleus. 


The complete wave function of a system of n noninteracting 
particles can be expressed as the product of the wave 
functions 

 (1, 2, 3, . . . , n) =  (1) (2) (3) . . . (n)
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Pauli exclusion principle
Exchange symmetry of probability density for 2 states


| |2(1, 2) = | |2(2, 1)

Symmetric
 (1, 2) =  (2, 1)

Antisymmetric
 (1, 2) = � (2, 1)

The corresponding wave functions

 S =
1p
2
[ a(1) b(2) +  a(2) b(1)]

 A =
1p
2
[ a(1) b(2)�  a(2) b(1)]
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Pauli exclusion principle
There are a number of important distinctions between the 
behavior of particles in systems whose wave functions are 
symmetric and that of particles in systems whose wave 
functions are antisymmetric. 


In the antisymmetric case, if we set a=b, we find that 


Hence the two particles cannot be in the same quantum 
state. Systems of electrons are described by wave 
functions that reverse sign upon the exchange of any pair 
of them. 


 A =
1p
2
[ a(1) a(2)�  a(2) a(1)] = 0
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Pauli exclusion principle
The results of various experiments show that all particles 
which have odd half-integral spins have wave functions that 
are antisymmetric to an exchange of any pair of them. 


Particles of odd half-integral spin are often referred to as 
fermions. 


Particles whose spins are 0 or an integer have wave 
functions that are symmetric to an exchange of any pair of 
them. Particles of 0 or integral spin are often referred to as 
bosons 
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The applications
The ground state of Helium


The size of atom


The atom of metal


The independent motion of nucleon


The colors of quarks
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The applications



18/04/2022 Jinniu Hu

The shell and subshell

The atomic electron structure leading to the observed 
ordering of the periodic table can be understood by the 
application of two rules: 


1. The electrons in an atom tend to occupy the 
lowest energy levels available to them. 


2. Only one electron can be in a state with a given 
(complete) set of quantum numbers (Pauli exclusion 
principle). 
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The shell and subshell

Electrons that have the same principal quantum number n 
usually (though not always) average roughly the same 
distance from the nucleus. It is conventional to speak of 
such electrons as occupying the same atomic shell. 


Electrons that share a certain value of l in a shell are said 
to occupy the same subshell. 


240 Chapter Seven

Shell and Subshell Capacities

The exclusion principle limits the number of electrons that can occupy a given subshell.
A subshell is characterized by a certain principal quantum number n and orbital quan-
tum number l, where l can have the values 0, 1, 2, . . . , (n ! 1). There are 2l " 1
different values of the magnetic quantum number ml for any l, since ml # 0, $1,
$2, . . . , $l. Finally, the spin magnetic quantum number ms has the two possible
values of "%

1
2

% and !%
1
2

% for any ml. The result is that each subshell can contain a maximum
of 2(2l " 1) electrons (Table 7.3).

The maximum number of electrons a shell can hold is the sum of the electrons in
its filled subshells. This number is

Nmax # !
l#n!1

l#0
2(2l " 1) # 2[1 " 3 " 5 " . . . " 20(n ! 1) " 1]

# 2[1 " 3 " 5 " . . . " 2n ! 1]

The quantity in brackets has n terms whose average value is %
1
2

%[1 " (2n ! 1)]. The num-
ber of electrons in a filled shell is therefore

Nmax # (n)(2)(%
1
2

%)[1 " (2n ! 1)] # 2n2 (7.14)

Thus a closed K shell holds 2 electrons, a closed L shell holds 8 electrons, a closed M
shell holds 18 electrons, and so on.

7.6   EXPLAINING THE PERIODIC TABLE

How an atom’s electron structure determines its chemical behavior

The notion of electron shells and subshells fits perfectly into the pattern of the periodic
table, which mirrors the atomic structures of the elements. Let us see how this pattern
arises.

An atomic shell or subshell that contains its full quota of electrons is said to be
closed. A closed s subshell (l # 0) holds two electrons, a closed p subshell (l # 1)
six electrons, a closed d subshell (l # 2) ten electrons, and so on.

The total orbital and spin angular momenta of the electrons in a closed subshell
are zero, and their effective charge distributions are perfectly symmetrical (see Ex-
ercise 23 of Chap. 6). The electrons in a closed shell are all very tightly bound,
since the positive nuclear charge is large relative to the negative charge of the inner
shielding electrons (Fig. 7.9). Because an atom with only closed shells has no di-
pole moment, it does not attract other electrons, and its electrons cannot be easily

Table 7.3 Subshell Capacities in the M (n ! 3) Shell of an Atom

ml # 0 ml # !1 ml # "1 ml # !2 ml # "2

l # 0: ↓↑ ↑ms # "%
1
2

%

l # 1: ↓↑ ↓↑ ↓↑ ↓ms # !%
1
2

%

l # 2: ↓↑ ↓↑ ↓↑ ↓↑ ↓↑
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The shell and subshell

The occupancy of the various subshells in an atom is 
usually expressed with the help of electron configurations 
for the various quantum states of the hydrogen atom. For 
example, the electron configuration of sodium is written 

1s22s22p63s1

which means that the 1s (n=1, l=0) 

and 2s (n=2, l=0) subshells contain two electrons each, 

the 2p (n=2, l=1) subshell contains six electrons, 

and the 3s (n=3, l=0) subshell contains one electron. 
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Shell and subshell capacities

The maximum number of electrons a shell can hold is the 
sum of the electrons in its filled subshells. This number is 


Nmax =
l=n�1X

l=0

2(2l + 1)

= 2n2

Thus a closed K shell holds 2 electrons, a closed L shell 
holds 8 electrons, a closed M shell holds 18 electrons, and 
so on. 


274 Chapter 8 Atomic Physics

Let us apply these rules to the first few atoms in the periodic table. Hydrogen 
has quantum numbers (n, /, m/, ms) equal to (1, 0, 0, !1/2) when it is in its low-
est energy state (ground state). In the absence of a magnetic field, the ms " 1/2 
state is degenerate with the ms " #1/2 state. In neutral helium the quantum 
numbers must be different for the two electrons, so if the quantum numbers are 
(1, 0, 0, 1/2) for the first electron, those for the second electron must be (1, 0, 
0, #1/2). Direct experimental evidence shows that the two electrons in the He 
atom have their spins antialigned (spin angular momentum opposed) rather 
than aligned. This confi rms the Pauli exclusion principle. These two electrons 
form a rather stable confi guration with their spin angular momentum anti-
aligned. We speak of two electrons having the same quantum numbers n, /, m/ 
but with their spin angular momentum antialigned (ms " $1/2 and ms " #1/2) 
as being paired, and the total spin of the pair is zero.

The principal quantum number n has also been given letter codes:

  n " 1   2   3   4 p  (8.2) Letter " K  L  M  N p

Because the binding energies depend mainly on n, the electrons for a given n 
are said to be in shells. We speak of the K shell, L shell, and so on (recall from 
Chapter 4 that this was nomenclature used to describe Moseley’s x-ray results). 
The n/ descriptions are called subshells. We have 1s, 2p, 3d subshells. Both elec-
trons in the He atom are in the K shell and 1s subshell (which is a shell in itself). 
We use a superscript to denote the number of electrons in each subshell. The 
hydrogen atom description is 1s1 or 1s (the superscript 1 is sometimes omitted), 
and the helium atom is 1s2.

The next atom in the table is lithium. The K shell has no more space because 
only two electrons are allowed. The next shell is the L shell (n " 2), and the 
possible subshells are 2s and 2p. Rule 1 says the electrons will occupy the state 
with the lowest energy. Remember that semiclassically the 2s state (with zero 
angular momentum) has an orbit through the nucleus, whereas the 2p state has 
a more nearly circular orbit. An electron in the 2p subshell (Li) will experience 
a $3e nuclear charge, but the positive nuclear charge will be partially screened* 
by the two electrons in the 1s shell. The effective charge that the 2p electron sees 
(or feels) will therefore be Zeff ! $1e. The 2s electron, on the other hand, 
spends more time than a 2p electron actually passing near the nucleus; hence 
the effective charge it experiences will be Zeff % $1e. Therefore, an electron in 
the 2s subshell will experience a more attractive potential than a 2p electron and 
will thus lie lower in energy. The electronic structure of Li is 1s22s1. The third 
electron has the quantum numbers (2, 0, 0, !1/2).

How many electrons may be in each subshell in order not to violate the Pauli 
exclusion principle?

  Total

 For each m/: two values of ms 2
 For each /: (2/ $ 1) values of m/ 2(2/ $ 1)

Thus each n/ subshell can have 2(2/ $ 1) electrons. The 1s, 2s, 3s, 4s subshells 
can have only two electrons. The 2p, 3p, 4p subshells can have up to six. The 3d, 
4d, 5d subshells can have up to ten, and so on.

Electron shells

Electron subshells

*Screened” in this case means the electron will react to both the $3e nucleus charge and #2e elec-
tron charge within its own orbit.
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How many electrons may be in each subshell in order not 
to violate the Pauli exclusion principle? 
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Shell and subshell capacities
The time-averaged total charge distribution of all 2n2 

electrons with the same principal quantum number n 
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6.2.1 TheModel of Electron Shells

The radial distributions of atomic electrons, according to
Sect. 5.1.4, is given by

P(r) = r2|Rn,l(r)|2,

where Rn,l(r) is the radial part of the wave function for an
electron with principal quantum number n and orbital angular
momentum quantum number l.

We discussed in Sect. 4.3 that for each value of l there are
(2l + 1) degenerate wave functions Ym

l , with different quan-
tum numbers ml , describing different angular distributions.
For each value of the principal quantum n there are n possi-
ble values l = 0, 1, 2, . . . , n − 1 of the angular momentum
quantum number. Therefore, there are

n−1∑

l=0

(2l + 1) = n2 (6.21)

different states described by the wave functions
ψn,l,m(r,ϑ,ϕ) that can be occupied by at most 2n2

electrons with pairs of opposite spins, according to the Pauli
principle.

The time-averaged total charge distribution of all 2n2 elec-
trons with the same principal quantum number n

e|ψn|2 = e
∑

l

∑

ml

|ψn,l,ml |2 = C · e
∑

l

|Rn,l(r)|2 (6.22)

is obtained by summation over the squares of all possible
wave functions with l < n and −l ≤ ml ≤ +l, where C
is a normalization factor. This gives a spherically symmet-
ric charge distribution, as can be seen by summing over all
squared spherical harmonics Ym

l for a given value of n. This
charge distribution has maxima at certain values of the dis-
tance r from the nucleus, which solely depend on the principal
quantum number n. The main part of the electron charge is
containedwithin the spherical shell between the radii r−∆r/2
and r+∆r/2 (Fig. 6.12). Such a spherically symmetric charge
distribution is called an electron shell. The different shells are
labeled as follows:

n = 1 : K-shell, n = 4 : N-shell
n = 2 : L-shell, n = 5 : O-shell
n = 3 : M-shell, n = 6 : P-shell

Each of these electron shells has, including the electron spin,
2n2 states (n, l,ml ,ms), where each of these states can be
occupied by at most one electron. Some of these states can
be degenerate (for instance all 2l+ 1 levels of a given l-value
are degenerate without an external magnetic field).

Fig. 6.12 Radial electron density distribution for fully occupied shells
with n = 1, 2 and 3

According to the Pauli principle each electron shell can
be occupied by at most 2n2 electrons.

Since the radial wave function for non-Coulomb potentials
also depends on the angular momentum quantum number l
(Fig. 6.13), one calls the arrangement of all electrons with
given values of n and l a subshell (Table 6.1).

For each value of n there are n different values of l and
therefore n subshells.

Table 6.1 Maximum number of electrons in the different atomic elec-
tron shells and subshells

Shell K L M N O

Maximum number
of electrons in
shell X

2 8 18 32 50

Subshells 1s 2s 2p 3s 3p 3d 4s 4p 4d 4 f +5g
Number of electrons 2 2 6 2 6 10 2 6 10 14 18

Total number of
electrons up to
the filled shell X

2 10 28 60 110

is obtained by summation over the squares of all possible 
wave functions with l<n and −l≤ml ≤+l, where C is a 
normalization factor. 

Such a spherically symmetric charge distribution is called 
an electron shell. The different shells are labeled as 
follows: 
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6.2.1 TheModel of Electron Shells

The radial distributions of atomic electrons, according to
Sect. 5.1.4, is given by

P(r) = r2|Rn,l(r)|2,

where Rn,l(r) is the radial part of the wave function for an
electron with principal quantum number n and orbital angular
momentum quantum number l.

We discussed in Sect. 4.3 that for each value of l there are
(2l + 1) degenerate wave functions Ym

l , with different quan-
tum numbers ml , describing different angular distributions.
For each value of the principal quantum n there are n possi-
ble values l = 0, 1, 2, . . . , n − 1 of the angular momentum
quantum number. Therefore, there are

n−1∑

l=0

(2l + 1) = n2 (6.21)

different states described by the wave functions
ψn,l,m(r,ϑ,ϕ) that can be occupied by at most 2n2

electrons with pairs of opposite spins, according to the Pauli
principle.

The time-averaged total charge distribution of all 2n2 elec-
trons with the same principal quantum number n

e|ψn|2 = e
∑

l

∑

ml

|ψn,l,ml |2 = C · e
∑

l

|Rn,l(r)|2 (6.22)

is obtained by summation over the squares of all possible
wave functions with l < n and −l ≤ ml ≤ +l, where C
is a normalization factor. This gives a spherically symmet-
ric charge distribution, as can be seen by summing over all
squared spherical harmonics Ym

l for a given value of n. This
charge distribution has maxima at certain values of the dis-
tance r from the nucleus, which solely depend on the principal
quantum number n. The main part of the electron charge is
containedwithin the spherical shell between the radii r−∆r/2
and r+∆r/2 (Fig. 6.12). Such a spherically symmetric charge
distribution is called an electron shell. The different shells are
labeled as follows:

n = 1 : K-shell, n = 4 : N-shell
n = 2 : L-shell, n = 5 : O-shell
n = 3 : M-shell, n = 6 : P-shell

Each of these electron shells has, including the electron spin,
2n2 states (n, l,ml ,ms), where each of these states can be
occupied by at most one electron. Some of these states can
be degenerate (for instance all 2l+ 1 levels of a given l-value
are degenerate without an external magnetic field).

Fig. 6.12 Radial electron density distribution for fully occupied shells
with n = 1, 2 and 3

According to the Pauli principle each electron shell can
be occupied by at most 2n2 electrons.

Since the radial wave function for non-Coulomb potentials
also depends on the angular momentum quantum number l
(Fig. 6.13), one calls the arrangement of all electrons with
given values of n and l a subshell (Table 6.1).

For each value of n there are n different values of l and
therefore n subshells.

Table 6.1 Maximum number of electrons in the different atomic elec-
tron shells and subshells

Shell K L M N O

Maximum number
of electrons in
shell X

2 8 18 32 50

Subshells 1s 2s 2p 3s 3p 3d 4s 4p 4d 4 f +5g
Number of electrons 2 2 6 2 6 10 2 6 10 14 18

Total number of
electrons up to
the filled shell X

2 10 28 60 110
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Shell and subshell capacities
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6.2.1 TheModel of Electron Shells

The radial distributions of atomic electrons, according to
Sect. 5.1.4, is given by

P(r) = r2|Rn,l(r)|2,

where Rn,l(r) is the radial part of the wave function for an
electron with principal quantum number n and orbital angular
momentum quantum number l.

We discussed in Sect. 4.3 that for each value of l there are
(2l + 1) degenerate wave functions Ym

l , with different quan-
tum numbers ml , describing different angular distributions.
For each value of the principal quantum n there are n possi-
ble values l = 0, 1, 2, . . . , n − 1 of the angular momentum
quantum number. Therefore, there are

n−1∑

l=0

(2l + 1) = n2 (6.21)

different states described by the wave functions
ψn,l,m(r,ϑ,ϕ) that can be occupied by at most 2n2

electrons with pairs of opposite spins, according to the Pauli
principle.

The time-averaged total charge distribution of all 2n2 elec-
trons with the same principal quantum number n

e|ψn|2 = e
∑

l

∑

ml

|ψn,l,ml |2 = C · e
∑

l

|Rn,l(r)|2 (6.22)

is obtained by summation over the squares of all possible
wave functions with l < n and −l ≤ ml ≤ +l, where C
is a normalization factor. This gives a spherically symmet-
ric charge distribution, as can be seen by summing over all
squared spherical harmonics Ym

l for a given value of n. This
charge distribution has maxima at certain values of the dis-
tance r from the nucleus, which solely depend on the principal
quantum number n. The main part of the electron charge is
containedwithin the spherical shell between the radii r−∆r/2
and r+∆r/2 (Fig. 6.12). Such a spherically symmetric charge
distribution is called an electron shell. The different shells are
labeled as follows:

n = 1 : K-shell, n = 4 : N-shell
n = 2 : L-shell, n = 5 : O-shell
n = 3 : M-shell, n = 6 : P-shell

Each of these electron shells has, including the electron spin,
2n2 states (n, l,ml ,ms), where each of these states can be
occupied by at most one electron. Some of these states can
be degenerate (for instance all 2l+ 1 levels of a given l-value
are degenerate without an external magnetic field).

Fig. 6.12 Radial electron density distribution for fully occupied shells
with n = 1, 2 and 3

According to the Pauli principle each electron shell can
be occupied by at most 2n2 electrons.

Since the radial wave function for non-Coulomb potentials
also depends on the angular momentum quantum number l
(Fig. 6.13), one calls the arrangement of all electrons with
given values of n and l a subshell (Table 6.1).

For each value of n there are n different values of l and
therefore n subshells.

Table 6.1 Maximum number of electrons in the different atomic elec-
tron shells and subshells

Shell K L M N O

Maximum number
of electrons in
shell X

2 8 18 32 50

Subshells 1s 2s 2p 3s 3p 3d 4s 4p 4d 4 f +5g
Number of electrons 2 2 6 2 6 10 2 6 10 14 18

Total number of
electrons up to
the filled shell X

2 10 28 60 110
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Fig. 6.13 Radial dependence of the probability density for an electron
between the spherical shells for r and r + dr for different quantum
numbers n, l

6.2.2 Successive Building-up of Electron Shells
for Atoms with Increasing Nuclear Charge

The successive building-up of the electron shell with increas-
ing total number Z of atomic electrons according to the
Pauli principle is illustrated in Fig. 6.14 for the ground states
of atoms with the ten smallest values of Z from hydro-
gen (Z = 1) to neon (Z = 10). The two possible spin
states ms = ±1/2 are symbolized by upwards or downwards
arrows. For S-states that are occupied by only one electron,ms
can be±n2 and cannot therefore be specified. Fully occupied
states are marked as dark blue, states with only one electron
as light blue and unoccupied states as white.

For lithium, with Z = 3, the third electron cannot occupy
the K-shell (1s), because there are already two electrons. It
has to be in the next highest energy L-subshell 2s with n = 2
and l = 0. The electron configuration of the Li atom is then

(1s)2(2s), where the exponent gives the number of electrons
in the corresponding subshell. The quantum numbers of the
third electron are n = 2; l = 0, ml = 0; ms = ±1/2 and the
Li ground state is labeled as 22S1/2 (see Sect. 6.1.4).

The fourth electron in the beryllium atom can still occupy
the 2s state (n = 2; l = 0; ml = 0; ms = −1/2) if the spin
quantum number ms differs from that of the third electron.
The ground state of the Be atom is therefore 21S0.

For the fifth electron in the boron atom the state 2s is
already occupied and it has to go into the 2p state with n = 2
and l = 1. The ground state of B is then 22P1/2.

The next two electrons for the elements carbonC and nitro-
gen N still fit into the subshell 2p with l = 1 andml = 0,±1.
It turns out that the lowest energy is realized, if the three elec-
trons have parallel spins. The reason for this rule is that the
following: Quantum mechanical calculations with accurate
multielectron wavefunctions show, that the electrons in triplet
states are closer to the nucleus than for wavefunctions with
antiparallel spins. Therefore the screening effect is smaller
and the attraction by the nucleus larger. This decreases the
total energy. Hund’s rule:

For every atomic ground state, the total electron spin has
the maximum value tolerated by the Pauli principle.

The quantum numbers (L , S, and J ) of the atomic ground
states are determined by the total orbital angular momentum
L = ∑

li , the total spin S = ∑
si and their coupling to

J = L + S. The ground state of C is then 23P0 because
| "L|z = |"l1 + "l2|z = 1!, and |"S|z = |"S1 + "S2|z = 1.5 and
| "J |z = 0 the ground state of N is 24S3/2 because

∑ "li = "0.
For the next three atoms O, F and Ne the three additional
electrons still fit into the 2p shell, but according to the Pauli
principle, their spinsmust be opposite to that of the three elec-
trons, already occupying this subshell. The total spin quantum
number therefore decreases from oxygen (S = 1) to fluo-
rine (S = 1/2) to neon (S = 0). For neon the L-shell with
n = 2 is fully occupied. The total orbital angular momentum
is L =∑ li = 0 and the total spin S =∑ si = 0. The time-
averaged electron charge distribution for neon is spherically
symmetric. The spectroscopic labels of the ground states of
the first ten elements are given in Fig. 6.14.

With sodium (Z = 11) the building-up of theM-shell with
n = 3 starts, until eight electrons fill this M-shell, which is
still not fully occupied for argon with Z = 18 because the d
subshell is not yet occupied (Table 6.2). The analysis of the
atomic spectra proves that with potassium (Z = 19) in the
first row of the third period in the periodic table the building
up of the 4s shell starts, which is fully occupied for calcium
(Z = 20) before the 3d shell is filled. The reason for this
apparent deviation from the regular scheme stems from the
fact that the 3d electrons are, on average, farther away from the
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6.2.1 TheModel of Electron Shells

The radial distributions of atomic electrons, according to
Sect. 5.1.4, is given by

P(r) = r2|Rn,l(r)|2,

where Rn,l(r) is the radial part of the wave function for an
electron with principal quantum number n and orbital angular
momentum quantum number l.

We discussed in Sect. 4.3 that for each value of l there are
(2l + 1) degenerate wave functions Ym

l , with different quan-
tum numbers ml , describing different angular distributions.
For each value of the principal quantum n there are n possi-
ble values l = 0, 1, 2, . . . , n − 1 of the angular momentum
quantum number. Therefore, there are

n−1∑

l=0

(2l + 1) = n2 (6.21)

different states described by the wave functions
ψn,l,m(r,ϑ,ϕ) that can be occupied by at most 2n2

electrons with pairs of opposite spins, according to the Pauli
principle.

The time-averaged total charge distribution of all 2n2 elec-
trons with the same principal quantum number n

e|ψn|2 = e
∑

l

∑

ml

|ψn,l,ml |2 = C · e
∑

l

|Rn,l(r)|2 (6.22)

is obtained by summation over the squares of all possible
wave functions with l < n and −l ≤ ml ≤ +l, where C
is a normalization factor. This gives a spherically symmet-
ric charge distribution, as can be seen by summing over all
squared spherical harmonics Ym

l for a given value of n. This
charge distribution has maxima at certain values of the dis-
tance r from the nucleus, which solely depend on the principal
quantum number n. The main part of the electron charge is
containedwithin the spherical shell between the radii r−∆r/2
and r+∆r/2 (Fig. 6.12). Such a spherically symmetric charge
distribution is called an electron shell. The different shells are
labeled as follows:

n = 1 : K-shell, n = 4 : N-shell
n = 2 : L-shell, n = 5 : O-shell
n = 3 : M-shell, n = 6 : P-shell

Each of these electron shells has, including the electron spin,
2n2 states (n, l,ml ,ms), where each of these states can be
occupied by at most one electron. Some of these states can
be degenerate (for instance all 2l+ 1 levels of a given l-value
are degenerate without an external magnetic field).

Fig. 6.12 Radial electron density distribution for fully occupied shells
with n = 1, 2 and 3

According to the Pauli principle each electron shell can
be occupied by at most 2n2 electrons.

Since the radial wave function for non-Coulomb potentials
also depends on the angular momentum quantum number l
(Fig. 6.13), one calls the arrangement of all electrons with
given values of n and l a subshell (Table 6.1).

For each value of n there are n different values of l and
therefore n subshells.

Table 6.1 Maximum number of electrons in the different atomic elec-
tron shells and subshells

Shell K L M N O

Maximum number
of electrons in
shell X

2 8 18 32 50

Subshells 1s 2s 2p 3s 3p 3d 4s 4p 4d 4 f +5g
Number of electrons 2 2 6 2 6 10 2 6 10 14 18

Total number of
electrons up to
the filled shell X

2 10 28 60 110
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6.1.5 Energy Levels of the Helium Atom

The lowest energy level of the He atom (ground state) is
obtained if both electrons have the lowest possible prin-
cipal quantum number n = 1. The other quantum num-
bers must then be l = 0 and ml = 0. The two electrons
now have identical quantum numbers (n, l,ml) of the spa-
tial wave function and therefore their spin quantum numbers
ms1 = +1/2 != ms2 = −1/2 must be different. Since the
spatial wave function is symmetric, the spin function must be
antisymmetric. For the total spin we get S = s1 + s2 = 0.
Both spins are antiparallel and MS = ms1 + ms2 = 0. The
helium ground state is a singlet state. The state does not split
in an external magnetic field but has only one Zeeman compo-
nent because its total angular momentum and therefore also
its magnetic moment are zero.

The number 2S + 1 of possible orientations MS of the
total spin S is called the multiplicity of the atomic state. The
multiplicity of an atomic state is written as an upper index in
front of the symbol for the total orbital angular momentum.
Each atomic state is characterized by the symbol nS+1L J ,
where n is the principal quantum number, L the quantum
number of the total orbital angular momentum #L = #l1 +
#l2 (apart from spin) and J the quantum number of the total
angular momentum #J = #L+ #S including the spin.

The helium ground state is then labeled as the 11S0 state
(n = 1, 2S + 1 = 1, L = 0 and J = 0).

The helium atom can be excited into higher electronic
states by absorption of photons or by electron impact or by

collisions with other particles, if their energy is sufficiently
high. If one electron, say e1, is excited into a state with n = 2
and the other electron e2 stays in the lower state with n = 1,
the quantum number l1 can take the values l1 = 0 or l1 = 1.
Since the principle quantum numbers n1 = 2 and n2 = 1
differ, all other quantum numbers can be the same for the
two electrons or they can differ (see Fig. 6.7). Therefore the
following excited states of the He atom can be realized for
n1 = 2 and (n2 = 1, l2 = 0, ml2 = 0, ms2 = +1/2):

21S0

(
l1 = 0,ml1 = 0,ms1 = −1

2
, J = 0

)

21P1

(
l1 = 1,ml1 = 0,±1,ms1 = −1

2
, J = 1

)

23S1

(
l1 = 0,ml1 = 0,ms1 = +1

2
, J = 1

)

23P0

(
l1 = 1,ml1 = −1,ms1 = +1

2
, J = 0

)

23P1

(
l1 = 1,ml1 = 0,ms1 = +1

2
, J = 1

)

23P2

(
l1 = 1,ml1 = +1,ms1 = +1

2
, J = 2

)
.

While the ground state 1S0 of the helium atom must
be a singlet state according to the Pauli principle, the
excited states can be either singlet or triplet states.

Fig.6.7 Symbolic representation of the quantum numbers n, L and S for the ground state and some excited states of the helium atom. The electron
e1 is always in the 1S ground state

Symbolic representation of the quantum numbers n, L and S for 

the ground state and some excited states of the helium atom. 
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Fig.6.8 Fine structure of the 23P state compared with the unsplit 23S1
state of the helium atom

Because of spin-orbit coupling (see Sects. 5.6.2 and 6.5)
all triplet states with the spin quantum number S = 1 and the
orbital quantum number L ≥ 1 split into three fine structure
components that differ in the quantum number J of the total
angular momentum J = l1 + l2 + s1 + s2 (Fig. 6.8).

The magnitude of the splitting and the energetic order of
the fine structure components depend on the kind and strength
of the coupling between the different angular momenta (see
Sect. 6.5).

The level system of the helium atom therefore consists of
a singlet system (single components with S = 0 ⇒ J = L)
and a triplet system with S = 1 (Fig. 6.9).

The energy of the singlet levels is quite different from that
of the triplet levels with the same quantum numbers (n, l,ml).
The reason for this difference is not the magnetic interaction
of the spin-orbit coupling (which only causes small fine struc-
ture splittings), but a consequence of the Pauli principle. For
example, the energetic difference between the 21S0 level and
the 23S0 level is∆E = E(1S0)−E(3S0) = 0.78 eV! The 23S
level is described by the antisymmetric spatial wave function,
where the mutual time-averaged distance 〈r12〉 between the
two electrons is larger than in the 21S state, where the elec-
trons can come much closer together since the spatial wave
function is, even for r12 = 0, not equal to zero. The time-
averaged electrostatic repulsion between the two electrons

〈
Epot(r12)

〉
=
〈

e2

4πε0r12

〉
= e2

4πε0

∫
ψ∗ 1

r12
ψ dτ

is therefore larger in the 21S state than in the 23S state. This
pushes the energy of the 21S state above that of the 23S state.
A second reason is, that the shielding of the nuclear Coulomb
field by the electrons is smaller in the triplet state, because the
two electrons are farther apart. This increases the attraction
between nucleus and electrons and decreases the energy.

Note
While this explanation is correct for the S states the situation is
more complex for the P states. Detailed calculations [1] have
shown that for the 3P state the average distance between the

Fig. 6.9 Level scheme of singlet and triplet states of the helium atom
from L = 0 up to L = 3. The ground state 11S0 is chosen to have the
energy E = 0

two electrons is smaller than for the 1P state, which implies
that the positive Coulomb repulsion energy is larger in the 3P
state than in the 1P state. The reason for the lower total energy
of the 3P state is that for both electrons the average distance
from the nucleus is smaller, which gives a larger negative
potential energy of the electrons in the 3P state. This second
effect overcompensates the first effect.

6.1.6 Helium Spectrum

The spectrumof the heliumatomconsists of all allowed transi-
tions between two arbitrary energy levels Ei , Ek (seeChap. 7).
For all excited states where only one of the two electrons is
excited only this electron is involved in such a transition, the
other stays in the ground state. The energy of the absorbed or
emitted photons is

hνik = Ei − Ek ⇒ λik =
hc

Ei − Ek
(6.19)

(Fig. 6.10). However, not every transition obeying the energy
relation (6.19) is actually observed in the spectrum, because
certain selection rules exist (see Chap. 7) for possible tran-
sitions. For the Helium atom with the total orbital angular
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194 6 Atoms with More Than One Electron

Fig. 6.10 Possible transitions within the singlet and the triplet system

momentum L = l1 + l2, the total spin S = s1 + s2 and the
total electronic angular momentum J = L + S these selec-
tion rules can be expressed by the corresponding quantum
numbers L, S and J:

Only those transitions are allowed for which the selection
rules

∆L = ±1; ∆ML = 0,±1; ∆S = 0; ∆J = 0 or ± 1

except for J = 0↔| J = 0 (6.20)

are fulfilled. Transitions between two levels with J = 0 are
forbidden.

These selection rules just reflect the conservation of angu-
lar momenta of the system atom + absorbed or emitted pho-
ton.

According to these selection rules, transitions between the
singlet system (S = 0) and the triplet system (S = 1) are
forbidden.

For transitions between triplet levels with L ≥ 1, more
than three components are often observed, as can be seen from
Fig. 6.11, which shows the six possible transitions between
the fine structure components of 33D and 23P levels. The
neurons are the different fine structure splittings in the 3P
and the 3D states.

Since the spectrum of the singlet system looks quite differ-
ent from that of the triplet system regarding the line positions
and the fine structure (Fig. 6.10) the two spectra were ini-
tially regarded as originating from different kinds of atoms.
Because the chemical analysis had unambiguously identified
both systems as belonging to helium, it was believed that two
kinds of helium might exist, which were named para-helium
and ortho-helium.

Fig. 6.11 All allowed transitions between the fine structure levels of
the 3D and the 3P states

Today we know that there exists only one kind of helium
and that the difference in the spectra stems from the different
total electron spin S = s1+ s2. For para-helium the total spin
quantum number is S = 0 and for ortho-helium it is S = 1.

The appearance of six components is due to the different
fine structure splitting in the 3P and the 3D states.

6.2 Building-up Principle of the
Electron Shell for Larger Atoms

Since the Pauli principle does not allow more than two elec-
trons in the 1s state with n = 1, the additional electrons in
atoms with more than two electrons have to occupy higher
energy states with n ≥ 2 even in the lowest energy state
(ground state) of these atoms.

The population of electrons in atoms with energy levels
(n, l,ml ,ms) occurs in such a way that

1. The Pauli principle is obeyed and
2. The total energy of all electrons is minimum for the atomic

ground state.

It is remarkable that the structure of the electron shells
of all existing atomic elements can be explained by these
two principles. In particular, the arrangement of the elements
in the periodic table postulated by D. Mendelejew 1869 and
independently by L. Meyer 1870 by comparing the chemical
properties of the elements, follows quite naturally from these
principles in a very satisfactory way. It explains the periodic
table using the structure of the atomic electron shells, gov-
erned by these two principles.

Without the Pauli principle the electron shells of all
atoms would collapse into the 1s shell with the low-
est energy. One can therefore say: The Pauli principle
guarantees the stability of atoms and the great variety
of chemical properties of the different elements.

We will explain these general remarks by some specific
examples.
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Equivalent electrons: those which belong to same (n,l) sub-
shells 

The coupling of two equivalent electrons: allowed 
combinations must of course be consistent with Pauli  

Exclusion Principle (all quantum numbers cannot be same)  
A.1 Atomic Electronic Terms 235

Fig. A.1 Arrangements of two electrons on three equivalent p orbitals

axial projections m`i D ˙1; 0, msi D ˙ 1
2
), let us consider the possible values

of the electrons angular momentum projections, algebraically summing in the
resulting total angular and spin momentum projections, ML D m`1 C m`2 and
MS D ms1 C ms2 , as shown in Fig. A.1, where uparrows correspond to ms D 1

2
and

downarrows to ! 1
2
. The configurations originating negative total spin projection are

implicitly included.
The maximum ML value of 2, found in constructing the allowed configurations,

with maximum MS D 0, implies the existence of a term 1D, thus accounting for five
configurations with (ML D ˙2,˙1,0 and MS D 0). Repeating the procedure on the
remaining configurations, .ML/max D 1 and .MS/max D 1, one accounts for a 3P
term with nine configurations arising from allowed values ML D ˙1,0 and MS D
˙1,0. Finally, the last arrangement (ML D 0 and S D 0) leads to the 1S term. The
group theory offers an elegant and compact derivation of allowed terms (Bishop
1993), though beyond the scope of this book. It can be demonstrated that the spatial
wavefunction for D and S terms is even, while spin wavefunction is even for triplets
and odd for singles. It is straightforward that due to the antisymmetric nature of the
total (spatial+spin) electronic wavefunction, only 1S ,1D and 3P terms could exist.

This is the case of ground and low-lying excited states of carbon atom.

Term Energy (cm!1/ g
3P0 0 1
3P1 16:40 3
3P2 43:40 5
1D2 10;192:63 5
1S0 21;648:01 1

A.1.3.5 Three Not-Equivalent p Electrons (n1p; n2p; n3p)

The results of the two-electron case with configuration (L2; S2) must be combined
with the third electron (l3; s3), i.e.,

np2
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(a)

(b)

Fig.6.35 (a) Vector model of the p2-configuration. (b) Term diagram.
The blue levels are only possible for n1 != n2

Fig.6.36 Slater diagram of all levels (ML ,MS) for a p2-configuration
of equivalent electrons (n1 = n2). The white circles are not observed
because of the Pauli principle

The total spin S and with it the multiplicity 2S + 1 of
an atomic state depends on the number of electrons in not
completely filled shells (Table 6.8).

Table 6.6 Possible total angular momenta and resulting atomic levels
for different two-electron configurations

Electron
configuration

Quantum numbers of
angular momenta

Level assignment

L S J

s 0 1
2

1
2

2S1/2
s2 0 0 0 1S0

0 1 1 3S1 for n1 != n2
sp 1 0 1 1P1

1 1 0, 1, 2 3P0, 3P1, 3P2
p2 0 0 0 1S0

1 1 0, 1, 2 3P0, 3P1, 3P2
2 0 2 1D2

0 1 1

3S1
1P1
3D1,2,3





only f or
n1 != n2

1 0 1
2 1 1, 2, 3

Table 6.7 Possible quantum numbers for levels resulting from a np2

electron configuration with n1 = n2 = n

L S ml1 ml2 ms1 ms2 MS MJ Term

0 0 0 0 + 1
2 − 1

2 0 0 1S0
1 0 0 −1 + 1

2 − 1
2 0 0 3P0

1 −1 + 1
2 + 1

2 +1 +1
1 1 1 0 − 1

2 − 1
2 −1 0 3P1

1 −1 − 1
2 − 1

2 −1 −1

1 0 + 1
2 + 1

2 +1 +2
1 −1 + 1

2 + 1
2 +1 +1

1 1 0 0 + 1
2 − 1

2 0 0 3P2
1 −1 − 1

2 − 1
2 0 −1

0 −1 − 1
2 − 1

2 −1 −2

+1 +1 + 1
2 − 1

2 0 +2
+1 0 + 1

2 − 1
2 0 +1

2 0 1 −1 + 1
2 − 1

2 0 0 1D2

0 −1 + 1
2 − 1

2 0 −1
−1 −1 + 1

2 − 1
2 0 −2

6.6 Excited Atomic States

In Sect. 6.1.5 we illustrated for the case of the He atom that
for excited atomic states, the number of possible ways to cou-
ple the different angular momenta becomes much larger than
for the ground state. The reason for this larger manifold of
possible states is that now the excited electron has a different
principal quantum number and therefore the Pauli principle
imposes fewer restrictions.

In this section we will present the different possibilities of
populating excited atomic states.

The equivalent electrons

Vector model of the p2 configuration 
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6.6 Excited Atomic States

In Sect. 6.1.5 we illustrated for the case of the He atom that
for excited atomic states, the number of possible ways to cou-
ple the different angular momenta becomes much larger than
for the ground state. The reason for this larger manifold of
possible states is that now the excited electron has a different
principal quantum number and therefore the Pauli principle
imposes fewer restrictions.

In this section we will present the different possibilities of
populating excited atomic states.

Slater diagram
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6.6 Excited Atomic States

In Sect. 6.1.5 we illustrated for the case of the He atom that
for excited atomic states, the number of possible ways to cou-
ple the different angular momenta becomes much larger than
for the ground state. The reason for this larger manifold of
possible states is that now the excited electron has a different
principal quantum number and therefore the Pauli principle
imposes fewer restrictions.

In this section we will present the different possibilities of
populating excited atomic states.



18/04/2022 Jinniu Hu

The equivalent electrons
Electronic terms for atoms with equivalent electron 
configurations 

A.2 Complete Sets of Electronic Levels 237

Table A.1 Electronic terms for atoms with equivalent-
electron configurations

Configuration Electronic terms Atoms

p p5 2P B, F
p2 p4 1S 3P 1D C, O, NC

p3 4S 2P 2D N, OC

p6 1S Ne

d d9 2D Sc
d2 d8 1S 3P 1D 3F 1G Ti, Ni
d3 d7 2P 4P 22D 2F 4F 2G 2H V, Co
d4 d6 21S 23P 21D 3D 5D 1F Fe

23F 21G 3G 3H 1I

d5 2S 6S 2P 4P 32D 4D 22F Mn
4F 22G 4G 2H 2I

d10 1S Zn

A.1.3.7 Four Equivalent p Electrons (np4)

This situation gives the same terms as the two equivalent p electrons. This is the case
of the oxygen atoms in ground and low-lying excited states, having four electrons
with principal quantum number n D 2, reported below

Term Energy (cm!1/ g
3P2 0 5
3P1 158:265 3
3P0 226:977 1
1D2 15867:862 5
1S0 33792:583 1

In Table A.1, the electronic terms for equivalent-electron configurations are
given. It should be noted that configurations having equal number of electrons or
electron-holes have to be considered as equivalent, giving rise to the same electronic
terms. Complete shell configurations, i.e. p6, always give the 1S term. We give here
the definition of the parity of atomic terms P D .!1/

P
i `i , being the exponent

the algebraic sum of orbital angular momenta of electrons, in a given electronic
configuration.

A.2 Complete Sets of Electronic Levels

The calculation of electronic partition function of atomic species needs of complete
sets of energy levels and of corresponding statistical weights. Here, we want to
present a very simple and rapid method based on the calculation of energy levels by
an hydrogenic approximation and by calculating the statistical weight through the

Evalid terms for subshells of q electrons are the same as 
for subshells with N-q electrons where N is the closed 
(full) subshell complement 
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bound electron, forming a positive ion.) The electrical conductivity and resistiv-
ity also show subshell effects. Good electrical conductors need free electrons that 
are only weakly bound to their nuclei. In Chapter 10 we shall see similar patterns 
in superconducting properties. The differences according to subshells are 
remarkable.

shells Alkalis
Alkaline

Periodic Table of Elements

Transition elements

Lanthanides

Actinides

Closed

1Groups:

1

1s

H

3

2s1

1s2

2s22p6

3s23p6

Li
4

2s2

Be
5

2s2 2p1 2s2 2p2 2s2 2p3

B
6

C
7

N

2s2 2p4

8
O

2s2 2p5

9
F

2s2 2p6

10
Ne

13

3s2 3p1 3s2 3p2 3s2 3p3

Al
14

Si
15

P

3s2 3p4

16
S

3s2 3p5

17
Cl

3s2 3p6 

18
Ar

31

4p1 4p2 4p3

Ga
32

Ge
33

As

4p4

34
Se

4p5

35
Br

4p6

3d10 4s2 3d10 4s2 3d10 4s2 3d10 4s2 3d10 4s2 3d10 4s2

36
Kr

49

5p1 5p2 5p3

In
50

Sn
51

Sb

5p4

52
Te

5p5

53
I

5p6

4d10 5s2 4d10 5s2 4d10 5s2 4d10 5s2 4d10 5s2 4d10 5s2

54
Xe

81

6s2 6p1

Tl
82

Pb
83

Bi
84

Po
85

At

4f 14 5d10

6s2 6p2

4f 14 5d10

6s2 6p3

4f 14 5d10

6s2 6p4

4f 14 5d10

6s2 6p5

4f 14 5d10

6s2 6p6

4f 14 5d10

86
Rn

58

4f 2 6s2 4f 3 6s2 4f 4 6s2 4f 5 6s2 4f 6 6s2 4f 7 6s2

Ce
59

Pr
60

Nd
61
Pm

62
Sm

63
Eu

64

5d1

4f 7 6s2

4f 9 6s2 4f 10 6s2 4f 11 6s2 4f 12 6s2 4f 13 6s2

Gd
65

Tb
66

Dy
67
Ho

68
Er

69
Tm

4f 14 6s2 6s2
4f 14 5d1

70
Yb

71
Lu

90

6d2 7s2 7s2

5f 2 6d1

7s2

5f 3 6d1

7s2

5f 4 6d1

5f 6 7s2 5f 7 7s2

Th
91

Pa
92

U
93
Np

94
Pu

95
Am

96

7s2

5f 7 6d1

7s2

5f 14 6d1

7s2

5f 8 6d1

5f 10 7s2 5f 11 7s2 5f 12 7s2 5f 13 7s2

Cm
97

Bk
98

Cf
99

Es
100

Fm
101
Md

5f 14 7s2

102
No

103
Lr
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22
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23
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24
Cr

25
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3d1 4s2 3d2 4s2 3d3 4s2 3d5 4s1 3d5 4s2 3d6 4s2

26
Fe

27
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28
Ni

29
Cu

3d7 4s2 3d8 4s2 3d10 4s1 3d10 4s2

30
Zn

39
Y

40
Zr

41
Nb

42
Mo

43
Tc

4d1 5s2 4d2 5s2 4d 4 5s1 4d 5 5s1 4d6 5s1 4d7 5s1

44
Ru

45
Rh

46
Pd

47
Ag

4d8 5s1 4d10 4d10 5s1 4d10 5s2

48
Cd

57
La

72
Hf

73
Ta

74
W

75
Re

5d1 6s2 6s2

4f 14 5d2 4f 14 5d3

6s2

4f 14 5d 4

6s2

4f 14 5d 5

6s2

4f 14 5d 6

6s2

4f 14 5d9

6s1

4f 14 5d10

6s1

4f 14 5d10

6s2

76
Os

77
Ir

78
Pt

79
Au

4f 14 5d9

80
Hg
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Figure 8.2 The atomic number and element symbol are given in the top of each box. The elec-
tron configuration for each element is specified by giving the values of the principal quantum 
numbers n, the angular momentum quantum numbers / (s, p, d, or f ), and the number of elec-
trons outside closed shells. The configuration of some of the closed shells is given on the left.
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The ionization energies of the element278 Chapter 8 Atomic Physics

Inert Gases
The last group of the periodic table is the inert gases. They are unique in that 
they all have closed subshells. For all inert gases except helium the closed sub-
shell is a p subshell. They have no valence electrons, and the p subshell is tightly 
bound. These elements therefore are chemically inert. They do not easily form 
chemical bonds with other atoms. They have zero net spin, large ionization en-
ergy (Figure 8.3), and poor electrical conductivity. Their boiling points are quite 
low, and at room temperature they are monatomic gases, because their atoms 
interact so weakly with each other.

Alkalis
Hydrogen and the alkali metals (Li, Na, K, and so on) form Group 1 of the peri-
odic table. They have a single s electron outside an inert core. This electron can 
be easily removed, so the alkalis easily form positive ions with a charge !1e. There-
fore, we say that their valence is !1. Figure 8.3 shows that the alkali metals have the 
lowest ionization energies. The drop in ionization energies between the inert gases 
and the alkalis is precipitous. The alkali metals are relatively good electrical con-
ductors, because the valence electrons are free to move around from one atom to 
another.

Alkaline Earths
The alkaline earths are in Group 2 of the periodic table. These elements (Be, 
Mg, Ca, Sr, and so on) have two s electrons in their outer subshell, and although 
these subshells are filled, the s electrons can extend rather far from the nucleus 
and can be relatively easily removed. The alkali metals and alkaline earths have 
the largest atomic radii (Figure 8.4), because of their loosely bound s electrons. 
The ionization energies (Figure 8.3) of the alkaline earths are also low, but their 
electrical conductivity is high. The valence of these elements is !2, and they are 
rather active chemically.
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Figure 8.3 The ionization ener-
gies of the elements are shown 
versus the atomic numbers. The 
element symbols are shown for 
the peaks and valleys with the 
subshell closure in parentheses 
where appropriate. When a single 
electron is added to the p and d 
subshells, the ionization energy 
significantly decreases, indicating 
the shell effects of atomic 
structure.
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198 6 Atoms with More Than One Electron

Table 6.2 Electron configuration in the ground states of the chemical elements

Shell K L M O Shell K L M N O

Z Element 1s 2s 2p 3s 3p 3d 4s Z Element 1s 2s 2p 3s 3p 3d 4s 4p 4d 5s 5p

1 H Hydrogen 1 28 Ni Nickel 2 2 6 2 6 8 2
2 He Helium 2 29 Cu Copper 2 2 6 2 6 10 1
3 Li Lithium 2 1 30 Zn Zink 2 2 6 2 6 10 2
4 Be Beryllium 2 2 31 Ga Gallium 2 2 6 2 6 10 2 1
5 B Boron 2 2 1 32 Ge Germanium 2 2 6 2 6 10 2 2
6 C Carbon 2 2 2 33 As Arsenic 2 2 6 2 6 10 2 3
7 N Nitrogen 2 2 3 34 Se Selenium 2 2 6 2 6 10 2 4
8 O Oxygen 2 2 4 35 Br Bromium 2 2 6 2 6 10 2 5
9 F Fluorine 2 2 5 36 Kr Krypton 2 2 6 2 6 10 2 6
10 Ne Neon 2 2 6 37 Rb Rubidium 2 2 6 2 6 10 2 6 1
11 Na Sodium 2 2 6 1 38 Sr Strontium 2 2 6 2 6 10 2 6 2
12 Mg Magnesium 2 2 6 2 39 Y Yttrium 2 2 6 2 6 10 2 6 1 2
13 Al Aluminum 2 2 6 2 1 40 Zr Zirconium 2 2 6 2 6 10 2 6 2 2
14 Si Silicon 2 2 6 2 2 41 Nb Niobium 2 2 6 2 6 10 2 6 4 1
15 P Phosphorus 2 2 6 2 3 42 Mo Molybdenum 2 2 6 2 6 10 2 6 5 1
16 S Sulfur 2 2 6 2 4 43 Tc Technetium 2 2 6 2 6 10 2 6 6 1
17 Cl Chlorine 2 2 6 2 5 44 Ru Ruthenium 2 2 6 2 6 10 2 6 7 1
18 Ar Argon 2 2 6 2 6 45 Rh Rhodium 2 2 6 2 6 10 2 6 8 1
19 K Potassium 2 2 6 2 6 1 46 Pd Palladium 2 2 6 2 6 10 2 6 10
20 Ca Calcium 2 2 6 2 6 2 47 Ag Silver 2 2 6 2 6 10 2 6 10 1
21 Sc Scandium 2 2 6 2 6 1 2 48 Cd Cadmium 2 2 6 2 6 10 2 6 10 2
22 Ti Titanium 2 2 6 2 6 2 2 49 In Indium 2 2 6 2 6 10 2 6 10 2 1
23 V Vanadium 2 2 6 2 6 3 2 50 Sn Tin 2 2 6 2 6 10 2 6 10 2 2
24 Cr Chromium 2 2 6 2 6 5 1 51 Sb Antimony 2 2 6 2 6 10 2 6 10 2 3
25 Mn Manganese 2 2 6 2 6 5 2 52 Te Tellurium 2 2 6 2 6 10 2 6 10 2 4
26 Fe Iron 2 2 6 2 6 6 2 53 I Iodine 2 2 6 2 6 10 2 6 10 2 5
27 Co Cobalt 2 2 6 2 6 7 2 54 Xe Xenon 2 2 6 2 6 10 2 6 10 2 6

is determined from the molar mass MM, the density ρ and
the Avogadro number Na, slight deviations from the values
in Fig. 6.15a are obtained (Fig. 6.15b). The reason is that the
density not only depends on the atomic masses but also on
the interatomic forces, which can be attractive or repulsive.
One example is the He-atom, which has a negligible interac-
tion with neighbouring atoms and therefore a smaller density
resulting in a larger molar volume.

Also, the ionization energies Eion show this periodicity
(Fig. 6.16). The energy necessary to remove the outer elec-
tron (which is the most weakly bound electron) from its state
(n.l.ml) to infinity is

Wion =
1
2

∞∫

rn

Zeffe2

4πε0r2
dr = Zeffe2

8πε0rn

= Ry∗ Z
2
eff

n2
(6.23)

which depends on the average distance 〈r〉 = rn of the
electron from the nucleus with the effective charge eZeff =

e(Z − S), partly shielded by the inner electrons, with the
shielding parameter S.

The noble gases, with their closed, fully occupied shells
have the smallest value of 〈r〉, which means the largest effec-
tive charge eZeff of all elements in the same row of the

Fig.6.16 Variation of ionization energies with the nuclear charge num-
ber Z = total number of electrons
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Atomic radii 
   8.1 Atomic Structure and the Periodic Table 279

Halogens
Immediately to the left of the inert gases, Group 17 is one electron short of having 
a filled outermost subshell. These elements (F, Cl, Br, I, and so on) all have a valence 
of !1 and are chemically very active. They form strong ionic bonds (for example, 
NaCl) with the alkalis (valence "1) by gaining the electron easily given up by the 
alkali atom. In effect, a compound such as NaCl consists of Na" and Cl! ions strongly 
bound by their mutual Coulomb interaction. The groups to the immediate left of 
the halogens have fewer electrons in the p shell. In Figure 8.4 it is apparent that the 
radii of the p subshell decrease as electrons are added. A more stable configuration 
occurs in the p subshell as it is filled, resulting in a more tightly bound atom.

Transition Metals
The three rows of elements in which the 3d, 4d, and 5d subshells are being filled 
are called the transition elements or transition metals. Their chemical properties are 
similar—primarily determined by the s electrons, rather than by the d subshell be-
ing filled. This occurs because the s electrons, with higher n values, tend to have 
greater radii than the d electrons. The filling of the 3d subshell leads to some im-
portant characteristics for elements in the middle of the period. These elements 
(for example Fe, Co, and Ni) have d-shell electrons with unpaired spins (as dic-
tated by Hund’s rules, see Section 8.2). The spins of neighboring atoms in a crystal 
lattice align themselves, producing large magnetic moments and the ferro magnetic 
properties of these elements (see Section 10.4). As the d subshell is filled, the elec-
tron spins eventually pair off, and the magnetic moments, as well as the tendency 
for neighboring atoms to align spins, are reduced.

Lanthanides
The lanthanides (58Ce to 71Lu), also called the rare earths, all have similar chemi-
cal properties. This occurs because they all have the outside 6s2 subshell com-
pleted while the smaller 4f subshell is being filled. The ionization energies 
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Figure 8.4 Atomic radii from 
“covalent” data determined from 
bond lengths in the molecules of 
chemical compounds. The small-
est radii occur when the subshells 
are filled. From Darrell D. Ebbing, 
General Chemistry, 3rd ed., Houghton 
Mifflin (1990).
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Explaning the Periodic Table
An atomic shell or subshell that contains its full quota of 
electrons is said to be closed. A closed s subshell (l=0) 
holds two electrons, a closed p subshell (l=1) six electrons, 
a closed d subshell (l=2) ten electrons, and so on. 


The total orbital and spin angular momenta of the 
electrons in a closed subshell are zero, and their effective 
charge distributions are perfectly symmetrical. 


The electrons in a closed shell are all very tightly bound, 
since the positive nuclear charge is large relative to the 
negative charge of the inner shielding electrons 
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Explaning the Periodic Table Many-Electron Atoms 241

detached. We expect such atoms to be passive chemically, like the inert gases—and
the inert gases all turn out to have closed-shell electron configurations or their equiv-
alents. This is evident from Table 7.4, which shows the electron configurations of
the elements.

An atom of any of the alkali metals of group 1 has a single s electron in its outer
shell. Such an electron is relatively far from the nucleus. It is also shielded by the in-
ner electrons from all but an effective nuclear charge of approximately !e rather than
!Ze. Relatively little work is needed to detach an electron from such an atom, and the
alkali metals accordingly form positive ions of charge !e readily.

Example 7.2

The ionization energy of lithium is 5.39 eV. Use this figure to find the effective charge that acts
on the outer (2s) electron of the lithium atom.

Solution

If the effective nuclear charge is Ze instead of e, Eq. (4.15) becomes

En "
Z2E1
#

n2

+11e

+1e

+8e

+18e

≈

≈

Na

Ar

Figure 7.9 Schematic representation of electron shielding in the sodium and argon atoms. In this
crude model, each outer electron in an Ar atom is acted upon by an effective nuclear charge 8 times
greater than that acting upon the outer electron in a Na atom. The Ar atom is accordingly smaller in
size and has a higher ionization energy. In the actual atoms, the probability-density distributions of
the various electrons overlap in complex ways and thus alter the amount of shielding, but the basic
effect remains the same.
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Shell and subshell capacities

   8.1 Atomic Structure and the Periodic Table 275

We can now describe the electronic configurations of many-electron atoms. 
Although there are effects due to internal magnetic fields, in the absence of 
external magnetic fields, the m/ and ms quantum numbers do not affect the 
atom’s total energy. Thus, the different states available within the same subshell 
are nearly degenerate. For a qualitative understanding we need only refer to n/.

The filling of electrons in an atom generally proceeds until each subshell is 
full. When a subshell has its maximum number of electrons, we say it is closed or 
filled. Electrons in outer shells with lower / values spend more time inside the 
(inner) closed shells. Classically, we understand this result, because the lower / 
values have more elliptical orbits than the higher / values. The electrons with 
higher / values are therefore more shielded from the nuclear charge !Ze, feel 
less Coulomb attraction, and lie higher in energy than those with lower / values. 
For a given n the subshells fill in the order s, p, d, f, g, . . . This shielding effect 
becomes so pronounced that the 4s subshell actually fills before the 3d subshell 
even though it has a larger n. This happens often as the higher-lying shells fill 
with electrons. Experimental evidence shows that the order of subshell filling 
given in Table 8.1 is generally correct. Some important variations from this order 
produce the rare earth lanthanides and actinides. A schematic diagram of the 
subshell energy levels is shown in Figure 8.1.

One nomenclature for identifying atoms is ZX where Z is the atomic number 
of the element (the number of protons), and X is the chemical symbol that 
identifies the element. The Z notation is superfluous because every element has 
a unique Z. For example, 8O and O stand for the same element, because oxygen 
always has Z " 8. In Chapter 12 we discuss isotopes of elements in which the mass 
number of the element varies because the number of neutrons in the nucleus is 
different. Note that in a neutral atom, the number of electrons is equal to Z.

   Subshell Total Electrons in
n O Subshell Capacity All Subshells

1 0 1s  2   2
2 0 2s  2   4
2 1 2p  6  10
3 0 3s  2  12
3 1 3p  6  18
4 0 4s  2  20
3 2 3d 10  30
4 1 4p  6  36
5 0 5s  2  38
4 2 4d 10  48
5 1 5p  6  54
6 0 6s  2  56
4 3 4f 14  70
5 2 5d 10  80
6 1 6p  6  86
7 0 7s  2  88
5 3 5f 14 102
6 2 6d 10 112

Tab le  8 .1    Order of Electron Filling 
in Atomic Subshells

Energy

n!

7p
6d
5f
7s

6p

5p

5d

4d

4s
3d
4p

3p

2p
2s

1s

3s

5s

4f
6s

Figure 8.1 Approximate energy 
ordering of the subshells for the 
outermost electron in an atom. 
This representation assumes that 
the given subshell is receiving its 
first electron and that all lower 
subshells are full and all higher 
subshells are empty.
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Shell and subshell capacities
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Many-Electron Atoms 239

accordingly increase in energy with increasing l. This effect is illustrated in Fig. 7.8,
which is a plot of the binding energies of various atomic electrons as a function of
atomic number for the lighter elements.

Electrons that share a certain value of l in a shell are said to occupy the same
subshell. All the electrons in a subshell have almost identical energies, since the
dependence of electron energy upon ml and ms is comparatively minor.

The occupancy of the various subshells in an atom is usually expressed with the
help of the notation introduced in the previous chapter for the various quantum states
of the hydrogen atom. As indicated in Table 6.2, each subshell is identified by its prin-
cipal quantum number n followed by the letter corresponding to its orbital quantum
number l. A superscript after the letter indicates the number of electrons in that subshell.
For example, the electron configuration of sodium is written

1s22s22p63s1

which means that the 1s (n ! 1, l ! 0) and 2s (n ! 2, l ! 0) subshells contain two
electrons each, the 2p (n ! 2, l ! 1) subshell contains six electrons, and the 3s (n ! 3,
l ! 0) subshell contains one electron.
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Figure 7.8 The binding energies of atomic electrons in rydbergs. (1 Ry ! 13.6 eV ! ground-state
energy of H atom.)
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The Diagonal Rule for Configurations 

The Diagonal Rule for Configurations
Begin at the left and follow each arrow from 

tail to head and then from left to right. 
There is an order to the filling of sublevels within a 

principal energy level. The filling of the levels is 
irregular.

1s 2s 3s 4s 5s 6s 7s
2p 3p 4p 5p 6p 7p

3d 4d 5d 6d 7d
4f 5f 6f 7f

If n+l is same, fill the configuration with smaller n first

if n+l are different and n are same,   fill smaller l 

                       and n is different, fill larger  n
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198 6 Atoms with More Than One Electron

Table 6.2 Electron configuration in the ground states of the chemical elements

Shell K L M O Shell K L M N O

Z Element 1s 2s 2p 3s 3p 3d 4s Z Element 1s 2s 2p 3s 3p 3d 4s 4p 4d 5s 5p

1 H Hydrogen 1 28 Ni Nickel 2 2 6 2 6 8 2
2 He Helium 2 29 Cu Copper 2 2 6 2 6 10 1
3 Li Lithium 2 1 30 Zn Zink 2 2 6 2 6 10 2
4 Be Beryllium 2 2 31 Ga Gallium 2 2 6 2 6 10 2 1
5 B Boron 2 2 1 32 Ge Germanium 2 2 6 2 6 10 2 2
6 C Carbon 2 2 2 33 As Arsenic 2 2 6 2 6 10 2 3
7 N Nitrogen 2 2 3 34 Se Selenium 2 2 6 2 6 10 2 4
8 O Oxygen 2 2 4 35 Br Bromium 2 2 6 2 6 10 2 5
9 F Fluorine 2 2 5 36 Kr Krypton 2 2 6 2 6 10 2 6
10 Ne Neon 2 2 6 37 Rb Rubidium 2 2 6 2 6 10 2 6 1
11 Na Sodium 2 2 6 1 38 Sr Strontium 2 2 6 2 6 10 2 6 2
12 Mg Magnesium 2 2 6 2 39 Y Yttrium 2 2 6 2 6 10 2 6 1 2
13 Al Aluminum 2 2 6 2 1 40 Zr Zirconium 2 2 6 2 6 10 2 6 2 2
14 Si Silicon 2 2 6 2 2 41 Nb Niobium 2 2 6 2 6 10 2 6 4 1
15 P Phosphorus 2 2 6 2 3 42 Mo Molybdenum 2 2 6 2 6 10 2 6 5 1
16 S Sulfur 2 2 6 2 4 43 Tc Technetium 2 2 6 2 6 10 2 6 6 1
17 Cl Chlorine 2 2 6 2 5 44 Ru Ruthenium 2 2 6 2 6 10 2 6 7 1
18 Ar Argon 2 2 6 2 6 45 Rh Rhodium 2 2 6 2 6 10 2 6 8 1
19 K Potassium 2 2 6 2 6 1 46 Pd Palladium 2 2 6 2 6 10 2 6 10
20 Ca Calcium 2 2 6 2 6 2 47 Ag Silver 2 2 6 2 6 10 2 6 10 1
21 Sc Scandium 2 2 6 2 6 1 2 48 Cd Cadmium 2 2 6 2 6 10 2 6 10 2
22 Ti Titanium 2 2 6 2 6 2 2 49 In Indium 2 2 6 2 6 10 2 6 10 2 1
23 V Vanadium 2 2 6 2 6 3 2 50 Sn Tin 2 2 6 2 6 10 2 6 10 2 2
24 Cr Chromium 2 2 6 2 6 5 1 51 Sb Antimony 2 2 6 2 6 10 2 6 10 2 3
25 Mn Manganese 2 2 6 2 6 5 2 52 Te Tellurium 2 2 6 2 6 10 2 6 10 2 4
26 Fe Iron 2 2 6 2 6 6 2 53 I Iodine 2 2 6 2 6 10 2 6 10 2 5
27 Co Cobalt 2 2 6 2 6 7 2 54 Xe Xenon 2 2 6 2 6 10 2 6 10 2 6

is determined from the molar mass MM, the density ρ and
the Avogadro number Na, slight deviations from the values
in Fig. 6.15a are obtained (Fig. 6.15b). The reason is that the
density not only depends on the atomic masses but also on
the interatomic forces, which can be attractive or repulsive.
One example is the He-atom, which has a negligible interac-
tion with neighbouring atoms and therefore a smaller density
resulting in a larger molar volume.

Also, the ionization energies Eion show this periodicity
(Fig. 6.16). The energy necessary to remove the outer elec-
tron (which is the most weakly bound electron) from its state
(n.l.ml) to infinity is

Wion =
1
2

∞∫

rn

Zeffe2

4πε0r2
dr = Zeffe2

8πε0rn

= Ry∗ Z
2
eff

n2
(6.23)

which depends on the average distance 〈r〉 = rn of the
electron from the nucleus with the effective charge eZeff =

e(Z − S), partly shielded by the inner electrons, with the
shielding parameter S.

The noble gases, with their closed, fully occupied shells
have the smallest value of 〈r〉, which means the largest effec-
tive charge eZeff of all elements in the same row of the

Fig.6.16 Variation of ionization energies with the nuclear charge num-
ber Z = total number of electrons

The Diagonal Rule for Configurations 
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The ground state of atom 

Hund’s rules which are empirical state (the first and 
second) that the term structure with the maximum 
possible S and the largest possible L for the given S 
compatible with the Pauli exclusion Principle has the 
lowest energy. 


Hund’s third rule (which applies for atoms or ions with a 
single unfilled shell) states that if the unfilled shell is 
not more than half-filled the lowest value of J has the 
lowest energy while if it is more than half-filled the 
largest value of J has the lowest energy
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Hund’s rules
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than do 3d electrons. Hence the 4s subshell is filled first in potassium and calcium. As
the 3d subshell is filled in successively heavier transition elements, there are still one or
two outer 4s electrons that make possible chemical activity. Not until krypton (Z ! 36)
is another inert gas reached, and here a similarly incomplete outer shell occurs with
only the 4s and 4p subshells filled. Following krypton is rubidium (Z ! 37), which
skips both the 4d and 4f subshells to have a 5s electron. The next inert gas is xenon
(Z ! 54), which has filled 4d, 5s, and 5p subshells, but now even the inner 4f sub-
shell is empty as well as the 5d and 5f subshells. The same pattern recurs with the last
inert gas, radon.

Hund’s Rule

I n general, the electrons in a subshell remain unpaired—that is, have parallel spins—whenever
possible (Table 7.5). This principal is called Hund’s rule. The ferromagnetism of iron, cobalt,

and nickle (" 5 26, 27, 28) is in part a consequence of Hund’s rule. The 3d subshells of their
atoms are only partially occupied, and the electrons in these subshells do not pair off to permit
their spin magnetic moments to cancel out. In iron, for instance, five of the six 3d electrons have
parallel spins, so that each iron atom has a large resultant magnetic moment.

The origin of Hund’s rule lies in the mutual repulsion of atomic electrons. Because of this
repulsion, the farther apart the electrons in an atom are, the lower the energy of the atom. Elec-
trons in the same subshell with the same spin must have different ml values and accordingly are
described by wave functions whose spatial distributions are different. Electrons with parallel
spins are therefore more separated in space than they would be if they paired off. This arrange-
ment, having less energy, is the more stable one.

Table 7.5 Electron Configurations of Elements from Z ! 5 to Z ! 10. The p
electrons have parallel spins whenever possible, in accord with Hund’s rule.

Atomic Spins of p
Element Number Configuration Electrons

Boron 5 1s22s22p1 ↑
Carbon 6 1s22s22p2 ↑ ↑
Nitrogen 7 1s22s22p3 ↑ ↑ ↑
Oxygen 8 1s22s22p4 ↑↓ ↑ ↑
Fluorine 9 1s22s22p5 ↑↓ ↑↓ ↑
Neon 10 1s22s22p6 ↑↓ ↑↓ ↑↓

7.7   SPIN-ORBIT COUPLING

Angular momenta linked magnetically

The fine-structure doubling of spectral lines arises from a magnetic interaction between
the spin and orbital angular momenta of an atomic electron called spin-orbit coupling.

Spin-orbit coupling can be understood in terms of a straightforward classical model.
An electron revolving about a nucleus finds itself in a magnetic field because in its own
frame of reference, the nucleus is circling about it Fig. 7.13. This magnetic field then
acts upon the electron’s own spin magnetic moment to produce a kind of internal
Zeeman effect.
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Notice that the electron removed to form Fe3+ from Fe2+ is taken from a filled 3d orbital, not a half-
filled orbital. This minimizes the repulsive forces between electrons. 

EXAMPLE PROBLEM:  Write electron configurations for cations. 

Write electron configurations for the following ions in spdf and orbital box notation. 

(a) Al3+ (Do not use noble gas notation.) 

(b) Cr2+ (Use noble gas notation.) 

SOLUTION: 

You are asked to write an electron configuration for a cation using spdf and orbital box notation. 

You are given the identity of the cation. 

(a) Aluminum is element 13. The element loses three electrons from its highest-energy orbitals to 
form the Al3+ ion. 

 
 

 
(b) Chromium is element 24. The element loses two electrons from its highest-energy orbitals to 
form the Cr2+ ion. 

 
 

 

 
Cr2!: [Ar]3d4 [Ar]

4s 3d  
7.5.1T: Tutorial Assignment 
7.5.1: Mastery Assignment 

7.5b�Anions�
An anion forms when an atom gains one or more electrons. Nonmetals have relatively large, negative 
electron affinity values, so nonmetals generally form anions. For example, chlorine gains one electron 
to form the chloride ion, Cl�. Examination of the Cl electron configuration shows that the 3p subshell 
in Cl contains a single vacancy. Cl therefore gains a single electron in a 3p orbital to form Cl�. 
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Lande interval rule 
Since separation of energies for states of different J 
arises from spin-orbit term 


Landé interval rule

Since separation of energies for states of di⇧erent J arises from
spin-orbit term contribution Ĥ2 (fine structure),

⌘|J,mJ , L,S |
�

i

�i (ri )L̂i · Ŝi |J,mJ , L,S✓

=
⇧(L,S)

2
[J(J + 1)� L(L + 1)� S(S + 1)]

separation between pair of adjacent levels in a fine structure
multiplet is proportional to larger of two J values,

⇥J � J(J + 1)� (J � 1)J = 2J

e.g. separation between 3P2 and 3P1, and 3P1 and 3P0 should be in
ratio 2:1.

separation between pair of adjacent levels in a fine 
structure multiplet is proportional to larger of two J 
values, 

�J / J(J + 1)� (J � 1)J = 2J

e.g. separation between 3P2 and 3P1, and 3P1 and 3P0 

should be in ratio 2:1. 
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Homework
 
The Physics of Atoms and Quanta 


17.2, 17.3, 17.5, 19.1, 19.4, 19.6, 19.7


