Atomic Physics
Chapter 5 Structure of the Periodic system

The spectra of helium

周大
1．Two sets：
parahelium orthohelium

2．Orthohelium has fine structure

3．The energy difference between the ground state and the lowest excited state in helium is relatively large．

[^0]
18／04／2022

Jinniu Mu

The helium in quantum mechanics

The potential energy of the electrons is

$$
E_{\mathrm{pot}}=-\frac{e^{2}}{4 \pi \varepsilon_{0}}\left(\frac{Z}{r_{1}}+\frac{Z}{r_{2}}-\frac{1}{r_{12}}\right)
$$

The operator of the kinetic energy in the center of mass
system is

$$
\begin{gathered}
\hat{E}_{\text {kin }}=-\frac{\hbar^{2}}{2 \mu}\left(\Delta_{1}\left(\boldsymbol{r}_{1}\right)+\Delta_{2}\left(\boldsymbol{r}_{2}\right)\right) \\
\text { with } \quad \mu=\frac{m_{\mathrm{e}} m_{\mathrm{K}}}{m_{\mathrm{e}}+m_{\mathrm{K}}}
\end{gathered}
$$

The Schrödinger equation is

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m} \Delta_{1} \psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)-\frac{\hbar^{2}}{2 m} \Delta_{2} \psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right) \\
& +E_{\mathrm{pot}} \psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=E \psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)
\end{aligned}
$$

The helium in quantum mechanics

南
周大
with approximation

$$
\mu \approx m_{\mathrm{e}}=m
$$

The relative distance

$$
\boldsymbol{r}_{12}^{2}=\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|^{2}=r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2} \cos \alpha
$$

Therefore，this Schrödinger equation is no longer solvable analytically and we have to use approximations．

Because of the mutual repulsion，the charge distribution of the electrons will be such，that the total energy becomes a minimum．This means：The sum of kinetic energy and potential energy，due to electron－electron repulsion and attraction between the electrons and the nucleus becomes a minimum．On the time average is $\left\langle r_{12}\right\rangle>\left\langle r_{1}\right\rangle=\left\langle r_{2}\right\rangle$

The approximation solutions

In a first crude approximation we can therefore neglect the last term in potential energy. Then we can separate the wave function into the product

$$
\psi\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2}\right)=\psi_{1}\left(\boldsymbol{r}_{1}\right) \psi_{2}\left(\boldsymbol{r}_{2}\right)
$$

Inserting this into the Schrödinger equation yields two separate equations for the two electrons

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 m} \Delta_{1} \psi_{1}\left(\boldsymbol{r}_{1}\right)-\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{Z}{r_{1}} \psi_{1}\left(\boldsymbol{r}_{1}\right)=E_{1} \psi_{1}\left(\boldsymbol{r}_{1}\right) \\
& -\frac{\hbar^{2}}{2 m} \Delta_{2} \psi_{2}\left(\boldsymbol{r}_{2}\right)-\frac{e^{2}}{4 \pi \varepsilon_{0}} \frac{Z}{r_{2}} \psi_{2}\left(\boldsymbol{r}_{2}\right)=E_{2} \psi_{2}\left(\boldsymbol{r}_{2}\right)
\end{aligned}
$$

with

$$
E_{1}+E_{2}=E
$$

The approximation solutions

With $\mathrm{Z}=2$ we obtain in this approximation for the total energy of the two electrons in the lowest state with $n=1$:

$$
\begin{aligned}
E_{\mathrm{He}}(1 s) & =-2 Z^{2} E_{\mathrm{H}}=-2 \cdot 4 \cdot 13.6 \mathrm{eV} \\
& =-108.8 \mathrm{eV} .
\end{aligned}
$$

The experimental value for this energy that is necessary to remove both electrons from the atom (this means to convert the He atom into the doubly charged ion He^{++}) is, however, only $E_{\text {exp }}=78.98 \mathrm{eV}$. The neglection of the electron repulsion therefore introduces an absolute error of 30 eV , i.e., a relative error of about 40\%.

The approximation solutions

A much better approximation is obtained by a model that assumes that each of the two electrons moves in the Coulomb potential of the nucleus, shielded by the charge distribution of the other electron (which is assumed to have a spherically symmetric time average). The resulting potential for each electron is then a spherically symmetric Coulomb potential generated by the effective charge

$$
Q_{\mathrm{eff}}=(Z-S) e
$$

$$
\rho_{\mathrm{el}}\left(\mathrm{e}_{2}\right)=-\psi_{1 \mathrm{~s}}^{\star} \cdot \psi_{1 \mathrm{~s}} \cdot \mathrm{e}
$$

The approximation solutions

For total shielding $S=1$ one would need the energy E_{H} to remove the first electron from the atom. The remaining ion He+ now has the nuclear charge $+2 e$ and the binding energy of the second electron is therefore $-\mathrm{Z}^{2} \mathrm{E}_{\mathrm{H}}=-4 \mathrm{E}_{\mathrm{H}}$. The total ionization energy of the He atom is then

$$
E_{\mathrm{He}}(1 s)=-E_{\mathrm{H}}-4 E_{\mathrm{H}}=-5 E_{\mathrm{H}}=-68 \mathrm{eV}
$$

which comes much closer to the experimental value $\mathrm{E}_{\mathrm{He}}=$ -78.983 eV . For a shielding constant $\mathrm{S}=0.656$ the experimental value is exactly reproduced. In our model the correct energy is therefore obtained for an effective nuclear charge of $Z_{\text {eff }} e=+1.344 e$.

The coupling of electrons

The electron configuration is the distribution of electrons of an atom in atomic orbitals.

$$
n l, n \ln l^{\prime} l^{\prime}, n l n^{\prime} l^{\prime} n^{\prime \prime} l^{\prime \prime}, \ldots
$$

For the two-electron atom, we label the electrons 1 and 2. The total angular momentum J is the vector sum of the four angular momenta:

$$
\vec{J}=\vec{l}_{1}+\vec{l}_{2}+\vec{s}_{1}+\vec{s}_{2}
$$

There are two schemes, called LS coupling and jj coupling, for combining the four angular momenta to form J. The decision of which scheme to use depends on relative strengths of the various interactions. We shall see that jj coupling predominates for heavier elements.

The coupling of electrons

周 大
The LS coupling scheme, also called Russell-Saunders coupling, is used for most atoms when the coupling between the orbital angular momenta of electrons is strong. If the interaction energies

$$
W_{l_{i} l_{j}}=a_{i j} \boldsymbol{l}_{i} \cdot \boldsymbol{l}_{j}
$$

between the orbital magnetic moments of electrons e_{i} and e_{j} and

$$
W_{s_{i} s_{j}}=b_{i j} s_{i} s_{j}
$$

between their spin moments are large compared to the interaction energy

$$
W_{l_{i} \bar{s}_{i}}=c_{i i} \boldsymbol{l}_{i} \boldsymbol{s}_{i}
$$

The coupling of electrons

The orbital angular momenta l_{i} of the different electrons couple to a total orbital momentum

$$
\boldsymbol{L}=\sum \boldsymbol{l}_{i} \text { with }|\boldsymbol{L}|=\sqrt{L(L+1)} \hbar
$$

and the individual spins s_{i} to a total spin

$$
\boldsymbol{S}=\sum_{i} s_{i} \text { with } \quad|\boldsymbol{S}|=\sqrt{S(S+1)} \hbar
$$

of the atomic state. The total angular momentum of the electron shell is then

$$
\boldsymbol{J}=\boldsymbol{L}+\boldsymbol{S} \quad \text { with } \quad|\boldsymbol{J}|=\sqrt{J(J+1)} \hbar .
$$

The coupling of two electrons

周大奖
The coupling of two angular momenta

$$
\begin{aligned}
L_{1} & =\sqrt{l_{1}\left(l_{1}+1\right)} \hbar \\
L_{2} & =\sqrt{l_{2}\left(l_{2}+1\right)} \hbar \\
L & =\sqrt{l(l+1)} \hbar
\end{aligned}
$$

$$
L=3
$$

$L=2$

$L=1$
where，

$$
l=\left|l_{1}-l_{2}\right|,\left|l_{1}-l_{2}\right|+1,\left|l_{1}-l_{2}\right|+2, \ldots,\left|l_{1}+l_{2}\right|
$$

$$
m=m_{1}+m_{2}
$$

The coupling of two electrons

For the case of two electrons in a single subshell, the total spin angular momentum quantum number may be $\mathrm{S}=0$ or 1. For a given value of L, there are $2 S+1$ values of J, because J goes from L-S to L+S (for L>S).

The value of $2 \mathrm{~S}+1$ is called the multiplicity of the state.
The notation nl discussed before for a single-electron atom becomes

$$
n^{2 S+1} L_{J}
$$

The letters and numbers used in this notation are called spectroscopic or term symbols.

The coupling of two electrons

The total electron spin S has three possible projections onto the quantization axis with quantum numbers $M_{s}=0, \pm 1$.
$\chi_{1}^{\mathrm{s}}(1,2)=\chi^{+}(1) \chi^{+}(2) ; \quad M_{s}=m_{s_{1}}+m_{s_{2}}=+1$
$\chi_{2}^{\mathrm{s}}(1,2)=\chi^{-}(1) \chi^{-}(2) ; \quad M_{s}=m_{s_{1}}+m_{s_{2}}=-1$
$\chi_{3}^{\mathrm{s}}(1,2)=\frac{1}{\sqrt{2}}\left[\chi^{+}(1) \chi^{-}(2)+\chi^{+}(2) \chi^{-}(1)\right] M_{s}=0$
An atomic state with total
electron spin-quantum number
$S=0$ and therefore $M_{s}=0$,
which we call a singlet state
$\chi^{\mathrm{a}}=\chi^{+}(1) \chi^{-}(2)-\chi^{+}(2) \chi^{-}(1)$

The coupling of two electrons

南
周大
For two electrons we have singlet states $(\mathrm{S}=0)$ and triplet states（ $\mathrm{S}=1$ ），which refer to the multiplicity $2 \mathrm{~S}+1$ ．

Consider two electrons：One is in the $4 p$ and one is in the 4 d subshell．For the atomic states shown

\boldsymbol{S}	\boldsymbol{L}	\boldsymbol{J}	Spectroscopic Symbol
	1	1	$4^{1} P_{1}$
0 （singlet）	2	2	$4^{1} D_{2}$
	3	3	$4^{1} F_{3}$
1 （triplet）	1	2	$4^{3} P_{2}$
		1	$4^{3} P_{1}$
1 （triplet）	0	$4^{3} P_{0}$	
		3	$4^{3} D_{3}$
		2	$4^{3} D_{2}$
1 （triplet）	3	4	$4^{3} D_{1}$
		3	$4^{3} F_{4}$
		2	$4^{3} F_{3}$
		$4^{3} F_{2}$	

The fine structure

The energy of a fine structure component is

$$
E_{J}=E(n, L, S)+C \cdot \boldsymbol{L} \cdot \boldsymbol{S},
$$

The energy of a fine structure component is where the last term gives the coupling energy of the interaction between total orbital angular momentum L and total spin S. The coupling constant C is given in units of $\left[1 \mathrm{~kg}^{-1} \mathrm{~m}^{-2}\right]$.

The energy of a fine structure component is

$$
J^{2}=(L+S)^{2}=L^{2}+S^{2}+2 \boldsymbol{L} \cdot \boldsymbol{S}
$$

we obtain for the fine structure coupling energies

$$
\begin{aligned}
& \boldsymbol{C} \cdot \boldsymbol{L} \cdot \boldsymbol{S} \\
& =\frac{1}{2} C[J(J+1)-L(L+1)-S(S+1)] \hbar^{2} .
\end{aligned}
$$

The coupling of two electrons

到
大
A schematic diagram showing the relative energies of these states appears

The coupling of two electrons

活大

Singlets
Electron configuration $\rightarrow 3$ sns $\quad 3$ snp $\quad 3$ snd $\quad 3$ snf $\quad 3$ sns $\quad 3$ snp $\quad 3$ snd $\quad 3$ snf spectra obtained from two electron atoms, we consider the energy-level diagram of magnesium.

The choice rules of transitions (for LS coupling scheme) are

$\Delta L= \pm 1$	$\Delta S=0$
$\Delta J=0, \pm 1$	$(J=0 \rightarrow J=0 \quad$ forbidden $)$

Continuum

As an example of the optical Term symbol $\longrightarrow \quad{ }^{1} S_{0} \quad{ }^{1} P_{1} \quad{ }^{1} D_{2} \quad{ }^{1} F_{3} \quad{ }^{3} S_{1} \quad{ }^{3} P_{0,1,2} \quad{ }^{3} D_{1,2,3} \quad{ }^{3} F_{2,3,4}$

Continuum

The coupling of two electrons

jj coupling scheme predominates for the heavier elements, where the nuclear charge causes the spin-orbit interactions to be as strong as the forces between the individual spin and the individual orbit angular momentum. The coupling order becomes

$$
\dot{j}_{i}=\boldsymbol{l}_{i}+\boldsymbol{s}_{i}
$$

$$
W_{l_{i} s_{i}}=c_{i i} \boldsymbol{l}_{i} \boldsymbol{s}_{i}
$$

and then

$$
\boldsymbol{J}=\sum \boldsymbol{j}_{i} .
$$

In the limiting case of j - j coupling the total orbital angular momentum L and the total spin S are no longer defined, although the individual vectors l_{i} and s_{i} are known. There are no longer S, P, D . . . levels and also no distinction between singlet, doublet or triplet levels can be made.

The coupling of two electrons

The allowed transitions

The allowed transitions for a single-electron atom are

$$
\begin{aligned}
& \Delta l= \pm 1 \quad \Delta m_{j}=0, \quad \pm 1 \\
& \Delta j=0, \pm 1
\end{aligned}
$$

The choice rules of transitions (for LS coupling scheme) are

$$
\begin{array}{ll}
\Delta L= \pm 1 & \Delta S=0 \\
\Delta J=0, \pm 1 & (J=0 \rightarrow J=0 \quad \text { forbidden })
\end{array}
$$

The choice rules of transitions for jj coupling are

$$
\begin{aligned}
& \Delta j=0, \pm 1 \quad \Delta J=0, \pm 1 \\
& \left(J=0 \rightarrow J^{\prime}=0 \quad \text { forbidden }\right)
\end{aligned}
$$

The parity requirement

$$
\sum l_{i}-\sum l_{f}= \pm 1
$$

Selection rules

周大
A classical oscillating electric dipole

$$
\boldsymbol{p}=q \boldsymbol{r}=\boldsymbol{p}_{0} \sin \omega t
$$

emits the average power, integrated over all directions θ against the dipole axis

$$
\bar{P}=\frac{2}{3} \frac{\overline{p^{2}} \omega^{4}}{4 \pi \varepsilon_{0} c^{3}} \quad \text { with } \quad \overline{p^{2}}=\frac{1}{2} p_{0}^{2}
$$

In analogy to the classical expression for the average dipole moment we define the integral

$$
M_{i k}=-e \int \psi_{i}^{*} \mathbf{r} \psi_{k} d \tau
$$

as transition dipole moment for a transition between the atomic states, i and k.

Selection rules

It follows that for the spontaneously emitted radi- ation only those transitions $\mathbf{i}\rangle \rightarrow \mid \mathbf{k}>$ are allowed for which the transition dipole matrix element is not zero. This means that at least one of the components

$$
\begin{aligned}
& \left(M_{i k}\right)_{x}=e \int \psi_{i}^{*} x \psi_{k} \mathrm{~d} \tau \\
& \left(M_{i k}\right)_{y}=e \int \psi_{i}^{*} y \psi_{k} \mathrm{~d} \tau \\
& \left(M_{i k}\right)_{z}=e \int \psi_{i}^{*} z \psi_{k} \mathrm{~d} \tau
\end{aligned}
$$

must be different from zero.

Selection rules

The hydrogenous wave functions are

$$
\psi_{n, l, m_{l}}=\frac{1}{\sqrt{2 \pi}} R_{n, l}(r) \Theta_{m}^{l}(\vartheta) \mathrm{e}^{\mathrm{i} m l \varphi}
$$

Tor linearly polarized light with the electric field vector $E=$ $\left\{0,0, E_{0}\right\}$ only the z-component of $M_{i k}$ contributes to the spontaneous emission. We choose the z-axis as quantization axis. With $z=r \cos \theta$ the z-component becomes

$$
\begin{gathered}
\left(M_{i k}\right)_{z}=\frac{1}{2 \pi} \int_{r=0}^{\infty} R_{i} R_{k} r^{3} \mathrm{~d} r \times \int_{\vartheta=0}^{\pi} \Theta_{m_{k}}^{l_{k}} \Theta_{m_{i}}^{l_{i}} \sin \vartheta \cos \vartheta \mathrm{~d} \vartheta \\
\\
\times \int_{\varphi=0}^{2 \pi} \mathrm{e}^{\mathrm{i}\left(m_{k}-m_{i}\right) \varphi} \mathrm{d} \varphi
\end{gathered}
$$

Selection rules

For circularly polarized light emitted into the z-direction the x - and y-components of $M_{i k}$ can contribute to the transition probability. The electric field vector for circularly polarized σ^{+-}light can be written as $\mathrm{E}^{+}=\mathrm{E}_{\mathrm{x}}+\mathrm{i} \mathrm{E}_{\mathrm{y}}$ and for $\sigma-$ light is $E-=E-i E$.

$$
\begin{array}{rlrl}
\left(M_{i k}\right)_{x}+\mathrm{i}\left(M_{i k}\right)_{y}= & \frac{1}{2 \pi} \int_{r=0}^{\infty} R_{i} R_{k} r^{3} \mathrm{~d} r \quad\left(M_{i k}\right)_{x}-\mathrm{i}\left(M_{i k}\right)_{y}= & \frac{1}{2 \pi} \int_{r=0}^{\infty} R_{i} R_{k} r^{3} \mathrm{~d} r \\
& \times \int_{\vartheta=0}^{\pi} \Theta_{m_{i}}^{l_{i}} \Theta_{m_{k}}^{l_{k}} \sin ^{2} \vartheta \mathrm{~d} \vartheta & \times \int_{\vartheta=0}^{\pi} \Theta_{m_{i}}^{l_{i}} \Theta_{m_{k}}^{l_{k}} \sin ^{2} \vartheta \mathrm{~d} \vartheta \\
& \times \int_{\varphi=0}^{2 \pi} \mathrm{e}^{\mathrm{i}\left(m_{k}-m_{i}+1\right) \varphi} \mathrm{d} \varphi & & \times \int_{\varphi=0}^{2 \pi} \mathrm{e}^{\mathrm{i}\left(m_{k}-m_{i}-1\right) \varphi} \mathrm{d} \varphi
\end{array}
$$

$$
x=r \sin \vartheta \cos \varphi \quad y=r \sin \vartheta \sin \varphi
$$

Pauli exclusion principle

Pauli exclusion principle: No two electrons in an atom may have the same set of quantum numbers

$$
n, l, m_{l}, m_{s}
$$

Pauli's exclusion principle applies to all particles of halfinteger spin, which are called fermions, and can be generalized to include particles in the nucleus.

The complete wave function of a system of n noninteracting particles can be expressed as the product of the wave functions

$$
\psi(1,2,3, \ldots, n)=\psi(1) \psi(2) \psi(3) \ldots \psi(n)
$$

Pauli exclusion principle

Exchange symmetry of probability density for 2 states

$$
|\psi|^{2}(1,2)=|\psi|^{2}(2,1)
$$

Symmetric

$$
\psi(1,2)=\psi(2,1)
$$

Antisymmetric

$$
\psi(1,2)=-\psi(2,1)
$$

The corresponding wave functions

$$
\begin{aligned}
\psi_{S} & =\frac{1}{\sqrt{2}}\left[\psi_{a}(1) \psi_{b}(2)+\psi_{a}(2) \psi_{b}(1)\right] \\
\psi_{A} & =\frac{1}{\sqrt{2}}\left[\psi_{a}(1) \psi_{b}(2)-\psi_{a}(2) \psi_{b}(1)\right]
\end{aligned}
$$

Pauli exclusion principle

There are a number of important distinctions between the behavior of particles in systems whose wave functions are symmetric and that of particles in systems whose wave functions are antisymmetric.

In the antisymmetric case, if we set $a=b$, we find that

$$
\psi_{A}=\frac{1}{\sqrt{2}}\left[\psi_{a}(1) \psi_{a}(2)-\psi_{a}(2) \psi_{a}(1)\right]=0
$$

Hence the two particles cannot be in the same quantum state. Systems of electrons are described by wave functions that reverse sign upon the exchange of any pair of them.

Pauli exclusion principle

The results of various experiments show that all particles which have odd half-integral spins have wave functions that are antisymmetric to an exchange of any pair of them.

Particles of odd half-integral spin are often referred to as fermions.

Particles whose spins are 0 or an integer have wave functions that are symmetric to an exchange of any pair of them. Particles of 0 or integral spin are often referred to as bosons

The applications

The ground state of Helium

The size of atom

The atom of metal

The independent motion of nucleon

The colors of quarks

The applications

The shell and subshell

The atomic electron structure leading to the observed ordering of the periodic table can be understood by the application of two rules:

1. The electrons in an atom tend to occupy the lowest energy levels available to them.
2. Only one electron can be in a state with a given (complete) set of quantum numbers (Pauli exclusion principle).

The shell and subshell

Electrons that have the same principal quantum number n usually (though not always) average roughly the same distance from the nucleus. It is conventional to speak of such electrons as occupying the same atomic shell.

Electrons that share a certain value of I in a shell are said to occupy the same subshell.

	$m_{l}=0$	$m_{l}=-1$	$m_{l}=+1$	$m_{l}=-2$	$m_{l}=+2$	
$l=0:$	$\downarrow \uparrow$					$\uparrow_{m_{s}=+\frac{1}{2}}$
$l=1:$	$\downarrow \uparrow$	$\downarrow \uparrow$	$\downarrow \uparrow$			$\downarrow m_{s}=-\frac{1}{2}$
$l=2:$	$\downarrow \uparrow$					

The shell and subshell

The occupancy of the various subshells in an atom is usually expressed with the help of electron configurations for the various quantum states of the hydrogen atom. For example, the electron configuration of sodium is written

$$
1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}
$$

which means that the 1s $(\mathrm{n}=1, \mathrm{l}=0)$
and $2 s(n=2, l=0)$ subshells contain two electrons each, the $2 p(n=2, l=1)$ subshell contains six electrons, and the $3 s(n=3, l=0)$ subshell contains one electron.

Shell and subshell capacities

How many electrons may be in each subshell in order not to violate the Pauli exclusion principle?

$$
\begin{array}{ll}
\text { For each } m_{\ell}: \text { two values of } m_{s} & 2 \\
\text { For each } \ell:(2 \ell+1) \text { values of } m_{\ell} & 2(2 \ell+1)
\end{array}
$$

The maximum number of electrons a shell can hold is the sum of the electrons in its filled subshells. This number is

$$
\begin{aligned}
N_{\max } & =\sum_{l=0}^{l=n-1} 2(2 l+1) \\
& =2 n^{2}
\end{aligned}
$$

Thus a closed K shell holds 2 electrons, a closed L shell holds 8 electrons, a closed M shell holds 18 electrons, and so on.

Shell and subshell capacities

周大
The time-averaged total charge distribution of all $2 \mathrm{n}^{2}$ electrons with the same principal quantum number n

$$
e\left|\psi_{n}\right|^{2}=e \sum_{l} \sum_{m_{l}}\left|\psi_{n, l, m_{l}}\right|^{2}=C \cdot e \sum_{l}\left|R_{n, l}(r)\right|^{2}
$$

is obtained by summation over the squares of all possible wave functions with $l<n$ and $-l \leq m_{1} \leq+l$, where C is a normalization factor.
Such a spherically symmetric charge distribution is called an electron shell. The different shells are labeled as follows:

$$
\begin{array}{ll}
n=1: \text { K-shell, } & n=4: \mathrm{N} \text {-shell } \\
n=2: \text { L-shell, } & n=5: \text { O-shell } \\
n=3: \text { M-shell, } & n=6: \text { P-shell }
\end{array}
$$

Shell and subshell capacities

Shell	K	L	M	N	O
Maximum number of electrons in shell X	2	8	18	32	50
Subshells	$1 s$	2s $2 p$	$3 s 3 p 3 d$	$4 s 4 p 4 d 4 f$	$+5 g$
Number of electrons	2	26	2610	261014	18
Total number of electrons up to the filled shell X	2	10	28	60	110

The spectra of helium

南新大

Symbolic representation of the quantum numbers n, L and S for the ground state and some excited states of the helium atom．

m_{12}	0	0	0	1	1	1
$\vec{S}(\mathrm{n}=2)$			\uparrow	\uparrow	\downarrow	$\uparrow \downarrow$
$\vec{S}(\mathrm{n}=1)$		\uparrow	\uparrow	\uparrow	\downarrow	$\uparrow \int \text { or }$
Coupling of angular momentum	$S=0, L=0$	$S=0, L=0$	$S=1, L=0$	$S=1, L=1$		
Total angular momentum	$J=0$	$\mathrm{J}=0$	$\mathrm{J}=1$	$J=2$	$\mathrm{J}=0$	$J=1$
State	$1^{1} \mathrm{~S}_{0}$	$2^{1} \mathrm{~S}_{0}$	$2^{3} S_{1}$	$2^{3} \mathrm{P}_{2}$	$2^{3} \mathrm{P}_{0}$	$2{ }^{3} \mathrm{P}_{1}$

The spectra of helium

南
周 大

The equivalent electrons

Equivalent electrons: those which belong to same (n, l) subshells

The coupling of two equivalent electrons: allowed combinations must of course be consistent with Pauli Exclusion Principle (all quantum numbers cannot be same)

The equivalent electrons

Vector model of the p^{2} configuration

$L=0, m_{l_{1}}=1, m_{l_{2}}=-1$
S term

$\mathrm{L}=1, \mathrm{~m}_{\mathrm{l}_{1}}=1, \mathrm{~m}_{\mathrm{l}_{2}}=-1$
$\mathrm{M}=0$
P term

$$
\begin{gathered}
\mathrm{L}=2, \mathrm{~m}_{\mathrm{l}_{1}}=\mathrm{m}_{\mathrm{l}_{2}}=+1 \\
\mathrm{M}=2 \\
\mathrm{D} \text { term }
\end{gathered}
$$

The equivalent electrons

Slater diagram

The equivalent electrons

南
洞大
Possible total angular momenta and resulting atomic levels for different two－electron configurations

Electron configuration	Quantum numbers of angular momenta			Level assignment
	L	S	J	
s	0	$\frac{1}{2}$	$\frac{1}{2}$	${ }^{2} S_{1 / 2}$
s^{2}	0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & { }^{1} S_{0} \\ & { }^{3} S_{1} \text { for } n_{1} \neq n_{2} \end{aligned}$
$s p$		0 1	$\begin{aligned} & 1 \\ & 0,1,2 \end{aligned}$	$\begin{aligned} & { }^{1} P_{1} \\ & { }^{3} P_{0},{ }^{3} P_{1},{ }^{3} P_{2} \end{aligned}$
p^{2}	0 1 2 0 1 2	0 1 0 1 0 1	$\begin{aligned} & 0 \\ & 0,1,2 \\ & 2 \\ & 1 \\ & 1 \\ & 1,2,3 \end{aligned}$	$\begin{aligned} & { }^{1} S_{0} \\ & { }^{3} P_{0},{ }^{3} P_{1},{ }^{3} P_{2} \\ & { }^{1} D_{2} \\ & \left.\begin{array}{l} { }^{3} S_{1} \\ { }^{1} P_{1} \\ { }^{3} D_{1,2,3} \end{array}\right\} \begin{array}{l} \text { onlyfor } \\ n_{1} \neq n_{2} \end{array} \end{aligned}$

The equivalent electrons

Electronic terms for atoms with equivalent electron configurations

Configuration	Electronic terms	Atoms
$p p^{5}$	${ }^{2} P$	$\mathrm{~B}, \mathrm{~F}$
$p^{2} p^{4}$	${ }^{1} S^{3} P^{1} D$	$\mathrm{C}, \mathrm{O}, \mathrm{N}^{+}$
p^{3}	${ }^{4} S^{2} P^{2} D$	$\mathrm{~N}, \mathrm{O}^{+}$
p^{6}	${ }^{1} S$	Ne
$d d^{9}$	${ }^{2} D$	Sc
$d^{2} d^{8}$	${ }^{1} S^{3} P^{1} D^{3} F{ }^{1} G$	Ti, Ni
$d^{3} d^{7}$	${ }^{2} P^{4} P 2^{2} D^{2} F^{4} F^{2} G^{2} H$	$\mathrm{~V}, \mathrm{Co}$
$d^{4} d^{6}$	$2^{1} S 2^{3} P 2^{1} D{ }^{3} D^{5} D^{1} F$	Fe
d^{5}	$2^{3} F 2^{1} G^{3} G^{3} H^{1} I$	
	${ }^{2} S^{6} S^{2} P^{4} P 3^{2} D^{4} D 2^{2} F$	Mn
d^{10}	$F 2^{2} G^{4} G^{2} H^{2} I$	

Evalid terms for subshells of q electrons are the same as for subshells with $N-q$ electrons where N is the closed (full) subshell complement

Periodic Table of Elements

Closed
Alkaline
shells Alkalis earths
Halogens gases

Lanthanides

Actinides

58 Ce $4 f^{2} 6 s^{2}$	$\begin{aligned} & 59 \\ & \mathbf{P r} \\ & 4 f^{3} 6 s^{2} \end{aligned}$	60 Nd $4 f^{4} 6 s^{2}$	$\begin{aligned} & 61 \\ & \mathbf{P m} \\ & \\ & 4 f^{5} 6 s^{2} \end{aligned}$	$\begin{aligned} & 62 \\ & \mathbf{S m} \\ & 4 f^{6} 6 s^{2} \end{aligned}$	$\begin{aligned} & 63 \\ & \mathbf{E u} \\ & 4 f^{7} 6 s^{2} \end{aligned}$	64 Gd $4 f^{7} 6 s^{2}$ $5 d^{1}$	$\begin{aligned} & 65 \\ & \mathbf{T b} \\ & 4 f^{9} 6 s^{2} \end{aligned}$	$\begin{aligned} & 66 \\ & \text { Dy } \\ & 4 f^{10} 6 s^{2} \end{aligned}$	$\begin{array}{l\|l\|} \hline 67 \\ \mathbf{H o} \\ 4 f^{11} & 6 s^{2} \end{array}$	$\begin{aligned} & 68 \\ & \mathbf{E r} \\ & 4 f^{12} 6 s^{2} \end{aligned}$	$\begin{aligned} & 69 \\ & \mathbf{T m} \\ & 4 f^{13} 6 s^{2} \end{aligned}$	$\begin{aligned} & 70 \\ & \mathbf{Y b} \\ & 4 f^{14} 6 s^{2} \end{aligned}$	$\left\lvert\, \begin{aligned} & \hline 71 \\ & \mathbf{L u} \\ & 4 f^{14} 5 d^{1} \\ & 6 s^{2} \end{aligned}\right.$
$\begin{gathered} 90 \\ \hline \mathbf{T h} \end{gathered}$	$\begin{aligned} & \hline 91 \\ & \mathbf{P a} \\ & 5 f^{2} 6 d^{1} \\ & z^{2} \end{aligned}$	$\begin{aligned} & \hline 92 \\ & \mathbf{U} \\ & 5 f^{3} 6 d^{1} \\ & n^{2} \end{aligned}$	$\begin{aligned} & 93 \\ & \mathbf{N p} \\ & 5 f^{4} 6 d^{1} \\ & y^{2} \end{aligned}$	$\begin{array}{\|c\|} \hline 94 \\ \mathbf{P u} \end{array}$	$\begin{aligned} & 95 \\ & \mathbf{A m} \end{aligned}$	$\begin{aligned} & 96 \\ & \mathbf{C m} \\ & 57^{7} 6 d^{1} \\ & 5 s^{2} \end{aligned}$	97 $\mathbf{B k}$ $5 f^{8} 6 d^{1}$	$\begin{array}{\|c\|} \hline 98 \\ \mathbf{C f} \end{array}$	$\begin{array}{\|l\|} \hline 99 \\ \text { Es } \end{array}$	$\begin{gathered} 100 \\ \text { Fm } \end{gathered}$	$\begin{gathered} 101 \\ \mathbf{M d} \end{gathered}$	$\begin{gathered} 102 \\ \text { No } \end{gathered}$	$\left\|\begin{array}{c} 103 \\ \mathbf{L r} \\ 5 f^{14} 6 d^{1} \end{array}\right\|$

The ionization energies of the element

$$
\begin{aligned}
W_{\mathrm{ion}} & =\frac{1}{2} \int_{r_{n}}^{\infty} \frac{Z_{\mathrm{eff}} e^{2}}{4 \pi \varepsilon_{0} r^{2}} \mathrm{~d} r=\frac{Z_{\mathrm{eff}} e^{2}}{8 \pi \varepsilon_{0} r_{n}} \\
& =R y^{*} \frac{Z_{\mathrm{eff}}^{2}}{n^{2}}
\end{aligned}
$$

Atomic radii

Explaning the Periodic Table

南
周大
An atomic shell or subshell that contains its full quota of electrons is said to be closed．A closed s subshell $(1=0)$ holds two electrons，a closed p subshell（ $l=1$ ）six electrons， a closed d subshell（ $1=2$ ）ten electrons，and so on．

The total orbital and spin angular momenta of the electrons in a closed subshell are zero，and their effective charge distributions are perfectly symmetrical．

The electrons in a closed shell are all very tightly bound， since the positive nuclear charge is large relative to the negative charge of the inner shielding electrons

Explaning the Periodic Table

Shell and subshell capacities

Energy

\boldsymbol{n}	ℓ	Subshell	Subshell Capacity	Total Electrons in All Subshells
1	0	$1 s$	2	2
2	0	$2 s$	2	4
2	1	$2 p$	6	10
3	0	$3 s$	2	12
3	1	$3 p$	6	18
4	0	$4 s$	2	20
3	2	$3 d$	10	30
4	1	$4 p$	6	36
5	0	$5 s$	2	38
4	2	$4 d$	10	48
5	1	$5 p$	6	54
6	0	$6 s$	2	56
4	3	$4 f$	14	70
5	2	$5 d$	10	80
6	1	$6 p$	6	86
7	0	$7 s$	2	88
5	3	$5 f$	14	102
6	2	$6 d$	10	112

Shell and subshell capacities

Atomic number
$1 s$

If $n+l$ is same, fill the configuration with smaller n first if $n+l$ are different and n are same, fill smaller l and n is different, fill larger n

Shell			K	L		M			O	Sh			K	L		M			N			O	
Z		Element	$1 s$	$2 s$	$2 p$	$3 s$	$3 p$	$3 d$	$4 s$	Z		Element	$1 s$	$2 s$	$2 p$	$3 s$	$3 p$	$3 d$	$4 s$	$4 p$	$4 d$	$5 s$	$5 p$
1	H	Hydrogen	1							28	Ni	Nickel	2	2	6	2	6	8	2				
2	He	Helium	2							29	Cu	Copper	2	2	6	2	6	10	1				
3	Li	Lithium	2	1						30	Zn	Zink	2	2	6	2	6	10	2				
4	Be	Beryllium	2	2						31	Ga	Gallium	2	2	6	2	6	10	2	1			
5	B	Boron	2	2	1					32	Ge	Germanium	2	2	6	2	6	10	2	2			
6	C	Carbon	2	2	2					33	As	Arsenic	2	2	6	2	6	10	2	3			
7	N	Nitrogen	2	2	3					34	Se	Selenium	2	2	6	2	6	10	2	4			
8	O	Oxygen	2	2	4					35	Br	Bromium	2	2	6	2	6	10	2	5			
9	F	Fluorine	2	2	5					36	Kr	Krypton	2	2	6	2	6	10	2	6			
10	Ne	Neon	2	2	6					37	Rb	Rubidium	2	2	6	2	6	10	2	6		1	
11	Na	Sodium	2	2	6	1				38	Sr	Strontium	2	2	6	2	6	10	2	6		2	
12	Mg	Magnesium	2	2	6	2				39	Y	Yttrium	2	2	6	2	6	10	2	6	1	2	
13	Al	Aluminum	2	2	6	2	1			40	Zr	Zirconium	2	2	6	2	6	10	2	6	2	2	
14	Si	Silicon	2	2	6	2	2			41	Nb	Niobium	2	2	6	2	6	10	2	6	4	1	
15	P	Phosphorus	2	2	6	2	3			42	Mo	Molybdenum	2	2	6	2	6	10	2	6	5	1	
16	S	Sulfur	2	2	6	2	4			43	Tc	Technetium	2	2	6	2	6	10	2	6	6	1	
17	Cl	Chlorine	2	2	6	2	5			44	Ru	Ruthenium	2	2	6	2	6	10	2	6	7	1	
18	Ar	Argon	2	2	6	2	6			45	Rh	Rhodium	2	2	6	2	6	10	2	6	8	1	
19	K	Potassium	2	2	6	2	6		1	46	Pd	Palladium	2	2	6	2	6	10	2	6	10		
20	Ca	Calcium	2	2	6	2	6		2	47	Ag	Silver	2	2	6	2	6	10	2	6	10	1	
21	Sc	Scandium	2	2	6	2	6	1	2	48	Cd	Cadmium	2	2	6	2	6	10	2	6	10	2	
22	Ti	Titanium	2	2	6	2	6	2	2	49	In	Indium	2	2	6	2	6	10	2	6	10	2	1
23	V	Vanadium	2	2	6	2	6	3	2	50	Sn	Tin	2	2	6	2	6	10	2	6	10	2	2
24	Cr	Chromium	2	2	6	2	6	5	1	51	Sb	Antimony	2	2	6	2	6	10	2	6	10	2	3
25	Mn	Manganese	2	2	6	2	6	5	2	52	Te	Tellurium	2	2	6	2	6	10	2	6	10	2	4
26	Fe	Iron	2	2	6	2	6	6	2	53	I	Iodine	2	2	6	2	6	10	2	6	10	2	5
27	Co	Cobalt	2	2	6	2	6	7	2	54	Xe	Xenon	2	2	6	2	6	10	2	6	10	2	6

Hund＇s rules which are empirical state（the first and second）that the term structure with the maximum possible S and the largest possible L for the given S compatible with the Pauli exclusion Principle has the lowest energy．

Hund＇s third rule（which applies for atoms or ions with a single unfilled shell）states that if the unfilled shell is not more than half－filled the lowest value of J has the lowest energy while if it is more than half－filled the largest value of J has the lowest energy

Hund's rules

Atomic

Element	Number	Configurati
Boron	5	$1 s^{2} 2 s^{2} 2 p^{1}$
Carbon	6	$1 s^{2} 2 s^{2} 2 p^{2}$
Nitrogen	7	$1 s^{2} 2 s^{2} 2 p^{3}$
Oxygen	8	$1 s^{2} 2 s^{2} 2 p^{4}$
Fluorine	9	$1 s^{2} 2 s^{2} 2 p^{5}$
Neon	10	$1 s^{2} 2 s^{2} 2 p^{6}$

Spins of p Electrons

Lande interval rule

Since separation of energies for states of different J arises from spin-orbit term

$$
\begin{aligned}
& \left.\langle | J, m_{J}, L, S\left|\sum_{i} \xi_{i}\left(r_{i}\right) \hat{\mathbf{L}}_{i} \cdot \hat{\mathbf{S}}_{i}\right| J, m_{J}, L, S\right\rangle \\
& \quad=\frac{\zeta(L, S)}{2}[J(J+1)-L(L+1)-S(S+1)]
\end{aligned}
$$

separation between pair of adjacent levels in a fine structure multiplet is proportional to larger of two J values,

$$
\Delta_{J} \propto J(J+1)-(J-1) J=2 J
$$

e.g. separation between ${ }^{3} \mathrm{P}_{2}$ and ${ }^{3} \mathrm{P}_{1}$, and ${ }^{3} \mathrm{P}_{1}$ and ${ }^{3} \mathrm{P}_{0}$ should be in ratio 2:1.

The Physics of Atoms and Quanta
17.2, 17.3, 17.5, 19.1, 19.4, 19.6, 19.7

[^0]: $\begin{array}{lllllllll}400 \mathrm{~nm} & 450 \mathrm{~nm} & 500 \mathrm{~nm} & 550 \mathrm{~nm} & 600 \mathrm{~nm} & 650 \mathrm{~nm} & 700 \mathrm{~nm}\end{array}$

