

Orbital Angular Momentum Operators

The quantum mechanical operator for L ，is obtained by replacing r and p ，with their respective operators，

$$
\hat{\vec{L}}=\hat{\vec{r}} \times \hat{\vec{p}}
$$

The components of angular momentum operator can be expressed in Cartesian Coordinates

$$
\begin{aligned}
& \hat{L}_{x}=y \hat{p}_{z}-z \hat{p}_{y}=-i \hbar\left(y \frac{\partial}{\partial z}-z \frac{\sigma}{\partial y}\right), \\
& \hat{L}_{y}=z \hat{p}_{x}-x \hat{p}_{z}=-i \hbar\left(z \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}\right), \\
& \hat{L}_{z}=x \hat{p}_{y}-y \hat{p}_{x}=-i \hbar\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right) .
\end{aligned}
$$

Orbital Angular Momentum Operators

The operator corresponding to the square of the angular momentum is a scalar operator given by

$$
\hat{L}^{2}=\hat{\vec{L}} \cdot \hat{\vec{L}}=\hat{L}_{x}^{2}+\hat{L}_{y}^{2}+\hat{L}_{z}^{2} .
$$

The algebra of the angular momentum operators is given by their commutation relations. For instance,

$$
\left[\hat{L}_{x}, \hat{L}_{y}\right]=\left[y \hat{p}_{z}-z \hat{p}_{y}, z \hat{p}_{x}-x \hat{p}_{z}\right]=\left[y \hat{p}_{z}, z \hat{p}_{x}\right]-\left[z \hat{p}_{y}, z \hat{p}_{x}\right]-\left[y \hat{p}_{z}, x \hat{p}_{z}\right]+\left[z \hat{p}_{y}, x \hat{p}_{z}\right]
$$

Since

$$
\begin{aligned}
{\left[y \hat{p}_{z}, z \hat{p}_{x}\right] } & =y\left[\hat{p}_{z}, z \hat{p}_{x}\right]+\left[y, z \hat{p}_{x}\right] \hat{p}_{z}=y z\left[\hat{p}_{z}, \hat{p}_{x}\right]+y\left[\hat{p}_{z}, z\right] \hat{p}_{x}+z\left[y, \hat{p}_{x}\right] \hat{p}_{z} \\
& +[y, z] \hat{p}_{x} \hat{p}_{z}=-i \hbar y \hat{p}_{x}, \\
{\left[z \hat{p}_{y}, z \hat{p}_{x}\right] } & =z\left[\hat{p}_{y}, z \hat{p}_{x}\right]+\left[z, z \hat{p}_{x}\right] \hat{p}_{y}=z^{2}\left[\hat{p}_{y}, \hat{p}_{x}\right]+z\left[\hat{p}_{y}, z\right] \hat{p}_{x}+z\left[z, \hat{p}_{x}\right] \hat{p}_{y} \\
& +[z, z] \hat{p}_{x} \hat{p}_{y}=0, \\
{\left[y \hat{p}_{z}, x \hat{p}_{z}\right] } & =y\left[\hat{p}_{z}, x \hat{p}_{z}\right]+\left[y, x \hat{p}_{z}\right] \hat{p}_{z}=y x\left[\hat{p}_{z}, \hat{p}_{z}\right]+y\left[\hat{p}_{z}, x\right] \hat{p}_{z}+x\left[y, \hat{p}_{z}\right] \hat{p}_{z} \\
& +[y, x] \hat{p}_{x}^{2}=0, \\
{\left[z \hat{p}_{y}, x \hat{p}_{z}\right] } & =z\left[\hat{p}_{y}, x \hat{p}_{z}\right]+\left[z, x \hat{p}_{z}\right] \hat{p}_{y}=z x\left[\hat{p}_{y}, \hat{p}_{z}\right]+z\left[\hat{p}_{y}, x\right] \hat{p}_{z}+x\left[z, \hat{p}_{z}\right] \hat{p}_{y} \\
& +[z, x] \hat{p}_{z} \hat{p}_{y}=i \hbar x \hat{p}_{y} .
\end{aligned}
$$

Orbital Angular Momentum Operators

南
周大
Therefore，

$$
\left[\hat{L}_{x}, \hat{L}_{y}\right]=i \hbar\left(x \hat{p}_{y}-y \hat{p}_{x}\right)=i \hbar \hat{L}_{z} .
$$

The other two commutators are calculated in a similar manner．The net result is

$$
\left[\hat{L}_{x}, \hat{L}_{y}\right]=i \hbar \hat{L}_{z}, \quad\left[\hat{L}_{y}, \hat{L}_{z}\right]=i \hbar \hat{L}_{x}, \quad\left[\hat{L}_{z}, \hat{L}_{x}\right]=i \hbar \hat{L}_{y}
$$

These commutation relations can be combined together into a single vector equation

$$
i \hbar \hat{\vec{L}}=\hat{\vec{L}} \times \hat{\vec{L}} .
$$

Equivalently，they can also be written as

$$
\left[\hat{L}_{j}, \hat{L}_{k}\right]=i \hbar \varepsilon_{j k l} \hat{L}_{\ell},
$$

Orbital Angular Momentum Operators

where summation over the repeated index I from 1 to 3 is understood. Here, the symbol $\varepsilon_{i j}$ is called the Levi-Civita tensor density and it is defined as

$$
\varepsilon_{i j k}=\left\{\begin{array}{cl}
1 & \text { if }(i j k) \text { is an even permutation of (123) } \\
-1 & \text { if }(i j k) \text { is an odd permutation of (123) } \\
0 & \text { otherwise }
\end{array}\right.
$$

The uncertainty relations of orbital angular momentum

$$
\Delta L_{j} \Delta L_{k} \geq \frac{1}{2} \sqrt{\left|\left\langle\left\{\hat{L}_{j}, \hat{L}_{k}\right]\right\rangle\right|^{2}}=\frac{\hbar}{2}\left|\left\langle L_{\ell}\right\rangle\right|,
$$

It then follows that no two components of the angular momentum can be measured simultaneously accurately.

Orbital Angular Momentum Operators

We shall determine the possible eigenvalues of L^{2} and L_{z} by algebraic means．In other words，we shall determine their eigenvalues without solving the differential equations representing the corresponding eigenvalue problems for these operators．

Since L^{2} and L_{z} commute，they have a common set of eigenfunctions．

$$
\begin{aligned}
& \hat{L}^{2} \psi(\vec{r})=\hbar^{2} \lambda \psi_{\lambda \mu}(\vec{r}), \\
& \hat{L}_{z} \psi(\vec{r})=\hbar \mu \psi_{\lambda \mu}(\vec{r}) .
\end{aligned}
$$

λ and μ ，respectively，are dimensionless．

Orbital Angular Momentum Operators

Let us introduce the operators:

$$
\hat{L}_{ \pm}=\hat{L}_{x} \pm i \hat{L}_{y} .
$$

Using the commutation relations

$$
\begin{aligned}
& {\left[\hat{L}_{z}, \hat{L}_{+}\right]=\left[\hat{L}_{z}, \hat{L}_{x}\right]+i\left[\hat{L}_{z}, \hat{L}_{y}\right]=i \hbar \hat{L}_{y}+i(-i) \hbar \hat{L}_{x}=\hbar\left(\hat{L}_{x}+i \hat{L}_{y}\right)=\hbar \hat{L}_{+},} \\
& {\left[\hat{L}_{z}, \hat{L}_{-}\right]=\left[\hat{L}_{z}, \hat{L}_{x}\right]-i\left[\hat{L}_{z}, \hat{L}_{y}\right]=i \hbar \hat{L}_{y}-\hbar \hat{L}_{x}=-\hbar\left(\hat{L}_{x}-i \hat{L}_{y}\right)=-\hbar \hat{L}_{-} .}
\end{aligned}
$$

Hence,

$$
\begin{aligned}
{\left[\hat{L}^{2}, \hat{L}_{ \pm}\right] } & =\left[\hat{L}_{x}^{2}, \hat{L}_{ \pm}\right]+\left[\hat{L}_{y}^{2}, \hat{L}_{ \pm}\right]+\left[\hat{L}_{z}^{2}, \hat{L}_{ \pm}\right]=\left[\hat{L}_{x}^{2}, \hat{L}_{x} \pm i \hat{L}_{y}\right] \\
& +\left[\hat{L}_{y}^{2}, \hat{L}_{x} \pm i \hat{L}_{y}\right]+\left[\hat{L}_{z}^{2}, \hat{L}_{x} \pm i \hat{L}_{y}\right]= \pm i\left[\hat{L}_{x}^{2}, \hat{L}_{y}\right]+\left[\hat{L}_{y}^{2}, \hat{L}_{x}\right] \\
& +\left[\hat{L}_{z}^{2}, \hat{L}_{x}\right] \pm i\left[\hat{L}_{z}^{2}, \hat{L}_{y}\right]=\mp \hbar\left(\hat{L}_{x} \hat{L}_{z}+\hat{L}_{z} \hat{L}_{x}\right)-i \hbar\left(\hat{L}_{y} \hat{L}_{z}+\hat{L}_{z} \hat{L}_{y}\right) \\
& +i \hbar\left(\hat{L}_{y} \hat{L}_{z}+\hat{L}_{z} \hat{L}_{y}\right) \pm \hbar\left(\hat{L}_{x} \hat{L}_{z}+\hat{L}_{z} \hat{L}_{x}\right)=0 .
\end{aligned}
$$

Orbital Angular Momentum Operators

We have the following results

$$
\begin{aligned}
& \hat{L}_{z}\left(\hat{L}_{+} \psi_{\lambda \mu}\right)=\hbar \hat{L}_{+} \psi_{\lambda \mu}+\hat{L}_{+}\left(\hat{L}_{z} \psi_{\lambda \mu}\right)=\hbar(\mu+1)\left(\hat{L}_{+} \psi_{\lambda \mu}\right), \\
& \hat{L}_{z}\left(\hat{L}_{-} \psi_{\lambda \mu}\right)=-\hbar \hat{L}_{-} \psi_{\lambda \mu}+\hat{L}_{-}\left(\hat{L}_{z} \psi_{\lambda \mu}\right)=\hbar(\mu-1)\left(\hat{L}_{-} \psi_{\lambda \mu}\right),
\end{aligned}
$$

That is, the operator L_{+}, by acting on the eigenfunction of L_{z} with a given eigenvalue, converts it into an eigenfunction of L_{z} with an eigenvalue raised by one unit of \hbar.

Therefore, the operators L_{+}and L_{-}are called the raising (creation) and the lowering (annihilation) operators, respectively.

Orbital Angular Momentum Operators

Therefore, we conclude that there must exist an eigenstate, $\psi_{\lambda, \max }$ of L_{z} with the highest possible eigenvalue, $\hbar \mu_{\text {max }}$ such that

$$
\hat{L}^{2} \psi_{\lambda \mu_{\max }}=\hbar^{2} \lambda \psi_{\lambda \mu_{\max }}, \quad \hat{L}_{z} \psi_{\lambda \mu_{\max }}=\hbar \mu_{\max } \psi_{\lambda \mu_{\max }} \text { and } \hat{L}_{+} \psi_{\lambda \mu_{\max }}=0 .
$$

The next question is: How to find $\mu_{\max }$? To answer this question we notice that

$$
\begin{aligned}
\hat{L}_{ \pm} \hat{L}_{\mp} & =\left(\hat{L}_{x} \pm i \hat{L}_{y}\right)\left(\hat{L}_{x} \mp i \hat{L}_{y}\right)=\hat{L}_{x}^{2}+\hat{L}_{y}^{2} \mp i\left(\hat{L}_{x} \hat{L}_{y}-\hat{L}_{y} \hat{L}_{x}\right) \\
& =\hat{L}^{2}-\hat{L}_{z}^{2} \mp i\left(i \hbar \hat{L}_{z}\right)=\hat{L}^{2}-\hat{L}_{z}^{2} \pm \hbar \hat{L}_{z},
\end{aligned}
$$

and hence

$$
\hat{L}^{2}=\hat{L}_{ \pm} \hat{L}_{\mp}+\hat{L}_{z}^{2} \mp\left(\hbar \hat{L}_{z}\right) .
$$

Orbital Angular Momentum Operators

Therefore, using the lower sign in above equation, we obtain

$$
\begin{aligned}
\hat{L}^{2} \psi_{\lambda \mu_{\max }} & =\hat{L}_{-} \hat{L}_{+} \psi_{\lambda \mu_{\max }}+\hat{L}_{z}^{2} \psi_{\lambda \mu_{\max }}+\left(\hbar \hat{L}_{z}\right) \psi_{\lambda \mu_{\max }} \\
& =0+\hbar^{2} \mu_{\max }^{2} \psi_{\lambda \mu_{\max }}+\hbar^{2} \mu_{\max } \psi_{\lambda \mu_{\max }}=\hbar^{2} \mu_{\max }\left(\mu_{\max }+1\right) \psi_{\lambda \mu_{\max }}
\end{aligned}
$$

and hence

$$
\lambda=\hbar^{2} \mu_{\max }\left(\mu_{\max }+1\right) .
$$

An argument similar to the one used in the case of L_{+}, there must exist an eigenstate, $\psi_{\mu_{\min }}$ of L_{z} with the lowest possible eigenvalue, $\mu_{\text {ming }}$ such that

$$
\hat{L}^{2} \psi_{\lambda \mu_{\min }}=\hbar^{2} \lambda \psi_{\lambda \mu_{\min }}, \quad \hat{L}_{z} \psi_{\mu_{\min }}=\hbar \mu_{\min } \psi_{\lambda \mu_{\min }} \text { and } \hat{L}_{-} \psi_{\lambda \mu_{\min }}=0
$$

Orbital Angular Momentum Operators

间大
Using the upper sign in the commutation relation, we have

$$
\begin{aligned}
\hat{L}^{2} \psi \lambda \mu_{\min } & =\hat{L}_{+} \hat{L}_{-} \psi \lambda \mu_{\min }+\hat{L}_{z}^{2} \psi \lambda \mu_{\min }-\left(\hbar \hat{L}_{z}\right) \psi \lambda \mu_{\min } \\
& =\left(0+\hbar^{2} \mu_{\min }^{2}-\hbar^{2} \mu_{\min }\right) \psi_{\lambda} \mu_{\min }=\hbar^{2} \mu_{\min }\left(\mu_{\min }-1\right) \psi \lambda \mu_{\min }
\end{aligned}
$$

Therefore,

$$
\lambda=\hbar^{2} \mu_{\min }\left(\mu_{\min }-1\right) .
$$

We conclude

$$
\mu_{\max }\left(\mu_{\max }+1\right)=\mu_{\min }\left(\mu_{\min }-1\right)
$$

We get from this equation that either

$$
\mu_{\min }=\mu_{\max }+1 \text { or } \mu_{\min }=-\mu_{\max }
$$

Orbital Angular Momentum Operators

The first solution is unacceptable since，if so，the eigenvalue of the lowest eigenstate of L_{z} will be greater than the eigenvalue of the highest eigenstate．Thus，

$$
\mu_{\min }=-\mu_{\max } .
$$

It is customary to denote $\mu_{\max }$ by I and μ by m（or，m_{1} ）．The numbers I and m are called the orbital quantum number and the magnetic quantum number，respectively．

The eigenvalues of L^{2} and $L z$ can now be written as

$$
\lambda_{\ell}=\hbar^{2} \ell(\ell+1), \quad \mu_{m}=\hbar m,
$$

where，for a given I，m takes（ $21+1$ ）values from -1 to I and I must be an integer

Orbital Angular Momentum Operators

The eigenvalue equations for L^{2} and $L z$, respectively, are

$$
\hat{\vec{L}}^{2} Y_{l m}(\theta, \varphi)=\hbar^{2} l(l+1) Y_{l m}(\theta, \varphi),
$$

$$
\hat{L}_{z} Y_{l m}(\theta, \varphi)=m \hbar Y_{l m}(\theta, \varphi) .
$$

where $I=0,1,2,3, \ldots$ and $m=-1,-1+1,-1+2,-1+3, \ldots, 0,1,2,3$, ...,I-1,l.

For the given purpose it is convenient to go over to the spherical system of coordinates. Using the chain rule for differentiation and the transformation equations, we obtain

$$
\begin{aligned}
\frac{\partial}{\partial \varphi} & =\frac{\partial x}{\partial \varphi} \frac{\partial}{\partial x}+\frac{\partial y}{\partial \varphi} \frac{\partial}{\partial y}+\frac{\partial z}{\partial \varphi} \frac{\partial}{\partial z} \quad \frac{\partial}{\partial \theta}=\cot \theta\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)-\tan \theta z \frac{\partial}{\partial z} \\
& =-r \sin \theta \sin \varphi \frac{\partial}{\partial x}+r \sin \theta \cos \varphi \frac{\partial}{\partial y} \\
& =x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}
\end{aligned}
$$

Orbital Angular Momentum Operators

The expressions for the x, y and z components of the angular momentum operator in spherical coordinates can be written as

$$
\begin{aligned}
& \hat{L}_{x}=i \hbar\left(\sin \varphi \frac{\partial}{\partial \theta}+\cot \theta \cos \varphi \frac{\partial}{\partial \varphi}\right), \\
& \hat{L}_{y}=-i \hbar\left(\cos \varphi \frac{\partial}{\partial \theta}-\cot \theta \sin \varphi \frac{\partial}{\partial \varphi}\right) \\
& \hat{L}_{z}=-i \hbar \frac{\partial}{\partial \varphi} .
\end{aligned}
$$

For the raised operator

$$
\hat{L}_{+}=\hat{L}_{x}+i \hat{L}_{y}=\hbar\left[i z \frac{\partial}{\partial y}+z \frac{\partial}{\partial x}-(x+i y) \frac{\partial}{\partial z}\right]
$$

Orbital Angular Momentum Operators

Taking into account that

$$
z=r \cos \theta
$$

$$
x \pm i y=r \sin \theta(\cos \varphi \pm i \sin \varphi)=r e^{ \pm i \varphi} \sin \theta
$$

we get

$$
\begin{aligned}
\hat{L}_{+} & =\hbar e^{i \varphi}\left(i r e^{-i \varphi} \cos \theta \frac{\partial}{\partial y}+r e^{-i \varphi} \cos \theta \frac{\partial}{\partial x}-r \sin \theta \frac{\partial}{\partial z}\right) \\
& =\hbar e^{i \varphi}\left[i(x-i y) \cot \theta \frac{\partial}{\partial x}+(x-i y) \cot \theta \frac{\partial}{\partial x}-r \sin \theta \frac{\partial}{\partial z}\right] \\
& =\hbar e^{i \varphi}\left[\cot \theta\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}\right)-\tan \theta z \frac{\partial}{\partial z}+i \cot \theta\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)\right] .
\end{aligned}
$$

Finally

$$
\hat{L}_{+}=\hbar e^{i \varphi}\left(\frac{\partial}{\partial \theta}+i \cot \theta \frac{\partial}{\partial \varphi}\right) .
$$

Orbital Angular Momentum Operators

Using now

$$
\begin{gathered}
\hat{L}_{+} \hat{L}_{-}=-\hbar^{2} e^{i \varphi}\left(\frac{\partial}{\partial \theta}+i \cot \theta \frac{\partial}{\partial \varphi}\right)\left\{e^{-i \varphi}\left(\frac{\partial}{\partial \theta}-i \cot \theta \frac{\partial}{\partial \varphi}\right)\right\} \\
=-\hbar^{2}\left(\frac{\partial^{2}}{\partial \theta^{2}}+\cot \theta \frac{\partial}{\partial \theta}+\cot ^{2} \theta \frac{\partial^{2}}{\partial \varphi^{2}}+i \frac{\partial}{\partial \varphi}\right), \\
\hat{L}^{2}=\hat{L}_{+} \hat{L}_{-}+\hat{L}_{z}^{2}-\hbar \hat{L}_{z},
\end{gathered}
$$

We finally obtain the formula for L^{2} in spherical coordinates:

$$
\hat{L}^{2}=-\hbar^{2}\left(\frac{\partial^{2}}{\partial \theta^{2}}+\cot \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}\right) .
$$

Orbital Angular Momentum Operators

Since L_{z} depends only on φ, the eigenfunction $Y_{l n}$ are separable:

$$
Y_{l m}(\theta, \varphi)=\Theta_{l m}(\theta) \Phi_{m}(\varphi)
$$

Therefore,

$$
-i \hbar \Theta_{l m}(\theta) \frac{\partial \Phi_{m}(\varphi)}{\partial \varphi}=m \hbar \Theta_{l m}(\theta) \Phi_{m}(\varphi)
$$

which reduces to,

$$
-i \frac{\partial \Phi_{m}(\varphi)}{\partial \varphi}=m \Phi_{m}(\varphi) .
$$

The normalized solutions of this equation are given by

$$
\Phi_{m}(\varphi)=\frac{1}{\sqrt{2 \pi}} e^{i m \varphi},
$$

Orbital Angular Momentum Operators

For Φ_{m} to be single－valued，it must be periodic in φ with period $2 \pi, \Phi_{m}(2 \pi+\varphi)=\Phi_{m}(\varphi)$ ，hence

$$
Y_{l m}(\theta, \varphi)=\Theta_{l m}(\theta) \Phi_{m}(\varphi)
$$

This relation shows that the expectation value of $L_{z z} l_{z}=<1$ $\mathrm{m} \mid \mathrm{L}_{\imath} \mathrm{II} \mathrm{m}>$ ，is restricted to a discrete set of values

$$
l_{z}=m \hbar, \quad m=0, \pm 1, \pm 2, \pm 3, \ldots
$$

Thus，the values of m vary from $-l$ to l ：

$$
m=-l,-(l-1),-(l-2), \ldots, 0,1,2, \ldots, l-2, l-1, l .
$$

Hence the quantum number l must also be an integer．This is expected since the orbital angular momentum must have integer values．

Orbital Angular Momentum Operators

We begin by applying L^{2} to the eigenfunction

This gives

$$
Y_{l m}(\theta, \varphi)=\frac{1}{\sqrt{2 \pi}} \Theta_{l m}(\theta) e^{i m \varphi}
$$

$$
\begin{aligned}
\hat{\vec{L}}^{2} Y_{l m}(\theta, \varphi) & =\frac{-\hbar^{2}}{\sqrt{2 \pi}}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}\right] \Theta_{l m}(\theta) e^{i m \varphi} \\
& =\frac{\hbar^{2} l(l+1)}{\sqrt{2 \pi}} \Theta_{l m}(\theta) e^{i m \varphi},
\end{aligned}
$$

which, after eliminating the φ-dependence, reduces to

$$
\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d \Theta_{l m}(\theta)}{d \theta}\right)+\left[l(l+1)-\frac{m^{2}}{\sin ^{2} \theta}\right] \Theta_{l m}(\theta)=0 .
$$

This equation is known as the Legendre differential equation. Its solutions can be expressed in terms of the associated Legendre functions

Orbital Angular Momentum Operators

$$
\Theta_{l m}(\theta)=C_{l m} P_{l}^{m}(\cos \theta)
$$

which are defined by

$$
P_{l}^{m}(x)=\left(1-x^{2}\right)^{|m| / 2} \frac{d^{|m|}}{d x^{|m|}} P_{l}(x)
$$

This shows that

$$
P_{l}^{-m}(x)=P_{l}^{m}(x)
$$

where $P_{l}(x)$ is the l th Legendre polynomial which is defined
by the Rodrigues formula

$$
P_{l}(x)=\frac{1}{2^{l} l!} \frac{d^{l}}{d x^{l}}\left(x^{2}-1\right)^{l} .
$$

and

$$
\frac{1}{2} \sum_{l=0}^{\infty}(2 l+1) P_{l}\left(x^{\prime}\right) P_{l}(x)=\delta\left(x-x^{\prime}\right) . \quad \quad P_{l}(-x)=(-1)^{l} P_{l}(x)
$$

Orbital Angular Momentum Operators

南
周大
The full normalized eigenfunctions of L^{2} and $L z$ are now given by

$$
\begin{array}{ll}
Y_{l m}(\theta, \varphi) & =(-1)^{m} \sqrt{\left(\frac{2 l+1}{4 \pi}\right) \frac{(l-m)!}{(l+m)!}} P_{l}^{m}(\cos \theta) e^{i m \varphi}
\end{array} \quad(m \geq 0) . .
$$

and
$\mathrm{P}_{\mathrm{l}}^{\mathrm{m}}$ is the associated Legendre functions

$$
\begin{aligned}
& \text { Associated Legendre functions } \\
& \hline P_{1}^{1}(\cos \theta)=\sin \theta \\
& P_{2}^{1}(\cos \theta)=3 \cos \theta \sin \theta \\
& P_{2}^{2}(\cos \theta)=3 \sin ^{2} \theta \\
& P_{3}^{1}(\cos \theta)=\frac{3}{2} \sin \theta\left(5 \cos ^{2} \theta-1\right) \\
& P_{3}^{2}(\cos \theta)=15 \sin ^{2} \theta \cos \theta \\
& P_{3}^{3}(\cos \theta)=15 \sin ^{3} \theta \\
& \hline
\end{aligned}
$$

Orbital Angular Momentum Operators

The completeness relation of Spherical Harmonics is

$$
\sum_{m=-l}^{l}|l, m\rangle\langle l, m|=1
$$

or,

$$
\begin{aligned}
\sum_{m}\langle\theta \varphi \mid l, m\rangle\left\langle l, m \mid \theta^{\prime} \varphi^{\prime}\right\rangle & =\sum_{m} Y_{l m}^{*}\left(\theta^{\prime}, \varphi^{\prime}\right) Y_{l m}(\theta, \varphi)=\delta\left(\cos \theta-\cos \theta^{\prime}\right) \delta\left(\varphi-\varphi^{\prime}\right) \\
& =\frac{\delta\left(\theta-\theta^{\prime}\right)}{\sin \theta} \delta\left(\varphi-\varphi^{\prime}\right)
\end{aligned}
$$

The spherical harmonics are complex functions; their complex conjugate is given by

$$
\left[Y_{l m}(\theta, \varphi)\right]^{*}=(-1)^{m} Y_{l,-m}(\theta, \varphi)
$$

Orbital Angular Momentum Operators

We can verify that $Y_{l m}$ is an eigenstate of the parity operator P with an eigenvalue $(-1)^{1}$ ：

$$
\hat{\mathcal{P}} Y_{l m}(\theta, \varphi)=Y_{l m}(\pi-\theta, \varphi+\pi)=(-1)^{l} Y_{l m}(\theta, \varphi),
$$

We can establish a connection between the spherical harmonics and the Legendre polynomials by simply taking $m=0$ ．

$$
Y_{l 0}(\theta, \varphi)=\frac{(-1)^{l}}{2^{l} l!} \sqrt{\frac{2 l+1}{4 \pi}} \frac{d^{l}}{d(\cos \theta)^{l}}(\sin \theta)^{2 l}=\sqrt{\frac{2 l+1}{4 \pi}} P_{l}(\cos \theta),
$$

with

$$
P_{l}(\cos \theta)=\frac{1}{2^{l} l!} \frac{d^{l}}{d(\cos \theta)^{l}}\left(\cos ^{2} \theta-1\right)^{l} .
$$

Orbital Angular Momentum Operators

Note that $Y_{l m}$ can also be expressed in terms of the Cartesian coordinates. For this, we need only to substitute

$$
\sin \theta \cos \varphi=\frac{x}{r}, \quad \sin \theta \sin \varphi=\frac{y}{r}, \quad \cos \theta=\frac{z}{r}
$$

$Y_{l m}(\theta, \varphi)$
$Y_{l m}(x, y, z)$
$Y_{00}(\theta, \varphi)=\frac{1}{\sqrt{4 \pi}}$
$Y_{00}(x, y, z)=\frac{1}{\sqrt{4 \pi}}$
$Y_{10}(\theta, \varphi)=\sqrt{\frac{3}{4 \pi}} \cos \theta$
$Y_{10}(x, y, z)=\sqrt{\frac{3}{4 \pi}} \frac{z}{r}$
$Y_{1, \pm 1}(\theta, \varphi)=\mp \sqrt{\frac{3}{8 \pi}} e^{ \pm i \varphi} \sin \theta$
$Y_{1, \pm 1}(x, y, z)=\mp \sqrt{\frac{3}{8 \pi}} \frac{x \pm i y}{r}$
$Y_{20}(\theta, \varphi)=\sqrt{\frac{5}{16 \pi}}\left(3 \cos ^{2} \theta-1\right)$
$Y_{20}(x, y, z)=\sqrt{\frac{5}{16 \pi}} \frac{3 z^{2}-r^{2}}{r^{2}}$
$Y_{2, \pm 1}(\theta, \varphi)=\mp \sqrt{\frac{15}{8 \pi}} e^{ \pm i \varphi} \sin \theta \cos \theta$
$Y_{2, \pm 1}(x, y, z)=\mp \sqrt{\frac{15}{8 \pi}} \frac{(x \pm i y) z}{r^{2}}$
$Y_{2, \pm 2}(\theta, \varphi)=\sqrt{\frac{15}{32 \pi}} e^{ \pm 2 i \varphi} \sin ^{2} \theta$
$Y_{2, \pm 2}(x, y, z)=\sqrt{\frac{15}{32 \pi}} \frac{x^{2}-y^{2} \pm 2 i x y}{r^{2}}$

Orbital Angular Momentum Operators

It is convenient to take the complete set of spherical harmonics $\left\{Y_{\mathrm{lm}}(\theta, \varphi)\right.$, which happens to be the common set of eigenfunctions of L^{2} and $L z$, as the basis set in the Hilbert space.

In this basis

$$
\begin{aligned}
& \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta \sin \theta Y_{\ell^{\prime}}^{m^{\prime}} \hat{L}^{2} Y_{\ell}^{m}=\hbar^{2} \ell(\ell+1) \delta_{\ell^{\prime} \ell} \delta_{m^{\prime} m}, \\
& \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta \sin \theta Y_{\ell^{\prime}}^{m^{\prime}} \hat{L}_{z} Y_{\ell}^{m}=m \hbar \delta_{\ell^{\prime} \ell} \delta_{m^{\prime} m} .
\end{aligned}
$$

The operators L_{+}and L_{-}do not commute with L_{z}. Therefore, they are represented by non-diagonal matrices in this basis.

Orbital Angular Momentum Operators

Using the relations

$$
\begin{aligned}
& \hat{L}_{\mp} \hat{L}_{ \pm}=\hat{L}^{2}-\hat{L}_{z}^{2} \mp \hbar \hat{L}_{z}, \\
& \hat{L}^{2} Y_{\ell}^{m}=\ell(\ell+1) \hbar^{2} Y_{\ell}^{m}, \\
& \hat{L}_{z} Y_{\ell}^{m}=m \hbar Y_{\ell}^{m},
\end{aligned}
$$

we obtain

$$
\begin{aligned}
& \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta \sin \theta Y_{\ell^{\prime}}^{* m^{\prime}}\left(\hat{L}_{ \pm}^{\dagger} \hat{L}_{ \pm}\right) Y_{\ell}^{m}=\int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta \sin \theta Y_{\ell^{\prime}}^{* m^{\prime}}\left(\hat{L}^{2}-\hat{L}_{z}^{2} \mp \hbar \hat{L}_{z}\right) Y_{\ell}^{m} \\
& \quad=\left[\hbar^{2} \ell(\ell+1)-\hbar^{2} m^{2} \mp \hbar^{2} m\right] \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta \sin \theta Y_{\ell^{\prime}}^{*\left(m^{\prime} \pm 1\right)} Y_{\ell}^{m \pm 1} \\
& \quad=\hbar^{2}(l \mp m)(l \pm m+1),
\end{aligned}
$$

Orbital Angular Momentum Operators

As a consequence, we have

$$
\begin{aligned}
& \hat{L}_{+} Y_{\ell}^{m}=\hbar \sqrt{(l-m)(l+m+1)} Y_{\ell}^{m+1}, \\
& \hat{L}_{-} Y_{\ell}^{m}=\hbar \sqrt{(l+m)(l-m+1)} Y_{\ell}^{m-1}
\end{aligned}
$$

Since

$$
\hat{L}_{x}=\left(\hat{L}_{+}+\hat{L}_{-}\right) / 2 \text { and } \hat{L}_{y}=\left(\hat{L}_{+}-\hat{L}_{-}\right) / 2 i,
$$

we get $\quad \hat{L}_{x} Y_{\ell}^{m}=\frac{1}{2}\left[\hat{L}_{+}+\hat{L}_{-}\right] Y_{\ell}^{m}$

$$
=\frac{\hbar}{2}\left[\sqrt{(l-m)(l+m+1)} Y_{\ell}^{m+1}+\sqrt{(l+m)(l-m+1)} Y_{\ell}^{m-1}\right]
$$

$$
\hat{L}_{y} Y_{\ell}^{m}=\frac{1}{2 i}\left[\hat{L}_{+}+\hat{L}_{-}\right] Y_{\ell}^{m}
$$

$$
=\frac{\hbar}{2 i}\left[\sqrt{(l-m)(l+m+1)} Y_{\ell}^{m+1}-\sqrt{(l+m)(l-m+1)} Y_{\ell}^{m-1}\right] .
$$

Orbital Angular Momentum Operators

Finally,

$$
\begin{aligned}
& \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta \sin \theta Y_{\ell^{\prime}}^{* m^{\prime}}\left(\hat{L}_{+} Y_{\ell}^{m}\right)=\hbar \sqrt{(l-m)(l+m+1)} \delta_{\ell^{\prime} \ell} \delta_{m^{\prime}, m+1}, \\
& \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta \sin \theta Y_{\ell^{\prime}}^{* m^{\prime}}\left(\hat{L}_{-} Y_{\ell}^{m}\right)=\hbar \sqrt{(l+m)(l-m+1)} \delta_{\ell^{\prime} \ell} \delta_{m^{\prime}, m-1}, \\
& \int_{0}^{2 \pi} d \varphi \int_{0}^{\pi} d \theta \sin \theta Y_{\ell^{\prime}}^{* m^{\prime}}\left(\hat{L}_{Z} Y_{\ell}^{m}\right)=m \hbar \delta_{\ell^{\prime} \ell} \delta_{m^{\prime} m} .
\end{aligned}
$$

Consider the case in which $\mathrm{I}=1$. For $\mathrm{I}=1$, we have $\mathrm{m}=-1$,
0,1 and the joint eigenfunctions of L^{2} and $L z$ are:

$$
\left[Y_{1}^{1}, Y_{1}^{0}, Y_{1}^{-1}\right] .
$$

Orbital Angular Momentum Operators

Therefore, the matrix representing L^{2} is given by

$$
L^{2}=\left(\begin{array}{ccc}
\left\langle Y_{1}^{1}, \hat{L}^{2} Y_{1}^{1}\right\rangle & \left\langle Y_{1}^{1}, \hat{L}^{2} Y^{0}\right\rangle & \left\langle Y_{1}^{1}, \hat{L}^{2} Y_{1}^{-1}\right\rangle \\
\left\langle Y_{1}^{0}, \hat{L}^{2} Y_{1}^{1}\right\rangle & \left\langle Y_{1}^{0}, \hat{L}^{2} Y_{1}^{0}\right\rangle & \left\langle Y_{1}^{0} \hat{L}^{2} Y_{1}^{-1}\right\rangle \\
\left\langle Y_{1}^{-1}, \hat{L}^{2} Y_{1}^{1}\right\rangle & \left\langle Y_{1}^{-1}, \hat{L}^{2} Y_{1}^{0}\right\rangle & \left\langle Y_{1}^{-1}, \hat{L}^{2} Y_{1}^{-1}\right\rangle
\end{array}\right)=2 \hbar^{2}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right),
$$

We obtain the matrix representing L_{z} in this basis

$$
L_{z}=\left(\begin{array}{lll}
\left\langle Y_{1}^{1}, \hat{L}_{z} Y_{1}^{1}\right\rangle & \left\langle Y_{1}^{1}, \hat{L}_{z} Y_{1}^{0}\right\rangle & \left\langle Y_{1}^{1}, \hat{L}_{z} Y_{1}^{-1}\right\rangle \\
\left\langle Y_{1}^{0} \hat{L}_{z} Y_{1}^{1}\right\rangle & \left\langle Y_{1}^{0} \hat{L}_{z} Y_{1}^{0}\right\rangle & \left\langle Y_{1}^{0} \hat{L}_{Z} Y_{1}^{-1}\right\rangle \\
\left\langle Y_{1}^{-1}, \hat{L}_{z} Y_{1}^{1}\right\rangle & \left\langle Y_{1}^{-1}, \hat{L}_{z} Y_{1}^{0}\right\rangle & \left\langle Y_{1}^{-1}, L_{z} Y_{1}^{-1}\right\rangle
\end{array}\right)=\hbar\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right) .
$$

Orbital Angular Momentum Operators

The matrices，corresponding to L_{+}and L_{-}in this basis，are calculated to be

$$
L_{+}=\sqrt{2} \hbar\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right), \quad L_{-}=\sqrt{2} \hbar\left(\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
$$

Taking into account that

$$
\hat{L}_{x}=\left(\hat{L}_{+}+\hat{L}_{-}\right) / 2 \text { and } \hat{L}_{y}=\left(\hat{L}_{+}-\hat{L}_{-}\right) / 2 i
$$

we get

$$
L_{x}=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad L_{y}=\frac{\hbar}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right) .
$$

Space quantization is essentially the quantization of the direction of the orbital angular momentum L in space with respect to the z-axis.

Space quantization

Graphical representation of the angular momentum $l=2$

$$
\theta=\cos ^{-1}\left(\frac{m}{\sqrt{l(l+1)}}\right)
$$

Magnetic moment

From the classical theory of electromagnetism，an orbital magnetic dipole moment is generated with the orbital motion of a particle of charge q ：

For electron

$$
\vec{\mu}_{L}=-e \vec{L} /\left(2 m_{e} c\right)
$$

Magnetic moment

周大挐

Stern-Gerlach experiment

Otto Stern

Otto Stern was and Nobel laureate in physics. He was the second most nominated person for a Nobel Prize with 82 nominations in the years 1925-1945, ultimately winning in 1943. It was awarded to Stern alone, "for his contribution to the development of the molecular ray method and his discovery of the magnetic moment of the proton" (not for the Stern-Gerlach experiment).

Walther Gerlach

Stern-Gerlach experiment

$16 / 10 / 2023$

It is important to note that a silver atom has 47 electrons out of which 46 constitute the spherically symmetric charge distribution around the nucleus: they fill all the sub-shells for $n=1, n=2$, and $n=3$, and the $4 d$ sub-shell and contribute nothing to the orbital angular momentum of the atom.

The $47^{\text {th }}$ electron is in the 5 state and it cannot have any orbital angular momentum too. Thus, a silver atom in its ground state does not have any orbital angular momentum and hence there is no magnetic moment associated with it.

Stern-Gerlach experiment

Observed pattern on the detector plate: left without magnetic field, middle with magnetic field and right beam spot geometry near the edge of the magnet. Since the magnetic field strength is fast decreasing with distance from the edge of the magnet (perpendicular to the direction of the B-Field) the beam components merge.

Stern-Gerlach experiment

"Attached is the experimental proof of directional quantization. We congratulate you on the confirmation of your theory."

- Postcard from Stern \& Gerlach to Neils Bohr, February 8, 1922.

Through their clever experimental arrangement Stern and Gerlach not only demonstrated ad oculos [for the eyes] the space quantization of atoms in a magnetic field, but they also proved the quantum origin of electricity and its connection with atomic structure.
—Arnold Sommerfeld (1868-1951)
The most interesting achievement at this point is the experiment of Stern and Gerlach. The alignment of the atoms without collisions via radiative [exchange] is not comprehensible based on the current [theoretical] methods; it should take more than 100 years for the atoms to align. I have done a little calculation about this with [Paul] Ehrenfest. [Heinrich] Rubens considers the experimental result to be absolutely certain.
-Albert Einstein (1879-1955)
More important is whether this proves the existence of space quantization. Please add a few words of explanation to your puzzle, such as what's really going on.
-James Franck (1882-1951)
I would be very grateful if you or Stern could let me know, in a few lines, whether you interpret your experimental results in this way that the atoms are oriented only parallel or opposed, but not normal to the field, as one could provide theoretical reasons for the latter assertion.
—Niels Bohr (1885-1962)
This should convert even the nonbeliever Stern.
—Wolfgang Pauli (1900-58)
As a beginning graduate student back in 1923, I . . . hoped with ingenuity and inventiveness I could find ways to fit the atomic phenomena into some kind of mechanical system. . . . My hope to [do that] died when I read about the Stern-Gerlach experiment. . . . The results were astounding, although they were hinted at by quantum theory. . . . This convinced me once and for all that an ingenious classical mechanism was out and that we had to face the fact that the quantum phenomena required a completely new orientation.
—Isidor I. Rabi (1898-1988)

Spin angular momentum or simply spin is a fundamental

 property of all particles, irrespective of whether they are elementary or composite.It belongs to an internal degree of freedom (completely independent of the spatial degrees of freedom) and manifests itself as some intrinsic angular momentum of the particle.

The spinning motion of an electron, proposed by Uhlenbeck and Goudsmit, was highly questionable in view of the fact that an electron was a point particle and the classical notion of angular momentum of a rigid body did not apply.

Now it is being told that Uhlenbeck got frightened, went to Ehrenfest and said: "Don't send it off, because it probably is wrong; it is impossible, one cannot have an electron that rotates at such high speed and has the right moment". And Ehrenfest replied: "It is too late, I have sent it off already". But I do not remember the event, I never had the idea that is was wrong because I did not know enough. The one thing I remember is that Ehrenfest said to me: "Well, that is a nice idea, though it may be wrong. But you don't yet have a reputation, so you have nothing to lose". That is the only thing I remember.

16/10/2023

Since the beam split into two, it follows from the theory discussed in the previous section that

$$
2 s+1=1 \quad \Rightarrow \quad s=\frac{1}{2}
$$

Since the state of an electron is characterized by two values of the projection of its spin on the z-axis, the wave function of the electron must consist of two components

$$
\psi(\vec{r}, t)=\binom{\psi^{+}(\vec{r}, t)}{\psi^{-}(\vec{r}, t)} .
$$

Spin acts on vectors belonging to a two-dimensional Euclidean space, it must be represented by a 2×2 matrix.

Spin is denoted by a vector S. As required by the rules of quantum mechanics, it is represented by an operator S with Cartesian components S_{x}, S_{y} and S_{z}.

Same commutation relations that is satisfied by the Cartesian components of the orbital angular momentum.

$$
\begin{aligned}
& {\left[\hat{S}_{x}, \hat{S}_{y}\right]=i \hbar \hat{S}_{z},} \\
& {\left[\hat{S}_{y}, \hat{S}_{z}\right]=i \hbar \hat{S}_{x},} \\
& {\left[\hat{S}_{z}, \hat{S}_{x}\right]=i \hbar \hat{S}_{y},}
\end{aligned}
$$

S^{2} commutes with each of the operators S_{x}, S_{y} and S_{z}, that is,

$$
\left[\hat{S}^{2}, \hat{S}_{x}\right]=0, \quad\left[\hat{S}^{2}, \hat{S}_{y}\right]=0, \quad\left[\hat{S}^{2}, \hat{S}_{z}\right]=0 .
$$

The operators S^{2} and S_{z} can have a common set of eigenvectors, $\left|s, m_{s}\right\rangle$, characterized by two quantum numbers s and m_{s}.

The quantum number s is called the spin quantum number and takes integers as well as half-integer values.

On the other hand, the quantum number m_{s} is called the spin magnetic quantum number and takes $(2 s+1)$ values from -s to s.

$$
\begin{aligned}
& \hat{S}^{2}\left|s, m_{s}\right\rangle=\hbar^{2} s(s+1)\left|s, m_{s}\right\rangle, \\
& \hat{S}_{z}\left|s, m_{s}\right\rangle=\hbar m_{s}\left|s, m_{s}\right\rangle,
\end{aligned}
$$

and

$$
\hat{S}_{ \pm}\left|s, m_{S}\right\rangle=\hbar \sqrt{s(s+1)-m_{s}\left(m_{s} \pm 1\right)}\left|s, m_{s} \pm 1\right\rangle
$$

where

$$
\hat{S}_{ \pm}=\hat{S}_{x} \pm i \hat{S}_{y}
$$

Also, in a given state with quantum number s, the magnitude of spin is given by

$$
S=\sqrt{s(s+1)} \hbar
$$

The z component of spin is quantized, $\mathrm{S}_{\mathrm{z}}=\mathrm{m}_{s} \hbar$, and takes
$(2 s+1)$ different values.

Now, the magnetic dipole moment associated with spin is given by

$$
\vec{\mu}_{s}=-\frac{e}{m_{e}} \vec{S},
$$

where, e is the magnitude of the electronic charge and m_{e} is the mass of the electron. As a consequence, the Hamiltonian for an electron, with spin, in an external magnetic field B along the positive z direction, will have a potential energy term

$$
\Delta W=-\vec{\mu}_{s} \cdot \vec{B}=\frac{e B}{m_{e}} S_{z}=\frac{e \hbar B}{m_{e}} m_{s} .
$$

Since m_{s} takes $(2 s+1)$ values, the original degenerate energy level will split into $(2 s+1)$ distinct levels.
s can take both the integer and the half-integer values. Nature supports both kinds of particles: particles with integer spin, called bosons, and particles with half-integer spin, called fermions.

For instance, photons ($s=1$), π-mesons ($s=0$), gravitons ($s=$ 2) and so on are bosons, while electrons ($s=1 / 2$), protons (s $=1 / 2$), neutrons ($s=1 / 2$), delta particles ($s=3 / 2$) and so on are fermions.

Let the axis for the projection of spin be the z-axis in an arbitrarily oriented Cartesian system of coordinates. The operator σ_{z} must be represented by a diagonal matrix with diagonal elements +1 and -1 , that is,

$$
\hat{\sigma}_{z}=\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right)
$$

This is usually called the S_{z}-representation for the sigma matrices. It then follows from the isotropy of space (equivalence of all the directions in space) that the matrices at x and y directionwill also be 2×2 unit matrices with eigenvalues 1 , that is

Spin matrices

$$
\hat{\sigma}_{x}^{2}=\hat{\sigma}_{y}^{2}=\hat{\sigma}_{z}^{2}=I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Hence,

$$
\begin{aligned}
\hat{\sigma}_{y}^{2} \hat{\sigma}_{z}-\hat{\sigma}_{z} \hat{\sigma}_{y}^{2} & =\hat{\sigma}_{y} \hat{\sigma}_{y} \hat{\sigma}_{z}-\hat{\sigma}_{y} \hat{\sigma}_{z} \hat{\sigma}_{y}+\hat{\sigma}_{y} \hat{\sigma}_{z} \hat{\sigma}_{y}-\hat{\sigma}_{z} \hat{\sigma}_{y} \hat{\sigma}_{y} \\
& =\hat{\sigma}_{y}\left(\hat{\sigma}_{y} \hat{\sigma}_{z}-\hat{\sigma}_{z} \hat{\sigma}_{y}\right)+\left(\hat{\sigma}_{y} \hat{\sigma}_{z}-\hat{\sigma}_{z} \hat{\sigma}_{y}\right) \hat{\sigma}_{y}=0 .
\end{aligned}
$$

Taking into account the commutation relations of σ -matrices, we obtain

$$
2 i\left(\hat{\sigma}_{y} \hat{\sigma}_{x}+\hat{\sigma}_{x} \hat{\sigma}_{y}\right)=0 . \quad \Rightarrow \quad \hat{\sigma}_{x} \hat{\sigma}_{y}+\hat{\sigma}_{y} \hat{\sigma}_{x}=0 .
$$

This means that the matrices σ_{x} and σ_{y} anti-commute. Similarly, one can prove that all the σ-matrices anticommute with each other.

Spin matrices

This property along with the commutation relations leads to the following useful formulae

$$
\begin{aligned}
& \hat{\sigma}_{x} \hat{\sigma}_{y}=-\hat{\sigma}_{y} \hat{\sigma}_{x}=i \hat{\sigma}_{z}, \\
& \hat{\sigma}_{y} \hat{\sigma}_{z}=-\hat{\sigma}_{z} \hat{\sigma}_{y}=i \hat{\sigma}_{x}, \\
& \hat{\sigma}_{z} \hat{\sigma}_{x}=-\hat{\sigma}_{x} \hat{\sigma}_{z}=i \hat{\sigma}_{y} .
\end{aligned}
$$

If we multiply the first of the aforementioned relations by σ_{z} from the right, we arrive at the identity

$$
\hat{\sigma}_{x} \hat{\sigma}_{y} \hat{\sigma}_{z}=i I
$$

Let us determine the concrete expressions for the sigma matrices. The general form of σ_{x} can be written as

$$
\hat{\sigma}_{x}=\left(\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right)
$$

Spin matrices

where the matrix elements a_{1}, a_{2}, a_{3} and a_{4} are, in general, complex and have to be determined using the basic properties of the sigma matrices.

Since σ_{x} and σ_{z} anti-commute, that is, $\sigma_{x} \sigma_{z}=-\sigma_{z} \sigma_{x}$, we have

$$
\left(\begin{array}{ll}
a_{1} & -a_{2} \\
a_{3} & -a_{4}
\end{array}\right)=\left(\begin{array}{cc}
-a_{1} & -a_{2} \\
a_{3} & a_{4}
\end{array}\right) .
$$

Therefore, $a_{1}=0$ and $a_{4}=0$. Using the property that $\left(\sigma_{x}\right)^{2}=I$, we get

$$
\left(\begin{array}{cc}
a_{2} a_{3} & 0 \\
0 & a_{3} a_{2}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad \Rightarrow \quad a_{2} a_{3}=a_{3} a_{2}=1 .
$$

Spin matrices

Therefore, $a_{2}=e^{i \alpha}$ and $a_{3}=e^{-i \alpha}$, where α is an arbitrary real constant. Since, without any loss of generality, we can put α equal to zero, we have

$$
\hat{\sigma}_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Now using the relation $\mathfrak{i} \sigma_{y}=\sigma_{z} \sigma_{x}$, we obtain

$$
\hat{\sigma}_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) .
$$

The matrices

$$
\hat{\sigma}_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \hat{\sigma}_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \hat{\sigma}_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
$$

are called Pauli matrices in the S_{z} representation and along with the unit matrix

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

form the basis in the space of 2×2 matrices. Any 2×2 matrix can be expanded as a linear combination of these matrices.

In the state corresponding to the eigenvalue +1 , the spin of the electron points along the $+z$-axis and we call it spin-up state. Similarly, in the state corresponding to the eigenvalue -1 , the spin of the electron points along the $-z$ direction and it is called the spin-down state.

Spin matrices

The eigenfunctions of σ_{z} with eigenvalues +1 and -1 , respectively, are readily computed as

$$
\chi_{z}^{+}=\binom{1}{0}, \quad \chi_{z}^{-}=\binom{0}{1},
$$

Let us check whether these spin functions are eigenfunctions of σ_{x} and σ_{y} or not. We have

$$
\begin{aligned}
& \hat{\sigma}_{x} \chi_{z}^{+}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{0}=\binom{0}{1}=\chi_{z}^{-}, \\
& \hat{\sigma}_{x} \chi_{z}^{-}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{0}{1}=\binom{1}{0}=\chi_{z}^{+}, \\
& \hat{\sigma}_{y} \chi_{z}^{+}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{1}{0}=\binom{0}{i}=i \chi_{z}^{-}, \\
& \hat{\sigma}_{y} \chi_{z}^{-}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{0}{1}=\binom{-i}{0}=-i \chi_{z}^{+}
\end{aligned}
$$

Addition of Angular Momenta

In many problems of interest it is necessary to add angular momenta. For instance, one is required to add the orbital angular momentum, L, and the spin angular momentum, S, while studying spin-orbit coupling in atoms.

Therefore, it is important to discuss the procedure of addition of angular momenta in quantum mechanics.

We shall write the eigenfunctions of L^{2} in the bra-ket notation as: $|I, m\rangle$. Thus, $I I, m\rangle$ is an eigenvector (or eigenket) of L^{2} with two quantum numbers I and m.

Addition of Angular Momenta

Let us, without specifying the nature, consider the addition of two angular momenta L_{1} and L_{2}

$$
\hat{\vec{J}}=\hat{\vec{L}}_{1}+\hat{\vec{L}}_{2} .
$$

Individually, L_{1} and L_{2} satisfy the following quantum mechanical commutation relations

$$
\begin{aligned}
& {\left[\hat{L}_{1 i}, \hat{L}_{1}\right]=i \hbar \sum_{k} \varepsilon_{i j k} \hat{L}_{1 k},} \\
& {\left[\hat{L}_{2 i}, \hat{L}_{2}\right]=i \hbar \sum_{k} \varepsilon_{i j k} \hat{L}_{2 k},}
\end{aligned}
$$

where the indices i, j and k take values from 1 to 3 . Note that, it is assumed here that L_{1} and L_{2} either correspond to different degrees of freedom, or correspond to the same degree of freedom but belong to different particles.

Addition of Angular Momenta

In view of the preceding assumption, the operator L_{1} and L_{2} act in different vector spaces: L_{1} acts in the $\left(21_{1}+1\right)$ dimensional space spanned by the kets $\left\{\|_{1}, m_{1}\right\}$, while L_{2} acts in the $\left(21_{2}+1\right)$ dimensional space spanned by the kets \{| $\left.\left.l_{2}, m_{2}\right\rangle\right\}$,

Hence, they commute and can have a common set of eigenvectors. Let us write these common eigenvectors as

$$
\left|\ell_{1}, m_{1} ; \ell_{2}, m_{2}\right\rangle=\left|\ell_{1}, m_{1}\right\rangle \otimes\left|\ell_{2}, m_{2}\right\rangle,
$$

where $l_{i, i}=1,2$ and $m_{i,} i=1,2$ are the individual quantum numbers and \otimes stands direct (tensorial) product. Then according to the earlier discussions

Addition of Angular Momenta

$$
\begin{aligned}
\hat{\vec{L}}_{1}^{2}\left|\ell_{1}, m_{1} ; \ell_{2}, m_{2}\right\rangle & =\hbar^{2} \ell_{1}\left(\ell_{1}+1\right)\left|\ell_{1}, m_{1} ; \ell_{2}, m_{2}\right\rangle, \\
\hat{L}_{1 z}\left|\ell_{1}, m_{1} ; \ell_{2}, m_{2}\right\rangle & =\hbar m_{1}\left|\ell_{1}, m_{1} ; \ell_{2}, m_{2}\right\rangle \\
\hat{\vec{L}}_{2}^{2}\left|\ell_{1}, m_{1} ; \ell_{2}, m_{2}\right\rangle & =\hbar^{2} \ell_{2}\left(\ell_{2}+1\right)\left|\ell_{1}, m_{1} ; \ell_{2}, m_{2}\right\rangle, \\
\hat{L}_{2 z}\left|\ell_{1}, m_{1} ; \ell_{2}, m_{2}\right\rangle & =\hbar m_{2}\left|\ell_{1}, m_{1} ; \ell_{2}, m_{2}\right\rangle
\end{aligned}
$$

Let us show that the total angular momentum operators $\mathrm{J}_{\mathrm{i}}=$ $L_{1 i}+L_{2 i},(i=1,2,3)$ also obey the usual angular momentum commutation relations, i.e.,

$$
\left[\hat{J}_{i}, \hat{J}_{j}\right]=i \hbar \sum_{k} \varepsilon_{i j k} \hat{k}_{k},
$$

where, once again, each of the indices i, j and k takes three values 1, 2 and 3.

Addition of Angular Momenta

We have

$$
\begin{aligned}
{\left[\hat{J}_{i}, \hat{J}_{j}\right] } & =\left[\hat{L}_{1 i}+\hat{L}_{2 i}, \hat{L}_{1 j}+\hat{L}_{2 j}\right]=\left[\hat{L}_{1 i}, \hat{L}_{1 j}\right]+\left[\hat{L}_{1 i}, \hat{L}_{2 j}\right]+\left[\hat{L}_{2 i}, \hat{L}_{1 j}\right]+\left[\hat{L}_{2 i}, \hat{L}_{2} j\right] \\
& =i \hbar \sum_{k} \varepsilon_{i j k} \hat{L}_{1 k}+i \hbar \sum_{r} \varepsilon_{i j k} \hat{L}_{2 k} \\
& =i \hbar \sum_{k} \varepsilon_{i j k}\left(\hat{L}_{1 k}+\hat{L}_{2 k}\right) \\
& =i \hbar \sum_{k} \varepsilon_{i j k} \hat{k}_{k},
\end{aligned}
$$

where we have taken into account that

$$
\left[\hat{L}_{1 i}, \hat{L}_{2 j}\right]=0 \text { and }\left[\hat{L}_{2 i}, \hat{L}_{1 j}\right]=0 .
$$

Given the values of the individual angular momenta $\left|L_{1}\right|$ and $\left|L_{1}\right|$ (i.e., the quantum numbers I_{1} and I_{2}), find the values that the total angular momentum $|\mathrm{J}|$ (i.e., the quantum number j corresponding to it).

Addition of Angular Momenta

Since the total angular momentum operators J_{i}, $(i=1,2,3)$, satisfy the usual angular momentum commutation relations, we can easily show that

$$
\left[\hat{\mathcal{H}}^{2}, \hat{z}_{z}\right]=0, \quad\left[\hat{J}^{2}, \hat{J}_{ \pm}\right]=0, \quad\left[\hat{J}_{+}, \hat{J}_{-}\right]=2 \hbar \hat{z}_{z}, \quad, \quad\left[\hat{J}_{z}, \hat{J}_{ \pm}\right]= \pm \hbar \hat{J}_{ \pm},
$$

where

$$
\hat{J}_{+}=\hat{J}_{x}+i \hat{J}_{y}, \quad \hat{J}_{-}=\hat{J}_{x}-i \hat{J}_{y}
$$

are the total angular momentum raising and lowering operators, respectively. Further, the Hilbert space in which the total angular momentum operator J^{2} acts is the product space spanned by the kets $\left.\left.\left\|\|_{1}, l_{2}, m_{1}, m_{2}\right\rangle=\| \|_{1}, m_{1}\right\rangle \otimes \|_{2}, m_{2}\right\rangle$.

Addition of Angular Momenta

The kets $\left.\left\{\|_{1}, l_{2}, m_{1}, m_{2}\right\rangle\right\}$ also form a complete and orthonormal basis：

$$
\begin{aligned}
&\left\langle\ell_{1}, \ell_{2} ; m_{1}, m_{2} \mid \ell_{1}^{\prime}, \ell_{2}^{\prime}, m_{1}^{\prime}, m_{2}^{\prime}\right\rangle=\left\langle\ell_{1}, m_{1} \mid \ell_{1}^{\prime}, m_{1}^{\prime}\right\rangle\left\langle\ell_{2}, m_{2} \mid \ell_{2}^{\prime}, m_{2}^{\prime}\right\rangle \\
&=\delta_{\ell_{1} \ell_{1}^{\prime}} \delta_{\ell_{2} \ell_{2}^{\prime}} \delta_{m_{1} m_{1}^{\prime}} \delta_{m_{2} m_{2}^{\prime}} \\
& \sum_{m_{1} m_{2}}\left|\ell_{1}, \ell_{2} ; m_{1}, m_{2}\right\rangle\left\langle\ell_{1}, \ell_{2} ; m_{1}, m_{2}\right| \\
&=\left(\sum_{m_{1}=-\ell_{1}}^{\ell_{1}}\left|\ell_{1}, m_{1}\right\rangle\left\langle\ell_{1}, m_{1}\right|\right)\left(\sum_{m_{2}=-\ell_{2}}^{\ell_{2}}\left|\ell_{2}, m_{2}\right\rangle\left\langle\ell_{2}, m_{2}\right|\right)=\hat{I}^{2}=\hat{I}
\end{aligned}
$$

It is straightforward to prove that

$$
\left[\hat{J}^{2}, \hat{L}_{1}^{2}\right]=0,\left[\hat{J}^{2}, \hat{L}_{2}^{2}\right]=0,\left[\hat{J}_{z}, \hat{L}_{1}^{2}\right]=0,\left[\hat{J}_{z}, \hat{L}_{2}^{2}\right]=0,
$$

but

$$
\left[\hat{J}^{2}, \hat{L}_{1 z}\right] \neq 0 \text {, and }\left[\hat{J}^{2}, \hat{L}_{2 z}\right] \neq 0 .
$$

Addition of Angular Momenta

南
Therefore，the maximal set of commuting operators for the system is given by $\mathrm{J}^{2}, \mathrm{~J}_{z}, \mathrm{~L}_{1}{ }^{2}$ and $\mathrm{L}_{2}{ }^{2}$ ．They can be simultaneously diagonalized and their joint eigenfunctions are characterized by four quantum numbers j, m_{j}, l_{1} and I_{2} ． Let $\left.\| l_{1},_{2}, j, m\right\rangle$ be the simultaneous eigenfunctions of J^{2} and J_{z} Since I_{1} and I_{2} are fixed，we shall write these vectors as $|j, m\rangle$ ．

The above completeness and orthonormality conditions can now be rewritten as

$$
\begin{aligned}
& \sum_{j} \sum_{m=-j}^{j}|j, m\rangle\langle j, m|=\hat{I}, \\
& \left\langle j^{\prime}, m^{\prime} \mid j, m\right\rangle=\delta_{j j^{\prime}} \delta_{m m^{\prime}} .
\end{aligned}
$$

Addition of Angular Momenta

Also, it is not difficult to show that

$$
\begin{aligned}
& \hat{J}^{2}|j, m\rangle=j(j+1) \hbar^{2}|j, m\rangle, \\
& \hat{J}_{z}|j, m\rangle=m \hbar|j, m\rangle, \\
& \hat{J}_{+}|j, m\rangle=\sqrt{(j-m)(j+m+1)} \hbar|j, m+1\rangle, \\
& \hat{J}_{-}|j, m\rangle=\sqrt{(j+m)(j-m+1)} \hbar|j, m-1\rangle, \\
& \hat{J}_{z}|j, m\rangle=m \hbar|j, m\rangle, \\
& \hat{J}_{+}|j, m=j\rangle=0, \quad \hat{J}_{-}|j, m=-j\rangle=0 .
\end{aligned}
$$

let us expand the besis vector $|j, m\rangle$ in terms of the basis $\{\mid$ $\left.\left.\mathrm{I}_{1}, \mathrm{I}_{2} ; \mathrm{m}_{1}, \mathrm{~m}_{2}\right\rangle\right\}$ as

$$
|j, m\rangle=\sum_{m_{1}=-\ell_{1} m_{2}=-\ell_{2}}^{\ell_{1}} \sum_{\ell_{1} \ell_{2} j}^{\ell_{2} m_{2} m}\left|\ell_{1}, \ell_{2} ; m_{1}, m_{2}\right\rangle,
$$

Addition of Angular Momenta

南
却
大
where the coefficients of expansion

$$
C_{\ell_{1} \ell_{2} j}^{m_{1} m_{2} m}=\left\langle\ell_{1}, \ell_{2} ; m_{1}, m_{2} \mid j, m\right\rangle
$$

are called the Clebsch－Gordan（CG）coefficients．
By convention，Clebsch－Gordan coefficients are taken to be real，ie．，

$$
\left\langle\ell_{1}, \ell_{2} ; m_{1}, m_{2} \mid j, m\right\rangle=\left\langle\ell_{1}, \ell_{2} ; m_{1}, m_{2} \mid j, m\right\rangle^{\dagger}=\left\langle j, m \mid \ell_{1}, \ell_{2} ; m_{1}, m_{2}\right\rangle
$$

Also，using the complete and orthonormal relation，we get

$$
\sum_{m_{1} m_{2}}\left\langle j^{\prime}, m^{\prime} \mid \ell_{1}, \ell_{2} ; m_{1}, m_{2}\right\rangle\left\langle\ell_{1}, \ell_{2} ; m_{1}, m_{2} \mid j, m\right\rangle=\delta_{j^{\prime} j} \delta_{m^{\prime} m}
$$

Since the Clebsch－Gordan coefficients are real，we can write this equation as

$$
\sum_{m_{1} m_{2}}\left\langle\ell_{1}, \ell_{2} ; m_{1}, m_{2} \mid j^{\prime}, m^{\prime}\right\rangle\left\langle\ell_{1}, \ell_{2} ; m_{1}, m_{2} \mid j, m\right\rangle=\delta_{j^{\prime} j} \delta_{m^{\prime} m}
$$

Addition of Angular Momenta

The last equation leads to

$$
\sum_{m_{1} m_{2}}\left\langle\ell_{1}, \ell_{2} ; m_{1}, m_{2} \mid j, m\right\rangle^{2}=1
$$

Similarly, we can derive the following relation

$$
\sum_{j} \sum_{m=-j}^{j}\left\langle\ell_{1}, \ell_{2}, m_{1}^{\prime}, m_{2}^{\prime} \mid j, m\right\rangle\left\langle\ell_{1}, \ell_{2} ; m_{1}, m_{2} \mid j, m\right\rangle=\delta_{m_{1}^{\prime} m_{1}} \delta_{m_{2}^{\prime} m_{2}}
$$

which yields

$$
\sum_{j} \sum_{m=-j}^{j}\left\langle l_{1}, l_{2}, m_{1}, m_{2} \mid j, m\right\rangle^{2}=1
$$

Since

$$
\hat{J}_{z}=\hat{L}_{1 z}+\hat{L}_{2 z},
$$

We have

$$
\left\langle\ell_{1}, \ell_{2} ; m_{1}, m_{2}\right| \hat{J}_{z}-\hat{L}_{1 z}-\hat{L}_{2 z}|j, m\rangle=0 .
$$

Addition of Angular Momenta

Using the following relations

$$
\begin{aligned}
& \hat{J}_{z}|j, m\rangle=m \hbar|j, m\rangle, \\
& \left\langle\ell_{1}, \ell_{2} ; m_{1}, m_{2}\right| \hat{L}_{1 z}=m_{1} \hbar\left\langle\ell_{1}, \ell_{2} ; m_{1}, m_{2}\right|, \\
& \left\langle\ell_{1}, \ell_{2} ; m_{1}, m_{2}\right| \hat{L}_{2 z}=m_{2} \hbar\left\langle\ell_{1}, \ell_{2} ; m_{1}, m_{2}\right|,
\end{aligned}
$$

we obtain

$$
\left(m-m_{1}-m_{2}\right)\left\langle\ell_{1}, \ell_{2} ; m_{1}, m_{2} \mid j, m\right\rangle=0
$$

Therefore，for $\left\langle l_{1}, l_{2} ; m_{1}, m_{2} \mid j, m\right\rangle$ to be nonzero，we must have

$$
m=m_{1}+m_{2}
$$

This is the first constraint for the Clebsch－Gordan coefficients．

Addition of Angular Momenta

Since the dimension of the product space is $N=\left(21_{1}+1\right) \times\left(21_{2}\right.$ $+1)$ ，there are $\left(2 l_{1}+1\right) \times\left(21_{2}+1\right)$ number of basis vectors $|j, m\rangle$ in this space．On the other hand，for each value of j there are $(2 j+1)$ basis vectors $|j, m\rangle$ ，and hence

$$
\sum_{j=j \min }^{j_{\max }}(2 j+1)=\left(2 \ell_{1}+1\right)\left(2 \ell_{2}+1\right)
$$

Finally，we can obtain

$$
j_{\max }=\ell_{1}+\ell_{2} . \quad j_{\min }^{2}=\left(\ell_{1}-\ell_{2}\right)^{2}
$$

We have the following range of variation of j ：

$$
\left|\ell_{1}-\ell_{2}\right| \leq j \leq\left(\ell_{1}+\ell_{2}\right) .
$$

Addition of Angular Momenta

For instance，it can be shown that the CG coefficients corresponding to two limiting cases $\left\{m_{1}=l_{1}, m_{2}=l_{2}, j=l_{1}+l_{2}\right.$ ， $\left.m=\left(l_{1}+l_{2}\right)\right\}$ and $\left\{m_{1}=-l_{1}, m_{2}=-l_{2}, j=l_{1}+l_{2}, m=-\left(l_{1}+l_{2}\right)\right\}$ are equal to 1 ．That is

$$
\begin{aligned}
& \left\langle\ell_{1}, \ell_{2}, \ell_{1}, \ell_{2} \mid\left(\ell_{1}+\ell_{2}\right),\left(\ell_{1}+\ell_{2}\right)\right\rangle=1, \\
& \left\langle\ell_{1}, \ell_{2},-\ell_{1},-\ell_{2} \mid\left(\ell_{1}+\ell_{2}\right),-\left(\ell_{1}+\ell_{2}\right)\right\rangle=1 .
\end{aligned}
$$

To calculate CG coefficients，other than the aforementioned simple cases，one uses either the recursion relations between the CG coefficients or the ladder operator method．

Addition of Angular Momenta

Finally, we can obtain

$$
\begin{aligned}
& \sqrt{(j \mp m)(j \pm m+1)}\left\langle\ell_{1}, \ell_{2} ; m_{1}, m_{2} \mid j, m \pm 1\right\rangle \\
= & \sqrt{\left(\ell_{1} \pm m_{1}\right)\left(\ell_{1} \mp m_{1}+1\right)}\left\langle\ell_{1}, \ell_{2} ; m_{1} \mp 1, m_{2} \mid j, m\right\rangle \\
+ & \sqrt{\left(\ell_{2} \pm m_{2}\right)\left(\ell_{2} \mp m_{2}+1\right)}\left\langle\ell_{1}, \ell_{2} ; m_{1}, m_{2} \mp 1 \mid j, m\right\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
& \sqrt{(j \pm m)(j \mp m+1)}\left\langle\ell_{1}, \ell_{2} ; m_{1}, m_{2} \mid j, m\right\rangle \\
= & \sqrt{\left(\ell_{1} \pm m_{1}\right)\left(\ell_{1} \mp m_{1}+1\right)}\left\langle\ell_{1}, \ell_{2} ; m_{1} \mp 1, m_{2} \mid j, m \mp 1\right\rangle \\
+ & \sqrt{\left(\ell_{2} \pm m_{2}\right)\left(\ell_{2} \mp m_{2}+1\right)}\left\langle\ell_{1}, \ell_{2} ; m_{1}, m_{2} \mp 1 \mid j, m \mp 1\right\rangle .
\end{aligned}
$$

Let us consider the addition of the orbital angular momentum and the spin angular momentum, i.e.,

$$
\hat{\vec{J}}=\hat{\vec{L}}+\hat{\vec{S}}
$$

of a spin half particle (say, of an electron). In the given case $l_{1}=1$ (an integer) $m_{1}=m_{1}$ (takes values from -1 to l), l_{2}
$=s=1 / 2$, and $m_{2}=m_{s}= \pm 1 / 2$.
The value of j in this case is restricted in the interval

$$
\left|\ell-\frac{1}{2}\right| \leq j \leq\left|\ell+\frac{1}{2}\right| .
$$

The maximal set of commuting observables in this case is given by:

$$
\left\{\hat{J}^{2}, \hat{L}^{2}, \hat{S}^{2}, \hat{J}_{z}\right\}
$$

Addition of Orbital and Spin

$\left|\ell, s, m_{\ell}, m_{s}\right\rangle$.
The eigenvectors of J^{2} are:

$$
|\ell, s ; j, m\rangle
$$

I and s being fixed. Obviously, the following hold:

$$
\begin{aligned}
& \hat{S}^{2}|j, m\rangle=\hbar^{2} s(s+1)|j, m\rangle=\frac{3}{4} \hbar^{2}|j, m\rangle, \\
& \hat{J}_{z}|j, m\rangle=\hbar m|j, m\rangle
\end{aligned}
$$

The state with maximal total angular momentum $j=1+1 / 2$ and $m_{\max }=l+1 / 2$

$$
\left|j_{\max }, m_{\max }\right\rangle=\left|\ell+\frac{1}{2}, \ell+\frac{1}{2}\right\rangle=|\ell, \ell\rangle \otimes\left|\frac{1}{2}, \frac{1}{2}\right\rangle .
$$

Addition of Orbital and Spin

The corresponding CG coefficient

$$
\left\langle\ell, \frac{1}{2} ; \ell, \frac{1}{2} \left\lvert\, \ell+\frac{1}{2}\right., \ell+\frac{1}{2}\right\rangle=1,
$$

in accordance with our earlier discussions. On one hand we have

$$
\begin{aligned}
\hat{J}_{-}\left|\ell+\frac{1}{2}, \ell+\frac{1}{2}\right\rangle & =\hbar \sqrt{\left[\left(\ell+\frac{1}{2}\right)+\left(\ell+\frac{1}{2}\right)\right]\left(\ell+\frac{1}{2}-\ell-\frac{1}{2}+1\right)}\left|\ell+\frac{1}{2}, \ell-\frac{1}{2}\right\rangle \\
& =\hbar \sqrt{2 \ell+1}\left|\ell+\frac{1}{2}, \ell-\frac{1}{2}\right\rangle,
\end{aligned}
$$

while on the other

$$
\begin{aligned}
\left(\hat{L}_{-}+\hat{S}_{-}\right)\left|\ell+\frac{1}{2}, \ell+\frac{1}{2}\right\rangle & =\hat{L}_{-}|\ell, \ell\rangle \otimes\left|\frac{1}{2}, \frac{1}{2}\right\rangle+|\ell, \ell\rangle \otimes \hat{S}_{-}\left|\frac{1}{2}, \frac{1}{2}\right\rangle \\
& =\hbar \sqrt{2 \ell}|\ell, \ell-1\rangle \otimes\left|\frac{1}{2}, \frac{1}{2}\right\rangle+\hbar|\ell, \ell\rangle \otimes\left|\frac{1}{2},-\frac{1}{2}\right\rangle
\end{aligned}
$$

Addition of Orbital and Spin

Therefore, we get

$$
\left|\ell+\frac{1}{2}, \ell-\frac{1}{2}\right\rangle=\frac{1}{\sqrt{2 \ell+1}}\left[\sqrt{2 \ell}|\ell, \ell-1\rangle \otimes\left|\frac{1}{2}, \frac{1}{2}\right\rangle+|\ell, \ell\rangle \otimes\left|\frac{1}{2},-\frac{1}{2}\right\rangle\right] .
$$

Similarly, we have

$$
\left|\ell+\frac{1}{2}, \ell-\frac{3}{2}\right\rangle=\sqrt{\frac{2 \ell-1}{2 \ell+1}}|\ell, \ell-2\rangle \otimes\left|\frac{1}{2}, \frac{1}{2}\right\rangle+\sqrt{\frac{2}{2 \ell+1}}|\ell, \ell-1\rangle \otimes\left|\frac{1}{2},-\frac{1}{2}\right\rangle .
$$

The other states are given by

$$
\begin{aligned}
\left|\ell+\frac{1}{2}, m\right\rangle & =\sqrt{\frac{\ell+m+\frac{1}{2}}{2 \ell+1}}\left|\ell, m-\frac{1}{2}\right\rangle \otimes\left|\frac{1}{2}, \frac{1}{2}\right\rangle\left|\ell-\frac{1}{2}, m\right\rangle=\sqrt{\frac{\ell+m+\frac{1}{2}}{2 \ell+1}}\left|\ell, m+\frac{1}{2}\right\rangle \otimes\left|\frac{1}{2},-\frac{1}{2}\right\rangle \\
& +\sqrt{\frac{\ell-m+\frac{1}{2}}{2 \ell+1}}\left|\ell, m+\frac{1}{2}\right\rangle \otimes\left|\frac{1}{2},-\frac{1}{2}\right\rangle, \quad-\sqrt{\frac{\ell-m+\frac{1}{2}}{2 \ell+1}}\left|\ell, m-\frac{1}{2}\right\rangle \otimes\left|\frac{1}{2}, \frac{1}{2}\right\rangle,
\end{aligned}
$$

where

$$
m=\ell+\frac{1}{2}, \ell-\frac{1}{2}, \ell-\frac{3}{2}, \ldots-\ell+\frac{1}{2},-\left(\ell+\frac{1}{2}\right)
$$

Exercise

用大挐
1．Find the value of the commutators
（a）$\left[\hat{x}, \hat{L}_{x}\right]$ ，（b）$\left[\hat{x}, \hat{L}_{y}\right]$ ，and $\left[\hat{p}_{x}, \hat{L}_{y}\right]$ ．

Exercise

Find the value of the commutators

$$
\text { (a) }\left[\hat{x}, \hat{L}_{x}\right] \text {, (b) }\left[\hat{x}, \hat{L}_{y}\right] \text {, and }\left[\hat{p}_{x}, \hat{L}_{y}\right] \text {. }
$$

Solution:

$$
\begin{aligned}
{\left[\hat{x}, \hat{L}_{x}\right] } & =\left[\hat{x},\left(\hat{y} \hat{p}_{z}-\hat{z} \hat{p}_{y}\right]=\left[\hat{x}, \hat{y} \hat{p}_{z}\right]-\left[\hat{x}, \hat{z} \hat{p}_{y}\right]\right. \\
& =[\hat{x}, \hat{y}] \hat{p}_{z}+\hat{y}\left[\hat{x}, \hat{p}_{z}\right]-[\hat{x}, \hat{z}] \hat{p}_{y}-\hat{z}\left[\hat{x}, \hat{p}_{z}\right] \\
& =0 \\
{\left[\hat{x}, \hat{L}_{y}\right] } & =i \hbar \hat{z}=i \hbar z \\
{\left[\hat{p}_{x}, \hat{L}_{y}\right] } & =i \hbar \hat{z}=i \hbar \hat{p}_{z}
\end{aligned}
$$

Exercise

2.Consider a particle in a superposition state with the wave function

$$
|\psi(\theta, \varphi)\rangle=\sqrt{\frac{1}{5}} Y_{1}^{-1}(\theta, \varphi)+A Y_{1}^{0}+\sqrt{\frac{1}{5}} Y_{1}^{1}(\theta, \varphi),
$$

where A is an arbitrary constant and Y_{m} are the spherical harmonics. (a) Find \mathbf{A} so that ψ is normalized. (b) What is the probability that a measurement of L_{z} will yield a value $L_{z}=0$? (c) Find the expectation values of L^{2} and L_{+}in this state.

Exercise

Solution: (a) For the normalized wave function, we must have

$$
\langle\psi \mid \psi\rangle=\frac{2}{5}+A^{2}=1, \Rightarrow \quad A=\sqrt{\frac{3}{5}}
$$

(b) The normalized wave function is now given by

$$
\psi(\theta, \varphi)=\sqrt{\frac{1}{5}} Y_{1}^{-1}(\theta, \varphi)+\sqrt{\frac{3}{5}} Y_{1}^{0}+\sqrt{\frac{1}{5}} Y_{1}^{1}(\theta, \varphi),
$$

and therefore the probability of finding the value $L_{2}=0$ is

$$
P=\frac{\left|\left\langle Y_{1}^{0} \mid \psi\right\rangle\right|^{2}}{\langle\psi \mid \psi\rangle}=\frac{3}{5}
$$

(c) We have

$$
\left.\hat{L}^{2}|\psi(\theta, \varphi)\rangle=\hat{L}^{2} \left\lvert\, \sqrt{\frac{1}{5}} Y_{1}^{-1}(\theta, \varphi)+\sqrt{\frac{3}{5}} Y_{1}^{0}+\sqrt{\frac{1}{5}} Y_{1}^{1}(\theta, \varphi)\right.\right]=2 \hbar^{2}|\psi(\theta, \varphi)\rangle .
$$

Exercise

The expectation value of L^{2} will be

$$
\left\langle\hat{L}^{2}\right\rangle=\frac{\langle\psi| \hat{L}^{2}|\psi\rangle}{\langle\psi \mid \psi\rangle}=2 \hbar^{2} \frac{\langle\psi \mid \psi\rangle}{\langle\psi \mid \psi\rangle}=2 \hbar^{2} .
$$

We get

$$
\hat{L}_{+} \psi(\theta, \varphi)=\sqrt{\frac{2}{5}} Y_{1}^{0}+\sqrt{\frac{6}{5}} Y_{1}^{1}
$$

Therefore, the expectation value of L_{+}is given by

$$
\left\langle\hat{L}_{+}\right\rangle=\left\langle\psi \hat{L}_{+} \psi(\rangle=2 \frac{\sqrt{6}}{5} \hbar\right.
$$

Exercise

3. Find the eigenvalues and eigenstates of the spin operator S of an electron in the direction of a unit vector n that lies in the xy plane making an angle θ with the x-axis.

Exercise

3. Find the eigenvalues and eigenstates of the spin operator S of an electron in the direction of a unit vector n that lies in the xy plane making an angle θ with the x-axis.

Solution: The projection of the spin operator S on n will be $S_{n}=\hbar / 2 \sigma_{n}$, where

$$
\hat{\sigma}_{n}=\left(\begin{array}{cc}
0 & \cos \theta \\
\cos \theta & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & -i \sin \theta \\
i \sin \theta & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & e^{-i \theta} \\
e^{i \theta} & 0
\end{array}\right) .
$$

The requirement of non-trivial solutions to the eigenvalue equation for σ_{n} yields

$$
\left.\begin{array}{ll}
-\lambda & e^{-i \theta} \\
e^{i \theta} & -\lambda
\end{array} \right\rvert\,=0, \Rightarrow \lambda= \pm 1
$$

Hence, the eigenvalues of the operator S_{n} are $\pm \hbar / 2$

Exercise

For the eigenvectors of S_{n}, We have

$$
\left(\begin{array}{ll}
0 & e^{-i \theta} \\
e^{i \theta} & 0
\end{array}\right)\binom{a}{b}=\binom{b e^{-i \theta}}{a e^{i \theta}}= \pm\binom{ a}{b} \Rightarrow a=e^{-i \theta / 2}, b= \pm e^{i \theta / 2}
$$

The normalized eigenvectors of S_{n}, corresponding to the eigenvalues $\pm \hbar / 2$, are

$$
\chi_{n}^{+}=\frac{1}{\sqrt{2}}\binom{e^{-i \theta / 2}}{e^{i \theta / 2}}, \quad \chi_{n}^{-}=\frac{1}{\sqrt{2}}\binom{e^{-i \theta / 2}}{-e^{i \theta / 2}}
$$

Exercise

4. Consider the case of $I=1$ and $s=1 / 2$. Find all the states and the corresponding CG coefficients.

Exercise

4. Consider the case of $I=1$ and $s=1 / 2$. Find all the states and the corresponding CG coefficients.

Solution:

$$
\begin{aligned}
\left|\frac{3}{2}, \frac{3}{2}\right\rangle & =\sqrt{\frac{1+\frac{3}{2}+\frac{1}{2}}{2+1}}\left|1, \frac{3}{2}-\frac{1}{2}\right\rangle \otimes\left|\frac{1}{2}, \frac{1}{2}\right\rangle+\sqrt{\frac{1-\frac{3}{2}+\frac{1}{2}}{2+1}}\left|1, \frac{3}{2}+\frac{1}{2}\right\rangle \otimes\left|\frac{1}{2},-\frac{1}{2}\right\rangle \\
& =|1,1\rangle \otimes\left|\frac{1}{2}, \frac{1}{2}\right\rangle \equiv\left|1, \frac{1}{2} ; 1, \frac{1}{2}\right\rangle, \\
\left|\frac{3}{2}, \frac{1}{2}\right\rangle & =\sqrt{\frac{1+\frac{1}{2}+\frac{1}{2}}{2+1}}\left|1, \frac{1}{2}-\frac{1}{2}\right\rangle \otimes\left|\frac{1}{2}, \frac{1}{2}\right\rangle+\sqrt{\frac{1-\frac{1}{2}+\frac{1}{2}}{2+1}}\left|1, \frac{1}{2}+\frac{1}{2}\right\rangle \otimes\left|\frac{1}{2},-\frac{1}{2}\right\rangle \\
& =\sqrt{\frac{2}{3}}|1,0\rangle \otimes\left|\frac{1}{2}, \frac{1}{2}\right\rangle+\sqrt{\frac{1}{3}}|1,1\rangle \otimes\left|\frac{1}{2},-\frac{1}{2}\right\rangle \\
& \equiv \sqrt{\frac{2}{3}}\left|1, \frac{1}{2} ; 0, \frac{1}{2}\right\rangle+\sqrt{\frac{1}{3}}\left|1, \frac{1}{2} ; 1,-\frac{1}{2}\right\rangle
\end{aligned}
$$

Exercise

$$
\begin{aligned}
\left|\frac{3}{2},-\frac{1}{2}\right\rangle & =\sqrt{\frac{1-\frac{1}{2}+\frac{1}{2}}{2+1}}\left|1,-\frac{1}{2}-\frac{1}{2}\right\rangle \otimes\left|\frac{1}{2}, \frac{1}{2}\right\rangle+\sqrt{\frac{1+\frac{1}{2}+\frac{1}{2}}{2+1}}\left|1, \frac{1}{2}-\frac{1}{2}\right\rangle \otimes\left|\frac{1}{2},-\frac{1}{2}\right\rangle \\
& =\sqrt{\frac{1}{3}}|1,-1\rangle \otimes\left|\frac{1}{2}, \frac{1}{2}\right\rangle+\sqrt{\frac{2}{3}}|1,0\rangle \otimes\left|\frac{1}{2},-\frac{1}{2}\right\rangle \\
& \equiv \sqrt{\frac{1}{3}}\left|1, \frac{1}{2} ;-1, \frac{1}{2}\right\rangle+\sqrt{\frac{2}{3}}\left|1, \frac{1}{2} ; 0,-\frac{1}{2}\right\rangle \\
\left|\frac{3}{2},-\frac{3}{2}\right\rangle & =\sqrt{\frac{1-\frac{3}{2}+\frac{1}{2}}{2+1}}\left|1,-\frac{3}{2}-\frac{1}{2}\right\rangle \otimes\left|\frac{1}{2}, \frac{1}{2}\right\rangle+\sqrt{\frac{1+\frac{3}{2}+\frac{1}{2}}{2+1}}\left|1,-\frac{3}{2}+\frac{1}{2}\right\rangle \otimes\left|\frac{1}{2},-\frac{1}{2}\right\rangle \\
& =|1,-1\rangle \otimes\left|\frac{1}{2},-\frac{1}{2}\right\rangle \equiv\left|1, \frac{1}{2} ;-1,-\frac{1}{2}\right\rangle .
\end{aligned}
$$

$$
\begin{aligned}
\left|\frac{1}{2}, \frac{1}{2}\right\rangle & =\sqrt{\frac{1+\frac{1}{2}+\frac{1}{2}}{2+1}}\left|1, \frac{1}{2}+\frac{1}{2}\right\rangle \otimes\left|\frac{1}{2},-\frac{1}{2}\right\rangle-\sqrt{\frac{1-\frac{1}{2}+\frac{1}{2}}{2+1}}\left|1, \frac{1}{2}-\frac{1}{2}\right\rangle \otimes\left|\frac{1}{2}, \frac{1}{2}\right\rangle \\
& =\sqrt{\frac{2}{3}}|1,1\rangle \otimes\left|\frac{1}{2},-\frac{1}{2}\right\rangle-\sqrt{\frac{1}{3}}|1,0\rangle \otimes\left|\frac{1}{2}, \frac{1}{2}\right\rangle \\
& \equiv \sqrt{\frac{2}{3}}\left|1, \frac{1}{2} ; 1,-\frac{1}{2}\right\rangle-\sqrt{\frac{1}{3}}\left|1, \frac{1}{2} ; 0, \frac{1}{2}\right\rangle \\
\left|\frac{1}{2},-\frac{1}{2}\right\rangle & =\sqrt{\frac{1-\frac{1}{2}+\frac{1}{2}}{2+1}}\left|1,-\frac{1}{2}+\frac{1}{2}\right\rangle \otimes\left|\frac{1}{2},-\frac{1}{2}\right\rangle-\sqrt{\frac{1+\frac{1}{2}+\frac{1}{2}}{2+1}}\left|1,-\frac{1}{2}-\frac{1}{2}\right\rangle \otimes\left|\frac{1}{2}, \frac{1}{2}\right\rangle \\
& =\sqrt{\frac{1}{3}}|1,0\rangle \otimes\left|\frac{1}{2},-\frac{1}{2}\right\rangle-\sqrt{\frac{2}{3}}|1,-1\rangle \otimes\left|\frac{1}{2}, \frac{1}{2}\right\rangle \\
& \equiv \sqrt{\frac{1}{3}}\left|1, \frac{1}{2} ; 0,-\frac{1}{2}\right\rangle-\sqrt{\frac{2}{3}}\left|1, \frac{1}{2} ;-1, \frac{1}{2}\right\rangle
\end{aligned}
$$

