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Orbital Angular Momentum Operators (% %z £ %7

The quantum mechanical operator for L, is obtained by
replacing r and p, with their respective operators,

VaN
=

L:?xﬁ
The components of angular momentum operator can be
expressed in Cartesian Coordinates

z R R " d d
X: —_— :—l _— _ ,
ypZ Zpy (yaz Z&y)
5 . . . d d
Ly=2zpy—xp;, = —ih Z—8x_x—8y ,
7 A A 4 e, %,
—Xpy—yPx=—lh|xXx=——y=|].
< py yp ay yax
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Orbital Angular Momentum Operators (% %z £ %7

The operator corresponding to the square of the angular

momentum is a scalar operator given by
P=L-L=02+12+12
The algebra of the angular momentum operators is given by

their commutation relations. For instance,
(L Ly) = [y p- — 2Pys 2 Px — X Pe) = [y P2rzPx] — [2 Pys2 Pa] — [y P X Pe] + [2 Pys X P2).
SiNCe  [ypuzpd =ylpazpid + [nzhel B = yzlpe bl + 3 [enz) o+ 21y i)

+[v.2] px Pz = —ihy p.

2Py 2Px] = 2[Pyo2 i) + (2.2 2] Py = 2 [Pyo Pa) + 2 [Py 2] Pr+ 2 [2. Pl Py
+ [2.2] px Py =0,

[y Posx P) = ¥ [P X ) + [yox Pe] Po = yx [Pen 2] + ¥ [Ponx] P +x [y, ] P2
+ [y.x] p7 =0,

[Zﬁyaxﬁz] =z [ﬁy,xﬁz] + [Z,Xﬁz] Py =2x [ﬁy,ﬁz] +2z [ﬁyax] p:+x [Z’ ﬁz] Dy
+ z.x| p. Dy = ihxp
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Orbital Angular Momentum Operators =< % %z £ %7

Therefore,

Ly, L)) = ih (x py —y px) = ihL,.
The other two commutators are calculated in a similar
manner. The net result is

o

Lol = ifl,, (L L] =ik, [L,L] = inL,

These commutation relations can be combined together into
a single vector equation

gl
t~b
b

ih X
Equivalently, they can also be written as

[ij,ik} = ih Ejke zg,
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Orbital Angular Momentum Operators (% %z £ %7

/1919

where summation over the repeated index | from 1 to 3 is
understood. Here, the symbol ¢, is called the Levi-Civita
tensor density and it is defined as

(1 1f (ijk) 1s an even permutation of (123)

gk =4 —1 1f (ijk) 1s an odd permutation of (123)

L. 0 otherwise.

The uncertainty relations of orbital angular momentum

h

|
AL; ALy > 5\/\<[Lj,Lk]>!2 = 51{Le)l;

It then follows that no two components of the angular
momentum can be measured simultaneously accurately.
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Orbital Angular Momentum Operators
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We shall determine the possible eigenvalues of L2and L: by
algebraic means. In other words, we shall determine their
eigenvalues without solving the differential equations

representing the corresponding eigenvalue problems for
these operators.

Since L?and L, commute, they have a common set of
eigenfunctions.

A and u , respectively, are dimensionless.
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Orbital Angular Momentum Opera’rors % %] ]’

Let us introduce the operators:
Li=1L,+iL,.
Using the commutation relations
(L, L] =[L,, L] +il[l;,L,] = inl, +i(—i) hL, = h(L, +iL,) = KL,

= ihly, —hlL, = —h(L, —iLy) = —hL_.

Cih(EyE, 4 BLy) £ 5 (Eaky 1 LiL) = 0.
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Orbital Angular Momentum Operators (% %z £ %7

We have the following results
L (Liwyy) =hLlyyy +Li(Loyy ) =h(u+1) (Lyyy ),
L (L-yy ) =—-hL_wy y+L (Lyy,)=nh(u—1)(L-yy,),

That is, the operator L., by acting on the eigenfunction of
L. with a given eigenvalue, converts it into an eigenfunction
of L: with an eigenvalue raised by one unit of 1.

Therefore, the operators L,.and L_are called the raising
(creation) and the lowering (annihilation) operators,
respectively.
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Orbital Angular Momentum Operafors % %] /’

Therefore, we conclude that there must exist an eigens’ra’re,
U, » OF LzWith the highest possible eigenvalue, it .., Such

that
zz Y Mmax hzl Y Hmax ° ZZ Y Umax h“’ max Y) Hmax and 1:"*_ Y Mmax 0.

The next question is: How to find u,..? To answer this
question we notice that

Lily = (Lyily) (e Fily) = L2+ 125 i(E,Ly — L,L)

=1 L2Fi(inl,) = L* — L2 +hl.,
and hence

2= bobe 4127 (BE,).
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Therefore, using the lower sign in above equation, we obtain
zz Y Mmax — z_i—i_ Y Mmax + z? Y MUmax + (hzz) Y Mmax

=0 + hz:ur%lax lljl MUmax T hz:umax l/]ﬂ, HUmax — hz‘umax (:umaX + 1)II/)L Hmax °®
and hence
A= hzumax(umax + 1)-

An argument similar to the one used in the case of L.,
there must exist an eigenstate, |, ., of Lzwith the lowest
possible eigenvalue, v, such that

zz III;L HMmin — hzk II/A HMmin zz II/.umin — humin llj)L Mmin and Z:_ ll/;l' Hmin — 0
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Orbital Angular Momentum Operafors % %] ]’

Using the upper sign in the commutation rela’non, we have

22 llj)* Mmin - z+£_ llj;l' Mmin _|_ Z\é III)L HUmin o (hiz) W)L Mmin

= (0+ hzu“l’%lin - hzlimin) WV i = hz.umin (Mmin — 1)y Linin*
Therefore,

A= h2.umin(umin — 1)-
We conclude

.umax(umax + 1) — .umin(“min — 1)

We get from this equation that either

Hmin = Umax + 1 OF Upin = —Mmax-
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Orbital Angular Momentum Operators (% %z £ %7

The first solution is unacceptable since, if so, the eigenvalue
of the lowest eigenstate of L. will be greater than the
eigenvalue of the highest eigenstate. Thus,

Umin = — Mmax-

It is customary to denote v, by | and v« by m (or, m|). The
numbers | and m are called the orbital quantum number
and the magnetic quantum number, respectively.

The eigenvalues of L2and Lz can now be written as
M=0Ll+1), U,=Hhm,
where, for a given |, m takes (21+1) values from -l to | and

| must be an integer
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Orbital Angular Momentum Operafors % %] ]’

The eigenvalue equations for L2and Lz, respechvely, are

LY (0, 9) = K21+ 1) Yin (0, ). LY (0, 9) = mhYin (0, 0).
where | = O, 1, 2, 3,... and m = -|,-1+1,-1+2,-1+3,...,0,1,2,3,
A1,

For the given purpose it is convenient to go over to the

spherical system of coordinates. Using the chain rule for
differentiation and the transformation equations, we obtain

Jd dxd dyd dzd Jd %, d %,
Jo  dpdx  dedy 9oz %_Cow( 8x+y8y)—taneza_z
= —rsin0 sin(pi—l—rsine cosqoi
o0x dy
_,9_ 9
x&y Yox
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Orbital Angular Momentum Operators (% %z £ %7

The expressions for the x, y and z components of the

angular momentum operator in spherical coordinates can be

i —h SiIl(P——|—COt9 COS(P—

L, = —ih <cos<p o cot O sin @ o )
y— %_ %

. . d
LZ — —ih %
For the raised operator
d 9 a]

1\4—|— :zx—i_lidy =h [lza_y _|_Za_x_ (X"‘ly)a—z
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Orbital Angular Momentum Operators ‘% %z £ %

Taking into account that
z=rcos0

x+iy=rsinO(cos@+ising) =re*?sind,

we get
. . . . : 2, d
— 1P ; -1 - -1 - 1 N
Ly = he (lre cos 0 ay—I—re cos@ax rs1n9gz>
T 0 0 d
— l(P . . . e L . o . e
he _z (x—1iy) cotO 5.+ (x—iy) cotO 3 rsin 0 32]
o | d d d d d
_ § L0 _ ; _
he _cotG (x8x+y8y) tanGZaZ-HcotG (xay yax)].
Finally

VN y 8 a
p— 1p _ ] _
L, = he (ae—l—zcotea(l)).
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Orbital Angular Momentum Operators § 4% %z £ %7

Using now
PO : 2, d : d d
— — 2 ip - 1 - A _—
Lyl hee (ae—l—zcotﬂa(p) {e (89 lCOte&(p)}

82 %, 82 %,
_ 52 ¥ s 2 Y .
= —h (a 2+C0t68 -+ cot 98 2—|—la ),

and
L>=0,0L_+ £§ —hl.,

We finally obtain the formula for L2 in spherical
coordinates:

. 0° d 1 02
2 32 | |
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Orbital Angular Momentum Operators 4% %z £ %7

Since L.depends only on ¢, the eigenfunctions Y, are

separable:
Yim (0, ¢) = O1m (0) P (9).
Therefore,
—ihOy, (e)aq)g;(m = mh®, (0) Dy (p),
which reduces to,
_iﬁd)m((p) — m®,, ().

The normalized solutions of this equation are given by
1

2T
16/10/2023 Jinniu Au e
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For &, to be single-valued, it must be periodic in ¢ with
period 2n, ®@,(2n+¢p)= D,(p), hence

Yim (0, ¢) = O (0) D (9).
This relation shows that the expectation value of L., /=<l
m IL,Il m>, is restricted to a discrete set of values
[, =mh, m=0,=+1,+2,£3,....

Thus, the values of m vary from -[ to [
m=—1,—(I—-1),-0-2),...,0,1,2,...,1—=2,1—1,1.

Hence the quantum number / must also be an integer. This

iIs expected since the orbital angular momentum must have

integer values.
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Orbital Angular Momentum Operators 5 ‘% %z £ %7
We begin by applying L: to the eigenfunctions

1 .
Yim(0, ¢) = O (0)e'™?.
o 0, 0) =5 OmO)
This gives
5 B2 1 0 0 1 82 .
LzYm 6’, = - in g — ®m 0)e!"m?
in(0: ¢) m[smeae (Sm 6(9)+sin26’8q02] im(0)e
B2+ 1) .
= O (0)e™?
N

which, after eliminating the ¢-dependence, reduces to

2
L d (Sin9d®lm(9)) + [l(l +1) — — } O (0) = 0.

sin@ do do sin? 0

This equation is known as the Legendre differential equation.
Its solutions can be expressed in terms of the associated
Legendre functions
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Om(0) = C1 P (cos 0),
which are defined by
4|
Pl"(x) = (1 =xHI"M2 - Pi(x).
This shows that

Pl_m (x) = sz (x),

where P(x) is the Ith Legendre polynomial which is defined

by the Rodrigues formula

l
Pi(x) = i

2L dx

l(xz — 1)
and

1 oo
3 2L+ VAR =06 =X Pi(=x) = (=) P(x).
[=0
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/1919

The full normalized eigenfunctions of L? and Lz are now
given by

Yim (0. 0) = (_l)m\/(2l + 1) (/ — m)!PZm(COS(g)eim¢ (m > 0).

4 ( +m)!
and 20+ 1\ ( —m)!
Yim (0, 9) = \/( 4—7'; ) 7 Z;' P/" (cos 0)e'™? m < 0.

Pm is the associated Legendre functions

Associated Legendre functions
Pl1 (cosf) = sind

le (cosd) = 3 cosf sinf

P22 (cos @) = 3sin’ 0

P31 (cosf) = % sin@(5cos? 6 — 1)
P32 (cos @) = 15sin” 6 cosd

P33 (cos®) = 15sin> @
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The completeness relation of Spherical Harmonics is

/
DL m)l, m=1

m=—I[

or,

S 00 11, mil, m 0’9"y = > Y@, 0) Vim0, p) = 5(cos 0 — cos0")d(p — @)
m

m

86 -9)

50 — o).
sng W —9)

The spherical harmonics are complex functions; their
complex conjugate is given by

[Yim (@, 0)]" = (=1)"Y1,—m (0, ).
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Orbital Angular Momentum Operators 4% %z £ %7

We can verify that Y,.is an eigenstate of the parity
operator P with an eigenvalue (-1):

PYim(0.0) = Yin(x — 0.0 + ) = (=1)' Y1, 6. ),

We can establish a connection between the spherical

harmonics and the Legendre polynomials by simply taking
m=0.

D! 20+1  d ) 20+ 1
Yi0(0, ) = N 0)* =,/ P(cos
00 = 0V "4 dieosoy Y i L1(cos9).

with

] d'

Prlcost) = 2!11 d(cos 0)!

(cos® O — l)l.
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Orbital Angular Momentum Opera’rors % %] ]’

Note that Y, can also be expressed in terms of the
Cartesian coordinates. For this, we need only to substitute

. X . . y z
sinf cosp = —, sinf singp = —, cost = —
v r r
Ylm (03 (0) Ylm (x, v, Z)

YOO(Q (0) \/E

Y10(0, ¢) = /7= cos 0
Y1410, 9) = F/gx €7 sin 0
Y200, ¢) = /2= (3cos? 0 — 1)

Y2410,90) =F é—i e*'? sin 0 cos 0

Y2,42(0,0) =/ 357 e e sin? 0

YOO(X y,Z) \/E

Yio(x,y,2) = /7= 2

3 x=%i
Yl,il(X,y,Z)=:F %Ty

5 3 2.2
YZO(-X’ y,Z) — 1\ 161 Z},zr

Vo21(x,7,2) = Fy/ g2 52

/15 x2—y24+2ix
YZ,:I:Z(xa Y, Z) — 301 yrz 3
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It is convenient to take the complete set of spherical
harmonics {Y.(0,0), which happens to be the common set of

eigenfunctions of L2 and Lz, as the basis set in the Hilbert
space.

In this basis

21 T ;.
/ do / 46 sin @Y L2V = 120(£ 4+ 1)8piSpim,
0 0

2T T ;A
/ dgo/ do sin@Y;" LY = mhody0,,,.
0 0

The operators L, and L_do not commute with L.. Therefore,
they are represented by non-diagonal matrices in this basis.
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Orbital Angular Momentum Operators ‘% ‘gﬂ * %7
L+l =1 —L25nl,,
Pyp =e(t+1)nyp,
LY = mhY]",
we obtain
/Ozndq) /Ondﬂ sinOYE’Eml (illii)ng _ /027rd(p /OndG SiIlQYZ;mI (zz —z§$hﬁZ)Y€m
= [R*0(0+1) — *m* F °m] /Ozﬂdq) /Oﬂdg S (m'£1) y]

=1 (IFm)(l+m+1),
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As a consequence, we have

L.y h\/l— (I+m+1)y" ",

Loyp =n/(l+m) (i —m+ 1)y

A

Since L,= (ﬁ+ +ﬁ_)/2 andﬁyz (L+—ﬁ_)/2i,

we get  ;oyr— (i, i |y

DN | SH N | —

[\/(Z—m)(l—l—m—l—l) Y S m) (= m 1) ¥
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Orbital Angular Momentum Opera’rors % %] ]’
Finally,

2T T
/ d(p/ do sin0Y," (L+Y£ —h\/l— V(I +m+1)8pp6p i1,
0 0

27r

/ / d0 sin0Y;" (L_¥}") = hy/ (1+-m)(l —m+ 1) 808y 1.
27r

/ / do sin0Y," L (LY;") = mh S8y 8-

Consider the case in which | = 1. For | =1, we have m = -],

0, 1 and the joint eigenfunctions of L?and L:z are:
yLyhy

16/10/2023 Jinniu Hu 25—



Orbital Angular Momentum Operators 4% %z £ %7
L

Therefore, the matrix representing L2 is given by

( <Y11 ,i2Y11> <Y11 ,i2Y10> <Y11 ,i2Y1—1> \ 1 0 0
12 — (YIOI2Y11> (YIO,I:2Y10> (YIO,I:2Y1_1> 22| 0o 1 o |,
\ oLl i) o Lityh 0 0 1

We obtain the matrix representing L.in this basis
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Orbital Angular Momentum Operators 4% %z £ %7

The matrices, corresponding to L. and L.in this basis, are

calculated to be
0 0
L. =2h ., L_=v2rn| 1 0 .
0 1

o O O

1
0
0

o - O
o O O

Taking into account that

A

Lx:(ﬁ++ﬁ_)/2andﬁy:(lA,+—ﬁ_)/2i,
we get
O 1 O O —i O
h h
L, =— 1 0 1 ], Ly=—41 i 0 —i
V2 ( O 1 O ) V2 ( 0 i 0) )
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Space quantization is essentially the quantization of the
direction of the orbital angular momentum L in space with

respect to the z-axis. f;
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Space quantization

- Jsy

0 = cos™! 7
(\/l(l+ 1))
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From the classical theory of electromagnetism, an orbital
magnetic dipole moment is generated with the orbital motion of
a particle of charge g¢:

1

~
=
h
Il
[\S)
3
o
~u

(a) (b)
For electron

fip = —eL/(2mc)
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Magnetic moment
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Stern-Gerlach experiment

Measurement
result

Classical
prediction

1

—l— 75
d
—_

N\
|

§_E._

1
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Otto Stern

Otto Stern was and Nobel laureate in
physics. He was the second most
nominated person for a Nobel Prize
with 82 nominations in the years
1925-1945, ultimately winning in 1943.
It was awarded to Stern alone, “for
his contribution to the development of
the molecular ray method and his
discovery of the magnetic moment of
the proton" (not for the Stern-Gerlach
experiment).
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Walther Gerlach

Walther Gerlach was a

German physicist who co-discovered,
through laboratory experiment, spin
quantization in a magnetic field,

the Stern-Gerlach effect. The
experiment was conceived by Otto
Stern in 1921 and first successfully
conducted by Gerlach in early 1922.
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Stern-Gerlach experiment

It is important to note that a silver atom has 47 electrons
out of which 46 constitute the spherically symmetric charge
distribution around the nucleus: they fill all the sub-shells
forn=1,n=2, and n = 3, and the 4d sub-shell and
contribute nothing to the orbital angular momentum of the
atom.

The 47+electron is in the 5s state and it
cannot have any orbital angular momentum
too. Thus, a silver atom in its ground state
does not have any orbital angular momentum
and hence there is no magnetic moment

associated with it.
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Stern-Gerlach experiment

Observed pattern on the detector plate: lef’r without
magnetic field, middle with magnetic field and right beam
spot geometry near the edge of the magnet. Since the
magnetic field strength is fast decreasing with distance
from the edge of the magnet (perpendicular to the
direction of the B-Field) the beam com[}onen’rs merge.

QIf) - 40
1 u'ltlunu.m. L

-~
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“Attached is the experimental
proof of directional quantization.

We congratulate you on the
confirmation of your theory.”

— Postcard from Stern & Gerlach
to Neils Bohr, February 8, 1922.
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Reactions to the Stern-Gerlach Experiment

A+ ¥

Through their clever experimental arrangement Stern and Gerlach not only
demonstrated ad oculos [for the eyes] the space quantization of atoms in a mag-
netic field, but they also proved the quantum origin of electricity and its connec-
tion with atomic structure.

—Arnold Sommerfeld (1868-1951)

The most interesting achievement at this point is the experiment of Stern and Ger-
lach. The alignment of the atoms without collisions via radiative [exchange] is not
comprehensible based on the current [theoretical] methods; it should take more
than 100 years for the atoms to align. | have done a little calculation about this
with [Paul] Ehrenfest. [Heinrich] Rubens considers the experimental result to be
absolutely certain.

—Albert Einstein (1879-1955)

More important is whether this proves the existence of space quantization. Please
add a few words of explanation to your puzzle, such as what’s really going on.
—James Franck (1882-1951)

| would be very grateful if you or Stern could let me know, in a few lines, whether
you interpret your experimental results in this way that the atoms are oriented only
parallel or opposed, but not normal to the field, as one could provide theoretical
reasons for the latter assertion.

—Niels Bohr (1885-1962)

This should convert even the nonbeliever Stern.
—Wolfgang Pauli (1900-58)

As a beginning graduate student back in 1923, | ... hoped with ingenuity and in-
ventiveness | could find ways to fit the atomic phenomena into some kind of me-
chanical system. . .. My hope to [do that] died when | read about the Stern-Gerlach
experiment. . . . The results were astounding, although they were hinted at by quan-
tum theory. . . . This convinced me once and for all that an ingenious classical mech-
anism was out and that we had to face the fact that the quantum phenomena required
a completely new orientation.

—Isidor 1. Rabi (1898-1988)
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Spin

Spin angular momentum or simply spin is a fundamental
property of all particles, irrespective of whether they are
elementary or composite.

It belongs to an internal degree of freedom (completely
independent of the spatial degrees of freedom) and
manifests itself as some intrinsic angular momentum of the
particle.

The spinning motion of an electron, proposed by Uhlenbeck
and Goudsmit, was highly questionable in view of the fact
that an electron was a point particle and the classical

notion of angular momentum of a rigid body did not apply.
W



Spin

Now it is being told that Uhlenbeck got frightened, went to
Ehrenfest and said: "Don't send it off, because it probably
is wrong; it is impossible, one cannot have an electron that
rotates at such high speed and has the right moment”. And
Ehrenfest replied: "It is too late, I have sent it off
already”. But I do not remember the event, I never had
the idea that is was wrong because I did not know enough.
The one thing I remember is that Ehrenfest said to me:
"Well, that is a nice idea, though it may be wrong. But you
don't yet have a reputation, so you have nothing to lose".
That is the only thing I remember.
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Spin

Since the beam split into two, it follows from the theory
discussed in the previous section that

2s+1=1 = s=_
Since the state of an electron is characterized by two
values of the projection of its spin on the z-axis, the wave
function of the electron must consist of two components
7ot

veo=( v )
Spin acts on vectors belonging to a two-dimensional
Euclidean space, it must be represented by a 2 x 2 matrix.

>l
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Spin

Spin is denoted by a vector S. As required by the rules of
quantum mechanics, it is represented by an operator S with
Cartesian components Sx, Syand S..

Same commutation relations that is satisfied by the
Cartesian components of the orbital angular momentum.

Sy, S, = ins,,
Sy,8.] = inS,,
S.,S,] = inS,.

Sz commutes with each of the operators Sx, Syand Sz, that

is, - . .
$2,5,] =0, [§%8,]=0, [$%5,]=0.
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Spin

The operators S?and S; can have a common set of
eigenvectors, |s, m,), characterized by two quantum numbers

s and m;.

The quantum number s is called the spin quantum number
and takes integers as well as half-integer values.

On the other hand, the quantum number m,is called the
spin magnetic quantum number and takes (2s + 1) values
from —s to s.

S2|s,ms) = h*s(s+1)

SamS>7

A

S;|s,mg) = hmgls, my),
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Spin

and

S, |s,mg) = m/s(s+1) —m(m £ 1) [s,m £ 1)
where
S, =S8, +iS,
Also, in a given state with quantum number s, the
magnitude of spin is given by

S = +/s(s+ 1)k

The z component of spin is quantized, S:= msfi, and takes

(2s+1) different values.
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Spin

Now, the magnetic dipole moment associated with spin is
given by

,‘_’is — _i §9

M

where, e is the magnitude of the electronic charge and m.
is the mass of the electron. As a consequence, the
Hamiltonian for an electron, with spin, in an external
magnetic field B along the positive z direction, will have a

potential energy term

AW = —fi, =5 =T
m, m,
Since m, takes (2s + 1) values, the original degenerate
energy level will split into (2s + 1) distinct levels.
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s can take both the integer and the half-integer values.
Nature supports both kinds of particles: particles with
integer spin, called bosons, and particles with half-integer
spin, called fermions.

For instance, photons (s = 1), m-mesons (s = 0), gravitons (s =
2) and so on are bosons, while electrons (s = 1/2), protons (s
=1/2), neutrons (s =1/2), delta particles (s =3/2) and so on
are fermions.
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Spin matrices

Let the axis for the projection of spin be the z-axis in an
arbitrarily oriented Cartesian system of coordinates. The
operator oz must be represented by a diagonal matrix with
diagonal elements +1 and -1, that is,

. (10
=\ 0 -1

This is usually called the S:-representation for the sigma
matrices. It then follows from the isotropy of space
(equivalence of all the directions in space) that the matrices
at x and y directionwill also be 2 x 2 unit matrices with

eigenvalues 1, that is
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Spin matrices Gl

Taking into account the commutation relations of o
-matrices, we obtain

2i(6,6,+6:6,) =0. = 6:6,+6,6

This means that the matrices ox and oy anti-commute.

Similarly, one can prove that all the s-matrices anti-
commute with each other.
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———————————— O

This property along with the commutation relations leads to
the following useful formulae

6x6y — _6))6)(; — l.CAfZ,
0,0; = —0;0y, = IOy,
6zéx — _6-X6Z — iéy.

If we multiply the first of the aforementioned relations by
oz from the right, we arrive at the identity

6.6,6, = il
Let us determine the concrete expressions for the sigma
matrices. The general form of ox can be written as

A a a
Gx: ( ! 2 )a
as ag

16/10/2023 Jinniu Hu 25—



Spin matrices

where the matrix elements a;, a2, as anda; are, in general,
complex and have to be determined using the basic
properties of the sigma matrices.

Since ox and oz anti-commute, that is, oxoz = —0z0x, we have

ai —an L —dj —an
aj —dy o as ay '

Therefore, a;=0 and a4=0. Using the property that (ox)?=1,
we get

axas 0 (1 0 B B
( 0 a3y )—( 0 1 ) = araz = azar = 1.
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—— e O

Therefore, a2 = el*and a3 = e-i», where « is an arbitrary real

constant. Since, without any loss of generality, we can put «
equal to zero, we have

s _ (01
=1 0 )

Now using the relation ioy= oz0x , we obtain

. 0 —i
o-(00)
The matrices

s _ (0 1LY L _ (0 i\ . _(10
10 )27 \i o) %0 a1 )

are called Pauli matrices in the S, representation and along
with the unit matrix
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Spin matrices

(4 0)

form the basis in the space of 2 x 2 matrices. Any 2 x 2

matrix can be expanded as a linear combination of these
matrices.

In the state corresponding to the eigenvalue +1, the spin of
the electron points along the +z-axis and we call it spin-up
state. Similarly, in the state corresponding to the eigenvalue
-1, the spin of the electron points along the -z direction

and it is called the spin-down state.
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Spin matrices

The eigenfunctions of o, with eigenvalues +1 and -1,

respectively, are readily computed as

xz*=<(1)), xz‘:((l)),
Let us check whether these spin functions are eigenfunctions
of ox and oy or not. We have

ox= (5 0) ()= (V)%
o) (1)=(6)-x
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Addition of Angular Momenta

In many problems of interest it is necessary to add angular
momenta. For instance, one is required to add the orbital
angular momentum, L, and the spin angular momentum, S,
while studying spin-orbit coupling in atoms.

Therefore, it is important to discuss the procedure of
addition of angular momenta in quantum mechanics.

We shall write the eigenfunctions of L? in the bra-ket
notation as: ||,m). Thus, |l,m) is an eigenvector (or eigenket)

of L2 with two quantum numbers | and m.
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Addition of Angular Momenta

Let us, without specifying the nature, consider the addition
of two angular momenta L; and L:

A A

J = Zl -+ ig.
Individually, L; and Lz satisfy the following quantum
mechanical commutation relations

[LiiLij] = in ) €ijla,
k
[Lai,Laj] = ih Y &jlok,
k
where the indices i, j and k take values from 1 to 3. Note
that, it is assumed here that L; and L: either correspond to

different degrees of freedom, or correspond to the same

degree of freedom but belong to different particles.
W



Addition of Angular Momenta

In view of the preceding assumption, the operator L; and L.
act in different vector spaces: L; acts in the (21, +1)
dimensional space spanned by the kets {ll;,m)}, while L.
acts in the (212 +1) dimensional space spanned by the kets {|
l2,m2)},

Hence, they commute and can have a common set of

eigenvectors. Let us write these common eigenvectors as
[0y, my; o, ma) = [£y,my) @ |la,my),

where |,i = 1,2 and m,i = 1,2 are the individual quantum

numbers and ® stands direct (tensorial) product. Then

according to the earlier discussions
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L2y, my; 0, mo 20000+ D)6y, mysla,my),

Li;|ly,my;00,mp) = hmy €1, my;0r,my)

B2y (Lo 4+ 1) |01, my300,mo),

himy |01, my; 0, my)

72 :
L2 Elam17£2,m2

) =
)
)
Loz |t1,my; by, mp) =
Let us show that the total angular momentum operators Ji=

Lii+ L2i,(i = 1,2,3) also obey the usual angular momentum
commutation relations, i.e.,

= ih Zgl]k]k’

A

i, J;

where, once again, each of fhe indices i, j and k takes
three values 1, 2 and 3.
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Addition of Angular Momenta (% %z £ %7

We have
[fzf]] = [£1i+ﬁ2i,f41j+z2j] = [zliazlj] + [zu,zzj] + [zZiazlj] + [izi,izj]
= i Y &jlu+in ) €jlox
k r

= ih Zgijk (Lyx+ Lox)
%

= ih Y &k
where we khave taken into account that
[L1;, L] =0and [Ly;, L] = 0.
Given the values of the individual angular momenta IL;| and
ILil (i.e., the quantum numbers l;and [2), find the values

that the total angular momentum |J| (i.e., the quantum

number j corresponding to it).
W



Addition of Angular Momenta

Since the total angular momentum operators J;, (i = 1,2,3),
satisfy the usual angular momentum commutation relations,
we can easily show that

=0, [P =0, S )=2n, L] = £

where

Jo=dowil, Jo=7-il,
are the total angular momentum raising and lowering

operators, respectively. Further, the Hilbert space in which
the total angular momentum operator J2 acts is the product

space spanned by the kets |l,l2,m;,m;) = |l,,mp®ll,m,).
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The kets {ll;,1,,m;,;m,)} also form a complete and orthonormal

basis: 1,0y my,ma| 0, 05, my,mby) = (€1, my|€],m)) €y, m;y |05, m))

T 5616/ 5625/ Smlml 6

mzm ?

Y 101 Gasmy my) (€, Loy mymy)|

miny

A by
:( Z El,m1><€1,m1>< Z Ez,m2><€2,m2>:f2

my=—/{ my=—/{

I
~

It is straightforward to prove that

A

13 = 0, (03] =0, [h.22] =0, [£.13] =0,
but

[/?,L1.] # 0,and [J?,L,,] # 0.
W



Addition of Angular Momenta

Therefore, the maximal set of commuting operators for the
system is given by J?2, J;, L;2 and L,2. They can be
simultaneously diagonalized and their joint eigenfunctions
are characterized by four quantum numbers j, mj, l;and ..

Let ll,l2, j, m) be the simultaneous eigenfunctions of J2and
J, Since |; and |, are fixed, we shall write these vectors as
lj, m).

The above completeness and orthonormality conditions can
now be rewritten as i

Jj m=—]
(j,m'|j,m) = S it Opm -
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Also, it is not difficult to show that
FPljom)y = j(j+ 1)i?|j.m),

J:| j.m) = mh|j.m),

Tl jomy =\ (G =m)(j+m+ 1) j.m+1),

jom) =/ (G+m)(j—m+ 1)

Jo|jom) = mh|j.m),

J

_1>,

=jy=0, J |jm=—j)=0.

let us expand the besis vector |j,m) in terms of the basis {|

l,12;m;,m,)} as
|j,m) Z Z Cplp " 1o, basmy ma),

ml—_el my=—1{p

16/10/2023 Jinniu Hu 25—



Addition of Angular Momenta (% %z £ %7
where the coefficients of expansion

mi ni» m .
Coly, i = (b, boymi,maj,m)

are called the Clebsch-Gordan (CG) coefficients.
By convention, Clebsch-Gordan coefficients are taken to be

real, i.e.,
Uy, bamy,ma|j,m) = (01, basmy,ma|j,m)T = (j,m|l1,la;my,my).

Also, using the complete and orthonormal relation, we get
Z (' m [0y, by my,ma) (€1, 6o my,my

mipmy

Since the Clebsch-Gordan coefficients are real, we can

write this equation as
Y. (01, 00my,my

mimy
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Addition of Angular Momenta

L REER

g

AL\S

The last equation leads to

Y. (01, bosmy,my

miny

Similarly, we can derive the following relation

jam)* =1.

J
YN (0, 6,mh | jom) (Lo my o
j m==j

]7m>:6/1 0,/

mymyp ~mymy>

which yields

J
Z Z (L1, 1, m1,m2|j,m>2 =1

. j m=—j
Since

J.=Li,+ L,
We have

(01,02;my,mo|J, — L1, — Lo,

j,m) = 0.
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Addition of Angular Momenta

Using the following relations

J:| jom) = mh|j,m),

(01, 0p;my,ma| Ly, = myh(ly,la;my, mo,

(01,02;m1,ma|Lo, = mah{ly,y;my,ms,

we obtain

(m—my —my){1,0r;my,my|j,m) = 0.

Therefore, for <l,l.;m;,m.|j,m) to be nonzero, we must have

m=mj -+ mo.
This is the first constraint for the Clebsch-Gordan
coefficients.
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Addition of Angular Momenta

Since the dimension of the product space is N = (21, +1)x(2l.
+1), there are (2l; +1)x(2l, +1) number of basis vectors |j, m)

in this space. On the other hand, for each value of j there
are (2j + 1) basis vectors |j, m), and hence

jonax
Y 2j+1)=206+1)(20+1).
Jj=jmin
Finally, we can obtain
Jmax = ly + 4. J?nin — (61 _62)2-

We have the following range of variation of j:

[0 — b < j< (b1 +1n).
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For instance, it can be shown that the CG coefficients
corresponding to two limiting cases {m;= 1, m; = I, j=l; +l2,
m = (; +12)} and {m; = -l;, ma=-1;, j=l; +l2, m = —(l, +1.)} are

equal to 1. That is
<€1,€2,€1,€2|(€1 —|—€2), (fl —|—€2)> =1,
Uy, by, —L1,—Lo|(b1 4+ ), — (L1 +42)) = 1.

To calculate CG coefficients, other than the aforementioned
simple cases, one uses either the recursion relations
between the CG coefficients or the ladder operator method.
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Finally, we can obtain

\/(j$m)(j:|:m—|— 1) (El,ﬁz;ml,mﬂj,m:l: 1>

= \/(61 :|:m1)(€1 Fmq + 1) <£1,€2;m1 + 1’m2|j7m>

—+ \/(ﬁzﬂ:n’lg)(fzqin”lz + 1) <€1,€2;m1,m2:|: llj’m>°

and

VUEm)GFm+1) (¢ bzmimolj.m)

— \/(flﬂ:ml)<€1:|:m1+l> <€1,€2;m1:':1am2‘j7m:|:1>

- \/(fzimz)(fzilzmﬂr 1) (b1, 0p;my,my F1|j,mF1).
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Addition of Orbital and Spin

Let us consider the addition of the orbital angular
momentum and the spin angular momentum, i.e.,

J=L+5.
of a spin half particle (say, of an electron). In the given
case |, =l(an integer) m; =m, (takes values from -l to 1), .

=s=1/2, and m, =m; =%, /5.
The value of j in this case is restricted in the interval
1 1
The maximal set of commuting observables in this case is
given by: o
{J2,17,8°,J.}.
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Addition of Orbital and Spin

The joint eigenvectors of these operators are:
0,s,mp,my).

The eigenvectors of J2are:

0,s;j,m);

| and s being fixed. Obviously, the following hold:

o . 3 .
§|jom) = 1255+ 1) |jom) = 20 | j,m),

Jo|jm) = hm|jm).

The state with maximal total angular momentum j = 1+1/2
and m,, =l+1/2

. 1 1 11
|]max’mmax> = |€+ E,e—“ §> = |£,€>® |§, §>
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Addition of Orbital and Spin

NA
1%

l

A.L\s

The corresponding CG coefficient

I 1 1 1
</€’2,/€,2‘£+ 2,/€—|_2> b

in accordance with our earlier discussions. On one hand

we have
; 1 1 1 1 1 1 11
Heegesg)=ayf[(a) s ()] (o530 e zes)
AN T e+%,e—1>,
while on the other
A A 1 1 R 11 11
(L—I—S)'€+ >+ 5> =L 6O —,—>+|€,€>®S —,§>
11 1 1
_1 - .
)® 2’ 2>+h LO® 2’ 2>
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Therefore, we get

11 11 11
|€+§’£_§>_¢T [\/_w (-1®|. 2>+W>® 5,—§>].
Similarly, we have
13 20— 1 11 2 11
‘“§’€—§> 2y B2 2’§>+ 2041 B z’—§>-

The other states are given by

1 (+m+ L I\ |11 ! l+m+ 3 I\ |11
) = T e N a2 ) - m) = bt~V @ s
‘€+2’m> \/ T B 2>® 2’2> ‘ 2 m> 2w+t [T %2

(—m+1 1 1 1 (—m+ 4 1> '11>
~ ~ ~ - ga - q N0 A D
+\/ 20+ 1 g’m+2>® 2 2>’ w1 ["T2)% 22
where
1 1 3 1 1
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Exercise

1. Find the value of the commutators
(a) [£,Ly], (b) [£,L,], and [Py, L,].
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Find the value of the commutators

(a) [£,Ly], (b) [£,L,], and [Py, L,].
Solution:

A A

[flAJX] — [32’ (ypz_fﬁy] — [Aayﬁz] - [ﬁafﬁy]
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Exercise

2.Consider a particle in a superposition state with the wave
function

| 1
w(6,9)) = \/;Y1 1(9,(p)—|—AY10—|—\/;Y11(9,go),

where A is an arbitrary constant and Yrare the spherical
harmonics. (a) Find A so that | is normalized. (b) What is
the probability that a measurement of L, will yield a value

L.= 0? (c) Find the expectation values of L? and L.in this
state.
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Exercise

Solution: (a) For the normalized wave function, we must

have , .
<wlw>=§+A2=1,:» A:\@

(b) The normalized wave function is now given by
W(G"P):\/%Yfl(e"P)Jr\/§Y10+\/gyll(9a¢)a

and therefore the probability of finding the value L.= O is

2
p_ W[ 3

(y|y) 5

(c) We have

Ply(6.9)) = 17 M (0.0) 4204/ ¢ Y;w,(pﬂ — 2y (6.9))
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Exercise

The expectation value of LZwill be

o (vlLly) » (YY) 2
e A v RN 7 R

. 2 4 6,
Low(0,p) = §Y1+ gyl

Therefore, the expectation value of L. is given by

\/g

<i’+> = <l//i’+l//(> = 2?h

We get
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Exercise

3. Find the eigenvalues and eigenstates of the spin operator
S of an electron in the direction of a unit vector n that lies
in the xy plane making an angle 0 with the x-axis.
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Exercise

3. Find the eigenvalues and eigenstates of the spin operator
S of an electron in the direction of a unit vector n that lies
in the xy plane making an angle 0 with the x-axis.

Solution: The projection of the spin operator S on n will be
Sn= h/26,, Wwhere

5 — 0 cos 6 n 0 —isin® \ 0 e
"\ cos® O isin@ 0 T\ el? 0 /)

The requirement of non-trivial solutions to the eigenvalue

equation for o, yields
—A e

Hence, the eigenvalues of the operator S, are +/1/2
W



Exercise

4% ‘7‘4 K %7

For the eigenvectors of S,, We have

0 e 10 a \ be~1? B a . —i0/2 4 i8/2
(eiG 0 )(b) (aeie )—i(b) = a=e ,b—:I:e ,

The normalized eigenvectors of S,, corresponding to the
eigenvalues +h1/2, are

+—L e—i6/2 ——L e—i9/2
Xn _\/5 ei6/2 ’ Xn _\/i _ei9/2 :
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Exercise

4. Consider the case of | =1 and s =1/2. Find all the states
and the corresponding CG coefficients.
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4. Consider the case of | =1 and s =1/2. Find all the states
and the corresponding CG coefficients.

2’2/ 241 22 2’2 2+1

11 1 1
= 1.1)®|=.=V=|1.-:1,=
‘ 2 > 69 ‘2’ 2:> | ’ 2’ ’22:>a
31\ 1454501
2’2/ 2+1 ’
1 1 1
1,0)® 1,1 S ——
\[| | > 3| >®‘2 2>
S
2’7 2
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1919

301 —3+3 11 11+1+%+%111®11
27 2 241 22 2’2 241 22 27 2
1 11 2 1 1
— /=, -1®|=, = = S ——
- |2,2>+ S Loyels. 2>
1] 1 1 201 1 1
= 4/=|1 1, = —|1,=:;0,—=
3 72’ ’2>—|_ 3 ,277 2>9
AN F e £t PR T AL U S Rt k- I A E Y |
27 2/ 241 |7 2 2 2’2 241 |7 2 2 27 2
1 1 1 1
= ,-1D®|=,—= ) =1 l,—=
| >®|2 2> 5 ,2>
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Exercise

1 1 1 1 1—1i41
1_ - - . 2 2
,2+2>®‘2, 2> \/—2+1

11 1®11
22 272

21 1 1 11 1
= ~ 19 >1a '~ - ~ 17 ’Oa_ )
3072 2> 3172 2>
1 1 1—-141 1 1 1 1 1+141 1 1 11
b1 Lt b3 USRS N L Y (el et A UL )
2’ 2 241 2 2 2> 2 2+1 2 2 2’2
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