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Time-independent perturbation

There are many complicated potentials for which
Schrodingers equation cannot be solved exactly. For such
situations, we resort to approximation methods for finding
approximate solutions to the Schrodinger equation.

The perturbation theory is based on systematically
obtaining an approximate solution to the perturbed system
by developing solutions based on the exact solutions of the
unperturbed case.

To understand such approach, consider the following

Hamiltonian:
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Time-independent perturbation

where H; is the perturbation, Ho is the Hamiltonian of the
unperturbed system, and A small number that varies

between O and 1.
The magnitude of this number decides how strong or how
weak the perturbation is. For the unperturbed system

Hy |y = EP |y

where the eigenvalues and eigenfunctions are already
known or these can easily be obtained.

Thus, the Schrodinger equation for the system now is:
(HO + AHl) | Wn> — En | Wn>
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Time-independent perturbation

The eigenfunctions and eigenvalues of H must depend on 1,
because H depends on ). Therefore, \» and E, can be
expanded in a power series with respect to A, as follows:

E =E9+1ED+ 2E® + ...

[y = [w?) + Alw) + A% y) + ...

where we used the following abbreviations in the expansion:

k
E®) — i JIE,

" k! 04

A=0

k
|W(k)>= 10 |l//n>
" k! o4
A=0
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Time-independent perturbation

The E,and yn of a system are the sum of the correction
terms. It is obvious that the convergence of these power
series is a key issue, because the series must be truncated
in practice.

Therefore, we get

(Hy+ AHD [ 1) + 21yVy + A2 yl?) + .. ]
= [EQ +AEV + 2EP + | 1wy + AlwD) + 22wy + ]

the simplification of which gives terms with various powers
of . on both the sides. This gives rise to:
Hy |y @) = EO | O
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Time-independent perturbation

. ‘% ft}ij ﬁ /i?

HylyVy + H ly”) = EQ |y{Yy + EV [ yl?)

Hyly@) + Hy |ytDy = EO 1wy + ED gDy + EP |y )

They can be generalized to,

k

Holy®) + Hy Ly ") = L EP 1)
i=0
We assume that eigenvectors of H are orthonormal, and

hence <yom[pon>= dmn . The zeroth order energy is then
obtained from:
EY = (y¥ | Hy |y
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Time-independent perturbation

On operating with the wave function of unperturbed

Hamiltonian from the left on both the sides of first-order

equation
(i Hy

= En(yl

wi?) = EP (wD i)+ EL (wi | wi?)

v )= EX (yD \wil)+ EDS,,

\|J§11)> + <\V§2)’H1
)+ (w0,

We now consider the two possibilities: (i) m =n and (ii) m =
n. For the case of m =n,

ED =y H,

yi)
and when m = n,
ED (wid| i)+ (wid) | Haw?) = EXY (yl)
= (0| Hi [yl?) = (B —ED ) (W v
W

v




Time-independent perturbation

Therefore

(Ho-EP)wi’)= (B~ Hu ) i)

which suggests that y® can be constructed as a linear
combination of exact solutions of Ho, which provide a

convenient but not a unique choice for a complete
orthonormal basis.

The various order corrections y® to the eigenstate can then

also be constructed as a linear combination of exact
solutions of Ho,

(0)

)= 2l
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Time-independent perturbation

To find an expansion coefficient, we have for k=1

(B —ED) > C (vl wi?) = (wi? | Hy

which vyields:

(B9 -EY)
This equation is valid only for m =n; it is not valid for m =
n. We therefore obtain:

W511)> _ Z <\|l§2)‘H1

(E® -EP)

m#n

We can find that

y )+ A

( )




Time-independent perturbation

also satisfies the Schrodinger equation of first-order wave
function, for any constant A. This provides us freedom to
subtract off the y© term, and therefore, there is no need
to include the m =n term in the sum for constructing y®

To calculate the second-order corrections to energy, we
have,

y )=
y ) +ED (gl

llfgaz)> + <\If$19) ‘ H,
W)+ ED [y

<\|f$1(1)) ‘ H,
EP (yi)

v
When we take m =n, the first term on the left-hand side

cancels out the first term on the right-hand side, and the
second term on the right-hand side vanishes.
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Time-independent perturbation

Therefore, we have

EP = (i | Hy

w)

which can be simplified as
(0)
EQ) = (i [ H,

vy
(ER —EP)

v

H1‘\V579)>

On taking m = n,

y)

v )= ) CY
; u
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Time-independent perturbation

Finally, we get for m = n,

w#£n

—E(DZC%) w;g) )

u#£n
which gives,
ESC - ) Cl (wid | Hy i)
C%z: ; u u

(E® -EP)

It cannot be used to calculate C(2),,, since it was obtained

for m =n. C2),, can be calculated by imposing the condition
that the perturbed wave function be normalized

(w2 [+ 2L |22 () [l ) 1w 407 ) =1
e 02/12/2022 I NIU U mmmm—=




Time-independent perturbation

Therefore,

x(c};} + (C,S}})*)+ A (C}ﬁ) +(C2Y + Z 2}: 0

and
Cinl +(Cl)" =0.
CR+(CRY == CWf
The imaginary parts of the left-hand side of the last
equation cancel out each other.

Re(CH) =2

V#n

2
1
Ci

We thus have, )

v [ Hyy' )y D) (O Hy ) (wiY Hy
W%2)> 22 < ?EO) E(O);EE(O) EO)) > < (Eﬁo_)>—<E;))2 >‘W£‘O)>

VEN U#N
I (v H Jy® [
_5; (B -ED) viY)
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Time-independent perturbation

As stated earlier, when there are more than one
eigenvectors, the set of quantum numbers nlm) takes more
than one value, and all belong to same energy eigenvalue,
the state is called the degenerate state.

When energy states of Ho are degenerate, we can write
Ho|yio ) =E |yl )

where o takes values 1,2,3, ....r, for a given value of n. Thus,
o-labels represents quantum numbers other than n in a
complete set of (nlm). We say that the nth state is r-fold
degenerate.
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Time-independent perturbation

Within a degenerate subspace, any linear combination of
wave function kets is another wave function ket of Ho, with

the same energy eigenvalue. Let us take the linear
combination,

which with the use of the above argument gives,

n >: n n >
We further say that the new set of wave function kets
satisfies the orthonormality condition,

(0l Wiy )= 8ap
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Time-independent perturbation

We get the first order perturbation expansion equation
following the non-degenerate case,

o)

Next operate from the left with <y(®,4to get:

Ho w2+ (i ) = E (wig w2+ B2 (i)

Ho W)+ E

o)=Y

\Ifgzl)>+H1

(v
Since
H,

w)=ED (y )

(vl

Therefore,

r

DD (v

o=1

H,

w0 - E0 Y D, =0
o=1
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Time-independent perturbation

On defining

and then varying both o and [Sbe’rween 1 and r, we have

hll - EI(’ll)
h21

hrl

<\If§13
h12

hr2

Iy —E) -

i =

hlr
h2r

e hrr - Ei(il)

Its non-trivial solution demands:
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hll - Eizl) h12
h21 h22 - E1(11) Tt
hrl hrZ

hlr
th

e hrr - E1(11)




Time-independent perturbation

When all the r-values are non-zero and distinct, we have r-
nonzero and distinct values of

E,=EY +AE

suggesting that the degeneracy is completely removed by
perturbation. For the case when some of the r-values of
E(), are zero or identical, degeneracy is partially removed.

The expansion coefficients D, D,, D...... D.are determined by
solving above determinant along with the normalizing
condition of the wave function, which leads to

D +D5+D:+...D*=1.
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Linear Stark effect

The first excited state (n=2) of hydrogen is a four-fold
degenerate state; there are one 2s-state (I =0,m =0) and
three p-states (I =1; m =1,0,-1).

Let us suppose that the electric field E is applied along the
positive z-axis. The electric field interacts with the electron
dipole moment.

Since the field is along the z-axis, additional potential
energy is

H,=—-¢'Ezr=—¢"Ercos9,

0is an angle between the z-axis and r, and
, e
o —

- \/47580 ’
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Linear Stark effect

In this case,

and oo 2T

v )= W),
v ) =),
v ) =van),
\If(z(z);)> Wzl,—1>

s =~E | | [Wiin(,6,0)(r cos0)wrur (1,0, 0)r°dr sin Bdtodg

Wave functions for the hydrogen atom are

1/2

1( 1 .
)= 2__ e—r/ZaO’
Waoo (7) 40, | 2ma, ” )
1/2
1 1 "
r, 9, = o e—r/2a0 COS 9, and
Y210 ( (I)) 4a; | 2ma, ” )
1 1 1/2
W21,i1 (7", 9, (p) = — 3) re—l’/zﬂo (Sm e)eil(p
4a0 T,
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Linear Stark effect

The remaining two non-zero matrix elements are
(200/H,|210) and (210| H,|200)

and

h12 = <200‘ H1 ‘ 210>

oo

T 27
___¢E J‘r (2—rjrze‘r/aodrjcoszOsinede-“dq)
0

32ma; J ag g
0 0

=— 6E3J Ploo T |p2er/mgy
24610 g ap 7

= -3¢’Ea,

Since <200|H|210> is real, it is equal to <210|H|200>.
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Linear Stark effect

The states 1200> and 1210> are affected on application of
the electric field, while the states |211> and |21,-1> remain
unaffected.

It can therefore be said that degeneracy has partially been
lifted on the application field to the 2s and 2p states of
the hydrogen atom. To evaluate eigenvectors, we solve:

-Ey) Be’Bay 0 0 |[p | T 0
—3¢’Ea, —E 0 0 D, | |0
0 0 -E’ 0 D; 0

0 0 0 -E® || Ds| LV
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Linear Stark effect

We have " ,
_EZ D1 —3e anDz = O,

—3¢’EayD; — EVD, =0;
—Eél)Ds =0;
~-EVD, =0

This suggests that

D1=iD2 and D3:D4=0.

We take
1 1
Di=—— and D, =7—.
1 \/E 2 =+ \/E
Thus, there are four states:
iz(\ 200 +|210)) EQ —3¢’Ea, 211)
EY”
, 21,-1)
ﬁ(‘ 200) -|210)) EY +3¢’Ea,
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Linear Stark effect

Energy eigenvalues  Eigenstates

E® +3¢'Ea, %q 200)-|210))
/ E® |211);[21,-1)
\ E® -3¢'Ea, i/;(| 200)+210))

The first excited state of the hydrogen atom in the
presence of an electric field applied along the z-axis
presents a permanent electric dipole moment of magnitude
3e’'Ea,with three orientations: one state parallel to the
electric field, one state antiparallel to the electric field,
and two states with zero interaction with the electric

field, in the first order linear Stark effect.
W



Variation Method

In solving the problems where it is hard to determine a
good unperturbed Hamiltonian, fo make the perturbation
small and solvable, the variational method is more robust
in comparison with the perturbation theory.

The variational theorem states that the expectation value
of the Hamiltonian <H> calculated with the use of a
normalized trial wave function ket |¢> is always greater
than or equal to Eg:

E; <(H)=(0|H|0)
where

0/9)=1.
W



Variation Method

To prove the variational theorem, the ¢ can formally be
expanded as a linear combination of the exact wave
function kets y,of the system.

0)= Y ¢l v)

Hly,)=E,|W,) and (¥, |¥,)= 8.

with

We takes 1=(0]0)

= vl Yl
=i2c;cn <iumwn>
Y S
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Variation Method

and

Let us write,

Since

E,>E,,
the right-hand side of above equation is always greater

than or equal to zero, proving that
E, <(H)
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Variation Method

Any variations in the trial function which lower the
computed energy necessarily bring the approximate
energy closer to Eg.

An example of the above laid down procedure is the
calculation of the ground state energy of the hydrogen atom
with the use of the variational method by taking the wave
function

O(r)=Ae ™™

as a trial wave function, where o is the variational
parameter.
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Variation Method

The ground state (I = 0) Hamiltonian for the hydrogen
atom is given by:

H =

W[ 24] ¢
2u| dr®  rdr| 4megr

To find normalized ¢(r), we take:
1=(0/0)

oo T 2T
=A® jjje‘zwrzdr sin 0d0dd

000

= 47tA* je‘zwrzdr
0
2!
(20.)°
T
o

= 47tA®

= A?

063/2

Jr
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Variation Method

3 % T 2T 5 5 5
Then <H>=—a—JJ | d—2+z a1, ¢ (e )r*dr sin0d 0d¢
T 2u\dr® rdr) A4megr
00O
s 2 2 2
——4OC3J-8_W L d—2+z 41, ¢ (e“”)rzdr
) 2u\dr®  rdr) A4megr
[ .2 % 2 2.\
=40 h—Jaere‘zar drv| & ¢ jre‘mr dr
2u dme, W
|0 0
[ 12 29 2 2
4P h 0c(2.3)+ e”  ho 12
20 (20) \4me,  p ) (20)
o’ efa

|

2u

4te,

|

A minimum value of o required to get the minimum value

of H,

2

e
(xmin

B Ame 1

4

I
2(4mey)* h?

Ey = <H>mm
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The Ground State of the Helium Atom

The helium atom consists of two electrons revolving in an
orbit around a nucleus having charge 2e. Taking the origin
of the coordinate system at the nucleus and the two
electrons at the distances of riand r:from the nucleus, as
shown,

Electron-1(-e ) |r1 — r2| Electron-2(-e)

Nucleus (+ 2e)

Its Hamiltonian for the system is

2 W*_, 26 e’

— — — +
2].1 4758()7’1 2},[ 2 475801’2 47'580 ’I‘l - 1'2’
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The Ground State of the Helium Atom .

We want to calculate the ground state energy for this
system. Though it is a simple problem, it does not have an
exact solution.

We would like to compute the approximate ground state
energy Eqthat could be as close as possible with the
experimentally measured value of -78.975 eV.

If the electron-electron interaction,

82

V., =
* 47580 ‘1‘1 — I'z‘

is ignorable, then the Hamiltonian simply breaks into two

hydrogen-like Hamiltonians, and the ground state energy

are
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The Ground State of the Helium Atom ‘

2 2\2 2 2
pi- MR 2 g
2(4mey) h (4meg )ag

and the ground state wave function will be the product of
two hydrogen-like wave functions:

8 e—2(r1 +m)/ag
na;

We hence solve the problem with the use of the
variational method to get E,.

y(r)=

On average, each electron represents a cloud of negative
charge that partially screens the nucleus, so that another
electron sees an effective charge on the nucleus, which
should be somewhat less than 2e.
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The Ground State of the Helium Atom

This suggests that a more realistic trial wave function can

be taken as,

2z3
3
i

3/2 3/2
o(r) = e-wvao:j%(zj e-Zﬂ/%ij(Z] eI = 0, (1)0a )

7R ay

where Z is the variational parameter to be determined.
The Hamiltonian of helium can be rewritten as,

Ze* h* v2_ Ze* s e’ (2= 2)e’ L (2= 2)e’
2u 4meon 2u Amegr, Ameonm — 1|  4Amen 4me ot

The expectation value of the Hamiltonian is
H)=22°E +(2-2)© <1>+(Z—2) 2 <1>+ : < 1 >

47[80 T 47t80 ) 47[80 ‘rl—l'z‘

1
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The Ground State of the Helium Atom

where

and
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The Ground State of the Helium Atom

We next evaluate:

3 \? —2Z(r+r2)/ao
< ! >(Z_j E Prdr,
‘I'l —1'2‘ Tt ‘1'1 —I'z‘
To evaluate this integral, we first fix r; alone the z axis
and then choose the coordinate system for r:
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The Ground State of the Helium Atom
We have

. —227’2 /El()

I= ¢ d 16
o —I'z‘

n2n

-1]]

e_zzm /a0 7’22 drz sin 62 dq)g
0% \/ r1 +15 =211 cosez)

J. —2Zr /ag 2dr J- sin 0,40,
5\

+ 18 — 211, cos 0, )

and

sin 92d92
\/(rlz + 15 — 211, COS 62)

O'—.?l

{\/7’12 + 1’22 + 27’17’2 — \/7’12 + 7’22 — 27’17’2 }
nr

-

— for n<n
h

2

— for n<n
2
L
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The Ground State of the Helium Atom

which vyields,

n —27r /ag o 2Zm/ag
e 5 e 5
[=4rn rzdr2+J. s dr

UO 7"1 " rz
-
T Zr
281122} ]
Therefore,
1 A T Zn | oz 27
‘ ‘ = 3 J J. 1-11+— |e /a0 e ”/uorldrl Sm61d91d¢1
n—»n LY/ ) dO ) Ao
_ 4:Z33 j 1_(1+Zﬁj622r1/a0 :|62Z7’1/5107,.1 d?’l
ay L ay
3 B 0o oo oo
— (4Z3 Je—zzm O dry — Je“‘zrl/ O dry — z J‘e“*Z”/ 0 g dr1]
70
0 0 0

(4Z°\ @ 4§ a5 | _5Z
ay )| 4Z° 16Z* 32Z° | 8ap
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The Ground State of the Helium Atom

GRS

Finally, 2 2 >
H)=27Z°Ey+(Z-2)-5 2 1(z-0- ¢ 2, ¢ 2
4me,y ag drey ay  4mey 8ay
2
—27%F, +-© (22—4+5)Z
47580 8 Ao

=27°E, - (422 — %szEl

= (—222 +%Z)E1

Application of the variational method requires that <H> be

minimized with respect to Z,
oH) _
oZ

:(—4Z+%47)E1 =0

= me = g = 169
16
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The Ground State of the Helium Atom ‘

which tells that the other electron screens the nucleus
and reduces its charge from 2e to 1.69e. Thus, the ground
state energy for helium is

E, = (—2(1.69)2 + % X 1.69)]51

=5.696 X E;
=-77.46 eV

which is a reasonable result when compared with the
experimental value -78.975 eV. The ground state energy

of helium had been calculated with the use of a more
complicated trial wave function having a larger number of
adjustable parameters and E,= -78.7 eV was achieved.
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Rayleigh-Ritz Variational Method

A more convenient method would be to write the trial
wave function ket as a linear combination of known fixed
basis vectors and then treat the expansion coefficients as
a variational parameter.

Let us assume that the basis vectors from a complete set
and the trial wave function ket is

i=1

are real or complex variational parameters. We then have,

(0l0)= Del (wil e wi)= D D e
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Rayleigh-Ritz Variational Method

and

(0|H|[¢)= [201 <Win[ZCjo>} = ZZC;G wilHy))

This gives
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Rayleigh-Ritz Variational Method

where we defined

hz] = Wz‘H‘\V]> and Sij = <\|fz \|[]>
To find ground state energy, we minimize H with respect
to the variational parameter c*

Jd(H)
acy

| S-S e
S S8 B~ S
- i j

1

chhkj -{H >chskj

dH) 75 j

ack E E C; C]'Si]'
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Rayleigh-Ritz Variational Method

Therefore

Zcfhk]' _<H>2Cj5kj = Z(hkj —<H>sk]~)c]- =0,

j j j

and its expansion form is

h11 —<H>511 I’llz —<H>512 hln — <H>Sln i C1 1T 0 ]
hyy — <H>521 hyy — <H>522 N <H>52n C2 | _ 0
hnl - <H>Sn1 hnZ - <H>Sn2 hnn - <H>Snn i Cn | L 0 _

the non-trivial solution of which demands:

h11 — <H>511 h12 — <H>512 hln — <H>Sln
h21 — <H>521 hzz — <H>522 h2n — <H>52n

oy —(H)Sy My —(H)Spyy oo Ny —(H) Sy,

02/12/2022 Jinniu Hu ===




Variational Method for Excited States

If we denote the wave function ket of the ground state
of a system by ¢o then the energy of the first excited

state can be given by
E: = <¢1‘H‘¢1>miﬂ
under the conditions
(01161)=1 and {01/¢o)=0.

In a similar manner, the energy of the second excited
state will be given by

E, = (02 H|2), .
under the condition
<¢2‘¢2>:1 and <¢2’¢1>=0=<¢2‘¢0>-
2 12 2O I U —



Variational Method for Excited States

The Hamiltonian of a 1D harmonic oscillator is:

i S|

H=-——5+-mo’x’
2m dx* 2
Its ground state wave can be written as
do(x) = Ae™™

Now the trial wave function for the first excited state
¢.(x) must be orthogonal to ¢,(x). A right choice can be
d1(x) = Bxe ®

since

2
jxe‘“"*mx dx=0
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Variational Method for Excited States

The normalization condition then gives:

o)

1= B> sze"zﬁxz dx

Next, we evaluate

B 2 2
Ho, =B 4 + %m(x)zx2 }cesz

| 2m dx’
[~ 22 22

_p| " Bx+£1m(o2—2h[3 ]x?’}e‘ﬁxz
| m 2 m
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Variational Method for Excited States

and

2Q ¢ 5o \ %
(01| H|1) =B {?)hmﬁ sze_zﬁxz dx + (;mmz _2np ) Jx4e—2ﬁx2 dx}

m

m

2p 22\ 7
=2B° [3h Bsze"zﬁxzdx+(;m(02 _2nB jjx4e23x2dx}
m
0

0

On evaluating integrals and then substituting the value of

B2we get
_ 3B 3mw’
<¢1‘H‘¢1>— om + 3B
Therefore
B _ mo
and
2 1/4 3/4 ) xz
Ei=(01|H[01) ., :%hm 01 =2(E) (n;—;o) xe P
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Systems of N-Electrons

The Hamiltonian for an N-electron system such as a metal
or a large atom is

2
H= ——V2+Vex ) 4 = ¢
Z ((17) ;471:801‘1'—1']']
where single electron po’renfial at the position riis

47t80 Z r,—R

with R a position vector of a bare nuclei. The N-electrons
wave function y(rs,rs.rs,,......1s,), Is.= i representing
both position and spin coordinates, satisfies the
Schrodinger equation:

ext 7"1

Hy =Ey
W



Systems of N-Electrons

Electron 3

Center of Mass Electron 2
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Systems of N-Electrons

The exact solution of this equation is not possible, and
hence one looks for an approximate solution that is most
reasonable. An electron interacts with N-1 electrons, in
addition to its interaction with nuclei.

The methods based on the variational principle have been
found most successful and reasonable approximations to
solve the N-electrons Schrodinger equation. The
variational principle assumes that the equation,

SLW{<\|I\H\\|!>—E<\VW>}=O

is equivalent to the Schrodinger equation.
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Systems of N-Electrons

More explicitly, if we take the functional derivative of
(H-E)= [ v OHy@dr - [y 0w

with respect to y-(r), we get

5(H-E)= [{Hy(x) - Ey®)}dy’ (0d’r
We can rewrite the Hamiltonian of multi-electrons as
follows,

with =1
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Hartree Approximation

We take the trial wave function as

\|I(].,2,3, ..... N) = (])1(11)(1)2(2)(1)3(3) ......... q)N(N)
with

<(|)i(ri5i) ¢j(rj5j)> = 0jj.

We have
(W H|y)

N
N[ [ [ [ @rgos @)000)..00 ). 00
;Jd 1’1J-d o) Jd?’ Jd qu)l(rl)q)z(rz) (l)(r) q)N(I'N)

X {Hz’ + Zvij }q)l(rl )02 (12)...0: (1;)...0n (1)

J#i
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Hartree Approximation

Here,
[on [ [ r [ )03 02). 0] ). 0 o )01 (10)02.82)..4 (). 0 (1)
- @0l @)Hi0i(n)

Note that because H operates only on ¢{(ri) and integration

over each of the other coordinates is equal to one. The
electron-electron interaction term simplifies to

JTdrd®rir; (5)0; (x,) Vs (1) (x;) .
and

<\V’HW> = ;J‘d%(b: (H){Hzﬂ)i(l‘i) +% Z Jd37j¢; (rj)‘/ijq)j(rj)q)i(ri)}

j(#i)=1
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Hartree Approximation

To minimize <y|Hly>, we take the functional derivative
with respect to ¢* (r.) and obftain,

jd37k5¢z (rk){Hkq)k (1) + Z J.d?)rjq); (1) Vi, (1, )0k (l‘k)} =0

j(#k)=1

It is to be noted that the factor of 1/2 before interaction
term drops out because two equal terms, one for i =k
and the other for j =k , appear when we take the
derivative with respect to ¢*( ry).

Due to the normalization of wave function, we have
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Hartree Approximation

Here, €. is a multiplying constant. Finally, we have

jdgrk 30 (rk){Hkq)k(rk) + 2 J.d?”’j(l); (1;)Vij0; (1) 0k (1r ) — €40k (rk)} =0

j(#k)=1

Do make it stationary, the variations are zero for all
possible forms of d¢*.(r.); hence we can get

N

HiOp (1) + 2 Jd3rj¢;(rj)vkj¢j(rj)¢k(rk): Ex O (1)

j(#k)=1
More explicitly,

2 N

{—2V2 + Ve () +—— Ame, z J-d3r]-q);-(r])

ol 0; (1‘;)}(1)1' (r;) = €0:(r;)
j(zi)=1 L
which is an integro-differential equation, commonly known

as the Hartree equation.
W



Hartree Approximation

In 1927, D. R. Hartree introduced
a procedure, which he called the
self-consistent field method, to
calculate approximate wave
functions and energies for atoms
and ions. His first proposed
method of solution became known
as the Hartree method,

or Hartree product.
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Mean-Field approximation
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Hartree Approximation

It is an eigenvalue equation for an electron located at
position r; and moving under the influence of an effective

potential,
Vi (1) = Vet (1) + Ve (1)

; !¢ (x >\
e, 2

The simple interpretation of this is as follows. The ith
electron interacts with both nuclei and the remaining N-1
electrons. We thus find that the Hartree approximation
converts the N-particle problem into a set of N-single

and

Vee (1) =

particle equations that can be solved.
W



Hartree-Fock Approximation

In the Hartree approximation, the exchange effect is not
taken care, which demands that the wave function for a
system of N-Fermions must be anti-symmetric,

N

o S o ()00 1) (50

m=1lnp=1 ny=1

\|Ia(r1,r2,....rN) =

Let us first evaluate the matrix element of H;
<\|Ia‘Hi‘\|]ﬂ>

N

N N
= % Jd371d372 ...... der I:ZZZ Snins ...nN {(bni (1‘1 )(l)né (I'z)....(])nj\] (I‘N)}* :l X

ni=1lnb=1 nj=1

M-
[
-

enmz....nN ¢n1 (I'1 )q)nz (1‘2 )""(DnN (rN )]
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Hartree-Fock Approximation

There will be an integral over (N!)2 terms, where each

term involves a product of the N wave functions and an
equal number of their complex conjugates. To understand
the simplification of this equation, let us consider a case

of two electrons situated at r;and r,.
(W |Hilya)

— zlljdg’rid?’rj [ii Entns | Ot ()0 (1 )}*

. ni=1ns=1
Using

ii €y Oy ()01 (rj)

n=1npy=1

H;

€E11=€En= O and Enp=—6E9= 1,

the equation reduces to
Wa Hilyo)

= % Jd?’nd?’r]- [(1)1 (1)02 (1;) — 62 (1 )01 (rj):lHi [(|)1 (1:)02(x;) — b2 (1; )by (rj):l
W



Hartree-Fock Approximation

which expands to
(o Hila)

= 21![:01% Jd% 02(5) 03 (1) Hifn (1) + j a’r, jd%j 01(x;) 03.(6)Hi (ri):|
1

2!

: o { [ (rj>¢1<rj>}¢i @H o)+ [ { [ #roi@e: <r]~>}¢’; (£)H., (riﬂ

The second term becomes identical to the first term on
interchanging integrals over riand r;,

<\Va ‘Hi‘“’a> = J‘d37’i¢; (1) H 01 (;)
However, in place of suffix 1, we can use a more generalized
suffix n to write:

alHilvi) = [ dn, ()H g, ()
W



Hartree-Fock Approximation

We find that for a two-electrons system,

dsnd3n

<\|Ia ‘ ‘/1] ‘Wa J‘J‘M)l (1‘ )‘ ‘(1)2 (1‘ )‘

4 £, J.J 01(1; )2 (1

A generalization for N-electrons can made by representing
quantum states by n;and n; in place of 1 and 2:

¢2 (1‘, )q)l (1‘] )d31”1d31’]

]\

d>rd’r,

A e | L

]\

o fJo e Lo @o.aty

480

I
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Hartree-Fock Approximation

We then have,
(W.|H|y,)= H(I) (1;) { — Vi + V(1) }q)n (r;))d’r,

—ZH!% (x)

l;ﬁ]

8

O, (1 >\ —

d’rd’r;
I']‘

2

P | e ¢n,<rz~>¢m<r]->d3nd3r]—]

P —

i#]

Minimization with respect fo ¢ .(r),

{—;l:nvlz + Vext(rl }q)n (rz)+ {ZJ‘ q)n] (I‘] )‘ ‘ _ T]}(])n (1‘1)

4:71280 { Jq)n] q)n (I'] )d3r]¢n (rz)}z € O; (17)
This equa’rlon is known as the Hartree-Fock equation.
The third term on the left is originated from exchange

interactions.
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Hartree-Fock Approximation

In 1930, Slater and V. A.

Fock independently pointed out that
the Hartree method did not respect
the principle of antisymmetry of the
wave function. The Hartree method
used the Pauli exclusion principle in
its older formulation, forbidding the
presence of two electrons in the
same quantum state. In 1935,
Hartree reformulated the method to
be more suitable for the purposes of

calculation.
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Hartree-Fock Approximation

Proc. R. Soc. Lond. A 1935 150, 9-33
doi: 10.1098/rspa.1935.0085

Self-Consistent Field, with Exchange, for Beryllium
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The numerical code
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Thomas-Fermi Theory

For a system of N-electrons in a stationary state, this
theory tries to avoid the complicated many-electron wave
function by using electron density n(r), which is physically
observable, measured, calculated, and easily visualized.

The electron density to find a particle at or around r is
given by

The Thomas-Fermi approach is semiclassical theory where
certain ideas are borrowed from quantum mechanics.
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Thomas-Fermi Theory

(I) Fermi statistics-all the states up to some maximum
energy and momentum, say Pr, which may vary over the
space are occupied

(ii) The principle of uncertainty-every cell of phase space
(of volume h3) can host up to two electrons with opposite
spin directions.
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Thomas-Fermi Theory

Thus in the ground state volume occupied by the electrons

in the phase space would be

4V,
3 PFI

where V is the volume of a system in real space. It is

assumed that all electrons are accommodated up to the
phase space sphere of radius pr. Therefore, the total
number of electrons is

N=(4an%j/(h3j= 8nVp}

3 318
and hence

N 8mp:  pi
vV 3K 3nth°
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Thomas-Fermi Theory

which gives

pe(r) = ke (v), with ke (r) = {3n%n()}
The pr and krare known as Fermi momentum and Fermi
wave vector, respectively. It is assumed here that pr and
hence n(r) vary with space coordinates over the region.

Assuming that all electrons move as classical particles
under the influence of common potential, the classical
energy of fastest moving electrons is

Epmax = ”2%1:) +V(r)
where both kinetic and potential energy parts may
independently depend on r, and their sum in equilibrium

remains constant.
02/12/2022 Jinniu AU ==,



Thomas-Fermi Theory

We next take total energy (T+U) of the entire electrons
distribution. With kinetic energy density t(r), we write

T = Jt(x)d®r.
To evaluate t(r), let us calculate the fraction of electrons
that have momentum between p and p+dp:

dmp*dp | pidp

A X
7 [ [ ]

The t(r) at around r, when the classical expression for the

kinetic energy of an electron is used, is:

F(p)dp =

when p < pr, zero otherwise.

3h2 (3)2/3 7'54/3

10m {n(r)}m

PE )
0= [ 2 Fp)dp -
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Thomas-Fermi Theory

The total kinetic energy therefore is

T = ijn5/3(r)d3r
where

3h2 (3)2/3TC4/3
10m

The potential energy at r is due to the interaction with
the external field and electrostatic interaction of the
electron density with itself. Therefore

Ck=

3 n()mr’) 5 53 ,
U = Jn(r)Vext(r)d r+— ame, -” rr d’rd’r
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Thomas-Fermi Theory

The total energy of the system is

Fu =T+U =G [ w04+ [ o) Ve s+ ” MO g2y
TCSQ

r-r
Next, we search for the electron densn‘y, which minimizes

the total energy subject to the normalization condition
[n()d®r=N
On introducing a Lagrange multiplier u, the method of the

variational principle with respect to n(r) gives:

O(Eiot —MN):J §Ckn” 3(r)+Vext(r)+ c n(r)dsr - }Sn(r)d3r=0
_3 TCSO ‘ — ‘
which vields .2
/ 1= {nF Vi) + [ 1

-1’

This equation is known as the Thomas-Fermi equation for
determining the equilibrium distribution of the electron

density.
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Thomas-Fermi Theory for atom

Since the electrons cannot escape from the atom, u=0
for an atom in equilibrium. Hence:

3/2
n(r) = [—é eﬁ«r)}

k
where

2

e n(r) d3
4mey J [r—1’

‘/eﬁ (1‘) — Vext (I') +

Because of spherical symmetry inside the atom, both
electron density and V. (r) would be a function of r =|rl.
The electrostatic potential satisfy the Poissons equation:

lv2‘/eﬁ (7") — _ en(r)
e &o

1 d( ,dVg )  e*n(r)
- r* dr [r dr )_ €0
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Thomas-Fermi Theory for atom

Therefore

) 3/2
li(,ﬂ dVeﬁ(r))=—e {— ) ‘/eﬂ(l'):|

r? dr dr £

It is convenient to introduce
Ze?
4me,r

dy(r) e [ Z 3 7% 432
dTZ &o 47580 5Ck \/;

which on choosing

Vg (r)=— x(7).

We then have:

Xx=" with b= 5809‘ ( 2 ) | > d*x(x) _ {X(x)}
b 3e 41 x> \/;
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Pictures of Quantum Mechanics

The Schradinger picture: the state vector, ly(t)), of a

quantum system depends explicitly on time, while the
observables (operators of physical characteristics) of the
system are time-independent.

The time evolution of the state vector is controlled by the
Schrodinger equation

w0 py ),

and can be represented in terms of a time evolution
operator (propagator), U(t,t,), as

(1)) =U(t,10)w(t)).
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Pictures of Quantum Mechanics

The condition of conservation of the norm of the wave
function under this representation reads

(W(O)w (1)) = (O (t.10) y () |0 (2.10) w(10))
= (y(0)|0" (1,10)U (1,10) [y (10)) = (w(10) |y (10))-
This requires the evolution operator, U(t,t,), to be unitary:
U (t,10)U (t,10) = U (t,10) 07 (t,10) = 1.
In addition, the evolution operator also satisfies the
following properties
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Pictures of Quantum Mechanics

The propagator can be determined as follows,

8U t,1 A
ih ét 0) = HU (t,19).

If the Hamiltonian, H, is time independent, its solution
satisfying the initial condition, U(t,t,) = I, can be written as
O (1,t) = e 7 —0)H

The wave function can be written as
(1)) = e 1070y (1)),
We can expand the wave function y(q,0) into a series with

respect to the eigenfunctions, ¢.(q), m = 1,2,3,..., of the

R o L (=il
Hamiltonian vigr) =Y ;( (1 ) Y cntm
n=0"""
oo 0 n
q tO ZCm¢m :ZCm¢mZ %( lhEm(t fo ) Zcmq)me (1= o),
m n=0"""
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Pictures of Quantum Mechanics

The Heisenberg picture: in this picture, the state vector, |
y), iIs time-independent, while the observables are time-

dependent. This is accomplished by defining the Heisenberg

state vector, |y, ), as
yu) = U (t,10) [y (1)),

With such a definition |y, turns out to be time-independent

i) = 07 (6,00)|y()). = O (110) [w(0)) = eh 0 |y (1)) = [y(10)),
As a consequence, the state vector Ifo> gets frozen in time.

This leads to

dlyu)
dt =0

02/12/2022 Jinniu Hu =,



Pictures of Quantum Mechanics

U represents a unitary transformation of the state vector,
physical properties of a quantum system in both the the
Schrodinger and the Heisenberg pictures should be the
same.

For instance, consider the average value of time-independent
observable, A, in the Schrodinger picture

S

As) = (w(t)|As|w(1)) = (U(t.00) wu |As| U (t.100) W)

= {(yu |(U (t,10)AsU (t,10)) | W)
The requirement of the unchanged average value of A in
both the pictures gives
An(t) = 07 (1,10)As (1)U (t,10) = en 0 0H Ag ()7t —10)H
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The Heisenberg’s equation of motion for an observable is
obtained by simply differentiating it with respect to time

Therefore, the Heisenberg’s equation of motion can be
written as

dAg 1 . 4
o~ At
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Pictures of Quantum Mechanics

Interaction picture: In this picture, both the state vector, |
w(1)), and the observables depend explicitly on time.

In the cases when the total Hamiltonian, H, can be separated
into a time-independent part, Ho, and a time-dependent
part, W(t) (interaction Hamiltonian), the state vector, |y.(t)),

is defined through
i) = 05 (1,10) [y (1)) = Uy ' (1,10) [ w (1)) = en 0oy (1)),
where |y(t)) is the state vector in the Schrodinger picture.

The equation of motion for the state vector is obtained as
follows.
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Pictures of Quantum Mechanics

Defining an observable, A,(t), in the interaction picture by
Al(t) _ e%(t—to)I:IOAe—%(t—to)I:IO,
where A is the corresponding observable in the
Schrodingers, and following the same calculations as in the
case of Heisenbergs picture, we arrive at the following
equation of motion for an observable in the interaction
picture ih% — [ o).
We see that, in this picture, the time evolution of the state
vector is governed by the time-dependent interaction
Hamiltonian Wi(t) only, while the time variation of an
observable is controlled only by the time-independent part.
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Pictures of Quantum Mechanics

Differentiating ly,) with respect to time, we obtain

J|vy) ol L(t—19)Hy 1) (t—t0) H08‘1//( )
or 1o Aol (1)) + e or

For |y(t)) in the Schrodinger’s picture, and a bit of algebra

we obtain

O 1) (1),

where

W](I) — e%(t_tO)ﬁOW( )e h(f o) Ho
is the time-dependent part of the total Hamiltonian in the
interaction picture.
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Exactly Solvable Time-dependent

The time independence of the Hamiltonian allows to us to
factorize the wave function into space- and time-
dependent parts,

—iEt

ih oW(r, 1) = {—ﬁvz + V(r)}\p(r, 1), with y(r,t)=o(r)e "
ot 2m

and

[_zhzvz + V(r)}(p(r) = Eq(r)
m

When, the Hamiltonian is time-dependent, factorization of
the wave function into space- and time-dependent parts
is not possible and hence the Schrodinger picture is

inadequate to describe the system.
W



Exactly Solvable Time-dependent

The approach adopted by us is as follows. Let us say H,
satisfies the eigenvalue equation:

Ho|0w)=En|dn)
where E, and ¢, are the energy eigenvalue and eigenstate
of the nth state of the system in the absence of
perturbation.

The eigenstate ¢, can be taken as basis vectors of Hilbert
space to write

0)= ) c.(0)[9n),

n

where ¢,(0) is a constant in time.
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Exactly Solvable Time-dependent

In the absence of Hy(r,t), we are dealing with stationary
state problems and hence we have,

W= ¥ e (e " ()
Now, let us consider the situation where initially, in the
absence of Hi(r,t), only one of the eigenstates, say ¢i, is

populated. But as time goes on and Hi(r,t) is turned on,
states other than ¢i get populated.

We can expect that y(r,t) is still represented in the same

form as above equation, provided c,is made time-dependent.
We therefore write,

iE,t

W)=Y caltle (0]

n
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Exactly Solvable Time-dependent

Note that in this procedure, time-dependence of c.(t) is
solely arising due to Hi(r,t) and it must go to c.(0)
whenever H(r,t) = 0.

The time-dependence of c.(t) is thus determined from the
Schrodinger equation having the Hamiltonian H(r,t)=H(r)

+Hi(r, 1), ihaat : c,(be " |¢,)=(H, +H1);Cn(t)e " |0n)
iEnt iEnt
=i GuBe ' [0,)+ Y Encu(le " [0)
n Y h it
:ZEncn(t)e " 16,)+ Hi(r,t) ) cu(tle ™ [04)
! iEqt ) iEnt

=in Y cu(He " |0,)= Hy(r,t) Y co(De " |o,)
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Exactly Solvable Time-dependent

On taking the inner product with

iEmt

Oule ™
and the defining
o, = En=E)
n
We get,
i(Eyn—En)t i(Ep—En)t
Y eBle " (0ulo)= D calle T (0u|Hi(x,D]0,)

= C(t) = %thn(t)cn(t)ei‘”m”t
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Exactly Solvable Time-dependent

We thus obtained a matrix equation,

C1 h11ew)11t hlzelwlzt . . Cq

d C2 l h21€l®21t hzzezcozzt . . C2

dt| . ih

which yields coupled equations that are solved to find c(t),

determines the probability of finding the system in any
particular state at a later time.

Note that we have not used any approximation until now and
hence all treatments are exact. Exactly solvable problems
with time-dependent potentials are rather rare.
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Periodic external field

A two-state system problem with sinusoidal perturbing
potential is described as follows,

—iEqt —iEpt

“I’> = Cl(t)eT ‘¢1> + Cz(t)eT ‘¢2>

HO = E1‘¢1><¢1‘+E2‘(I)2><(I)2‘,WlthE2 >E1
and

Hi =" |§1)(02 |+ v |§2)(01]

where y and o are real positive. We thus have time-
dependent perturbing potential that connects the two
states and the transition between two states takes place.
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Periodic external field

The matrix elements h,, h., h,,, and h,,are:

= (01 [ H 1) = 1e™ (01]01)(02[91) + 1" (91]02) (91]01)

— ]’l11 = Yeimt821 + 'Ye_imtslz =0

o = (01 Hi92) = 6™ (91]01)(02[02) + ve ™" (01]02)(01 2

— h12 — ,Yeimt

hy = <¢2‘H1‘¢1> = 'Yeiwt <¢2 ‘¢1><¢2‘¢1>+Y3_m <¢2’¢2><¢1‘¢1>

- h21 = 'Ye_iwt
Therefore, we have

Zh dCl (t) — ,Yeio)tei(mztcz (t) — ,Yei(m+o)12)tc2 (t)

— ,Ye—i(oteiwzltcl (t) — ,Ye—i((n—(ozl)tcl (t)
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Periodic external field

The two first order differential equations are combined to
give one second order differential equation

+i(o z1)dc2(t) (hj 2 (t) =0

dzCz (t)
dt*

This is a standard second order differential equation. We

solve it with the use of a trial solution,
Co(t) = ¢ (O)Bigt,

{QZ +Q(0—0y)— (;)z }

Therefore,

Il
(@)

whose solution is
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Periodic external field

Finally,

ca(f) = e_iw I:Aei\/(OJZMJZJr(Z)zt + Be_i\/(% X

if initially at + =0 only the lower state ¢, is populated so
that ¢,(0) =1 and c.(0) =0 . This implies A =-B and

dt

t=0

So, y
A=—
/
{h2 (0— 0y +4y> }1 i

The probability that both the states ¢, and ¢.are
populated at later time t is then give by

et = { . ( (0—2;() j ) yz} sin’ {[\/ (m_zwj *(2) H
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Periodic external field

is the famous Rabi’s formula. Rabi is known as the father
of molecular beam technologies.

A
2

e |

1 O IO IO R N N N N N N NN o S S D S o D N N = S N = o o N N o oD N N = o . =

4
Full width at half maximum = %

v

0.0 | ) o, | | @
A maximum occurs of |cz(1)|2 at
©= b = E, -E
— W21 — h

which is known as the Resonance condition.
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Periodic external field

The |c2(1)I2 and lci(t)I2are plotted as the Func’non of t af
w = W, (resonance condition) in

1.04

There are many appllca’rlons of the general time-
dependent two state problem, such as nuclear magnetic
resonance, spin-magnetic resonance, microwave

amplification of stimulated emission of radiations (MASER),

the atomic clock, and optical pumping.
W



Time-dependent Perturbation Theory (%

Except for a few problems such as two state time-
dependent systems, the exact solution to differential
equations that determine c.(t) is not possible.

Similar to the case of time-independent perturbation
theory, we include the small dimensionless parameter A to

write the Hamiltonian
H — HO + 7\‘H1

and expand the c.(t) in terms of A\ as follows:
c,()=cDV )+ AP () + AP () + AP () + ...

Therefore,
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Time-dependent Perturbation Theory (%

To satisfy this, the coefficient of each power of A must
vanish. We therefore have, _ "

=0
dt

dc,%’(t)

thn (DO e

dc,ﬁ?’ (t) _

Y T8 (e
The first order con’rrlbu’rlon to ¢, (1) is

1 o,
(D () — E M\ A0) L7\ i@t ,

If the system initially at t =0 is in only one unperturbed
state ¢, then c,ois non-zero (equal to 1) only for one value
of n belonging to ¢,, and it is zero for all other values of m.
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Time-dependent Perturbation Theory ‘% ;-3;] P %57

When t >0 but very small, such that we still have co(t)=1,
we then can drop all other terms

c,S?’(t) = O,

t
c(t) = %jhmn(t’)eimm”t'dt’, m#n
i

If we confine ourselves oonly to first order perturbation
theory, we have )
e =ci ()

de,(f) 1
dt il

10yt

h,.e®™ , withm#n

Therefore,

t
e () = j T () At
1h )
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Harmonic Perturbation

Let us consider a system initially in the state of ¢,
perturbed by a periodic potential that is described by
Hy(x,t) = 2H, (r)cos(ot) = H, (r){e" +¢ |

An example of this is an atom or a molecule exposed to
electromagnetic radiation (harmonic perturbation). The
probability amplitude for an atom in the initial state ¢, to
be in state ¢, after time t

M (') = Hye (€ + 7" ), where H,uy = (0, | H: (1) 0
We have

t
C%)(t) _ Hmn (ei((o+(omn)t’ n e—i(w—wmn)t')dt,
1h )

e—i(co—o)mn)t -1 ez’(w+mmn)t -1

—=cYH=H,, —
®) Ho-0,) h(o+o,,)
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Harmonic Perturbation

The first term on the right-hand side represents
absorption, while the second corresponds to stimulated
emission. Since both absorption and stimulated emission
cannot take place simultaneously, only one term is fto be
discussed at a time. We retain the first term for further
discussions and obtain:

e_i((’)_(’)mn)t _ 1
¢ (t) = Hypp

(- ,,)
Hmn (@ —o)t |:ei(mmn—m)t — (0 —0)t j|

= e 2 2 —e 2
(- 0)

2iH,, ~ ‘em=ok {(mm — (o)t}
= e Sin
- 0,) 2
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Transition Probability

If the system was in the ¢, state initially at t=0, then the
probability to find the system in the state ¢, after time t
is given by

2
‘Hmn‘ > Sil’lz {(O)mn _O))t}
hz(w’"n —co) 2
2

Pr-m (1) exhibits a peak of height equal to

P () =D (1) =

Hu £
hZ
and width equal to

2n/t at ® = (En _E”),
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Transition Probability

B

(,,~ )
_en 4w —2m 21 am 6w
t t t t t t

A central peak has the largest height. As t increases, the
height of the central peak enhances as t2, while its width
decrease as 1/t. For t—+o0, one expects that the functions:

. 2
s’ ot
" — Tto(ot)
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Transition Probability

We next consider the transitions from one of the initial
discrete states to a final state that is part of a continuum,
with density of states p(E.).

The probability of transition between discrete states
exhibits periodic dependence in time. But, if the final
state is part of a continuum, an integral over all final
states is required to get a resultant transition probability.
A transition rate is associated with such a probability
function. The final transition rate is given by Fermi's
Golden Rule.
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Transition Probability

An approximation to the sum of transition probabilities
over final states is given by the integral

PO= D Pron(®)= | Prn(Op(En)dE,
which gives "

P(t) = me Smaz o(E,,dE,,

In this range of energy, H..2and p(E.) almost remain the
same, and they are treated independent of energy in the
continuum of states. We thus have

H, I sin? (ot
P(t)= " p(Em>j aﬁ )k,
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Transition Probability

Note that

OC_((somn—oo)_Em—l-jn_9
-2 2h 2

= dE,, = 2hdo.

Since the integral is contributed by a very small energy
range, our answer will not be changed even if the limit of
integration over o is extended to +~ . We therefore have

sin” (out)
(XZ

2 Hmn 2 ( 27
P =1 o) | dor= 2 HL P p(E, )

where we made use of
( sin x 2
j( ) dx =T
b X
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Transition Probability

Note that the total transition probability is proportional to

t for larger values of t.
We restricted the integral to the central peak only, which

yields our answer 90% correct. Inclusion of more peaks
from to the left and right of the central peak improves

accuracy further.
The probability of transition per unit time P(t)/t, also

termed the transition rate is P, (t nH,,m
P(t) 2
W= ) = . ‘Hmn‘z p(Ew) R‘Hmnlz ®,; —O®
for = o2

This equation is known as Fermi’s Golden Rule. It shows

that total transition probability is independent of time.
W



Exercise

1. A delta function bump H,= ad(x — a/2) is introduced at
the center of the infinite potential well of width a , with
walls at x =0 and x =a . Calculate the first order
correction to the allowed energies and wave function.
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Exercise

1. A delta function bump H,= ad(x — a/2) is introduced at
the center of the infinite potential well of width a , with
walls at x =0 and x =a . Calculate the first order
correction to the allowed energies and wave function.

Solution: The first order corrections to the allowed

energies are given by
ED =yl Hi|y?).

We take W%O)(x)z\/zsjn(ﬂx).
a a

j(sin(% xj)z od(x —a/2)dx
“(on(3))
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Exercise

v | Hi |y
\|’§11)> _ 2< (E;?) _1E1(10)) > II151(1))>
with '
<\|;§2)‘H1 \|;(n°)> = 2jsin(mxjoc5(x—a /Z)Sin(mx)dx
aJ a a
20 (mn) . (rmj
=""sin| — |sin| —
a 2 2
dﬂd <\|1549)‘H1 w%0)> ~ 471’1*&0( (_1)m+n

(E,SS))—ES))) o K22 (mz—nz)'

4 * _1 m+n
V)= ;Zn%a (;2)_”2)“’53)> when m and n take odd values.

m#n
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