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Chapter VII Approximation Methods 

1

Quantum mechanics
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There are many complicated potentials for which 
Schrödinger’s equation cannot be solved exactly. For such 
situations, we resort to approximation methods for finding 
approximate solutions to the Schrödinger equation. 


Time-independent perturbation

The perturbation theory is based on systematically 
obtaining an approximate solution to the perturbed system 
by developing solutions based on the exact solutions of the 
unperturbed case. 


To understand such approach, consider the following 
Hamiltonian:

H = H0 + λH1



02/12/2022 Jinniu Hu

where H1 is the perturbation, H0 is the Hamiltonian of the 
unperturbed system, and � small number that varies 
between 0 and 1. 

The magnitude of this number decides how strong or how 
weak the perturbation is. For the unperturbed system


Time-independent perturbation

where the eigenvalues and eigenfunctions are already 
known or these can easily be obtained. 


Thus, the Schrödinger equation for the system now is: 


H0 |ψ (0)
n ⟩ = E(0)

n |ψ (0)
n ⟩

(H0 + λH1) |ψn⟩ = En |ψn⟩
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The eigenfunctions and eigenvalues of H must depend on �, 
because H depends on �. Therefore, ψn and En can be 
expanded in a power series with respect to �, as follows: 


Time-independent perturbation

where we used the following abbreviations in the expansion: 


En = E(0)
n + λE(1)

n + λ2E(2)
n + …

|ψn⟩ = |ψ (0)
n ⟩ + λ |ψ (1)

n ⟩ + λ2 |ψ (2)
n ⟩ + …

E(k)
n = 1

k!
∂kEn

∂λ
λ=0

|ψ (k)
n ⟩ = 1

k!
∂k |ψn⟩

∂λ
λ=0
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The En and ψn of a system are the sum of the correction 
terms. It is obvious that the convergence of these power 
series is a key issue, because the series must be truncated 
in practice.

Time-independent perturbation

Therefore, we get

the simplification of which gives terms with various powers 
of λ on both the sides. This gives rise to: 


(H0 + λH1)[ |ψ (0)
n ⟩ + λ |ψ (1)

n ⟩ + λ2 |ψ (2)
n ⟩ + …]

= [E(0)
n + λE(1)

n + λ2E(2)
n + …] [ |ψ (0)

n ⟩ + λ |ψ (1)
n ⟩ + λ2 |ψ (2)

n ⟩ + …]

H0 |ψ (0)
n ⟩ = E(0)

n |ψ (0)
n ⟩
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Time-independent perturbation

They can be generalized to, 


We assume that eigenvectors of H are orthonormal, and 
hence <ψ(0)m |ψ(0) n>= δmn . The zeroth order energy is then 
obtained from: 


H0 |ψ (1)
n ⟩ + H1 |ψ (0)

n ⟩ = E(0)
n |ψ (1)

n ⟩ + E(1)
n |ψ (0)

n ⟩

H0 |ψ (2)
n ⟩ + H1 |ψ (1)

n ⟩ = E(0)
n |ψ (2)

n ⟩ + E(1)
n |ψ (1)

n ⟩ + E(2)
n |ψ (0)

n ⟩

H0 |ψ (k)
n ⟩ + H1 |ψ (k−1)

n ⟩ =
k

∑
i=0

E(i)
n |ψ (k−i)

n ⟩

E(0)
n = ⟨ψ (0)

n |H0 |ψ (0)
n ⟩
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Time-independent perturbation

On operating with the wave function of unperturbed 
Hamiltonian from the left on both the sides of first-order 
equation


We now consider the two possibilities: (i) m = n and (ii) m ≠ 

n. For the case of m = n,
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 ψ + ψ = ψ + ψ0
(1)

1
(0) (0) (1) (1) (0)H H E En n n n n n  (7.11)

 ψ + ψ = ψ + ψ + ψ0
(2)

1
(1) (0) (2) (1) (1) (2) (0)H H E E En n n n n n n n  (7.12)

Equations (7.11) and (7.12) can be generalized to:

 ∑ψ + ψ = ψ−

=

−
0

( )
1

( 1)

0

( ) ( )H H En
k

n
k

i

k

n
i

n
k i  (7.13)

Equation (7.10) provides zeroth order eigenvalues and eigenvectors. We have to !nd vari-
ous corrections ( )En

k  to energy En , and ψ( )
n
k  to eigenvector ψn . We assume that eigenvec-

tors of 0H  are orthonormal, and hence ψ ψ = δ(0) (0)
m n mn . The zeroth order energy is then 

obtained from:

 = ψ ψ(0) (0)
0

(0)E Hn n n  (7.14)

7.1.1.1 First Order Corrections to Energy and Wave Function Ket

On operating with ψ(0)
m  from the left on both the sides of Eqn. (7.11) we get:

 
(0)

0
(1) (0)

1
(0) (0) (0) (1) (1) (0) (0)

0 (0) (1) (0)
1

(0) (0) (0) (1) (1)

ψ ψ + ψ ψ = ψ ψ + ψ ψ

⇒ ψ ψ + ψ ψ = ψ ψ + δ

H H E E

E H E E

m n m n n m n n m n

m m n m n n m n n mn

 (7.15)

where we have used ψ ψ = δ(0) (0)
m n mn  and ψ ψ = ψ ψ(0)

0
(1) (0) (0) (1)H Em n m m n  because 0H  is a 

Hermitian operator. We now consider the two possibilities: (i) =m n  and (ii) ≠m n . For the 
case of =m n  Eqn. (7.15) simpli!es to:

 = ψ ψ(1) (0)
1

(0)E Hn n n  (7.16)

and when ≠m n , Eqn. (7.15) is rewritten as:

 
(0) (0) (1) (0)

1
(0) (0) (0) (1)

(0)
1

(0) (0) (0) (0) (1)( )
ψ ψ + ψ ψ = ψ ψ

⇒ ψ ψ = − ψ ψ

E H E

H E E

m m n m n n m n

m n n m m n

 (7.17)

The Eqn. (7.11) can be rewritten as:

 ( ) ( )− ψ = − ψ0
(0) (1) (1)

1
(0)H E E Hn n n n  (7.18)

which suggests that ψ(1)
n  can be constructed as a linear combination of exact solutions of 

0H , which provide a convenient but not a unique choice for a complete orthonormal basis. 
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(0) (0) (0) (1)

(0)
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ψ ψ + ψ ψ = ψ ψ
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E H E

H E E

m m n m n n m n

m n n m m n

 (7.17)

The Eqn. (7.11) can be rewritten as:

 ( ) ( )− ψ = − ψ0
(0) (1) (1)

1
(0)H E E Hn n n n  (7.18)

which suggests that ψ(1)
n  can be constructed as a linear combination of exact solutions of 

0H , which provide a convenient but not a unique choice for a complete orthonormal basis. 

and when m ≠ n,
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Time-independent perturbation

Therefore

which suggests that ψ(1)  can be constructed as a linear 
combination of exact solutions of H0 , which provide a 
convenient but not a unique choice for a complete 
orthonormal basis. 
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The Eqn. (7.11) can be rewritten as:
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which suggests that ψ(1)
n  can be constructed as a linear combination of exact solutions of 

0H , which provide a convenient but not a unique choice for a complete orthonormal basis. 

The various order corrections ψ(k) to the eigenstate can then 
also be constructed as a linear combination of exact 
solutions of H0,  
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The various order corrections ψ( )
n
k  to the eigenstate can then also be constructed as a 

linear combination of exact solutions of 0H . We therefore take:

 ∑ψ = ψ
µ

µ µ
( ) ( ) (0)Cn
k

n
k  (7.19)

where expansion coef!cients µ
( )Cn
k  are to be determined. To !nd an expansion coef!cient 

µ
(1)Cn , we rewrite Eqn. (7.17) with the use of Eqn. (7.19) for = 1k :

 ∑( )− ψ ψ = ψ ψ
µ

µ µ
(0) (0) (1) (0) (0) (0)

1
(0)E E C Hm n n m m n  (7.20)

which yields:

 ( )=
ψ ψ

−
(1)

(0)
1

(0)

(0) (0)
C

H

E E
nm

m n

m n

 (7.21)

It is to be noted that Eqn. (7.20) is valid only for ≠m n ; it is not valid for =m n . We therefore 
obtain:

 ∑ ( )ψ =
ψ ψ

−
ψ

≠

(1)
(0)

1
(0)

(0) (0)
(0)

H

E E
n

m n

m n

m n
m  (7.22)

Further, we !nd that if ψ(1)
n  satis!es Eqn. (7.18), then ( )ψ + ψ(1) (0)An n  also satis!es it, for 

any constant A. This provides us freedom to subtract off the ψ(0)
n  term, and therefore, 

there is no need to include the =m n  term in the sum for constructing ψ(1)
n .

7.1.1.2 Second Order Corrections to Energy and Wave Function Ket

On operating with ψ(0)
m  from the left on both the sides of Eqn. (7.12) we have:

 
ψ ψ + ψ ψ =

ψ ψ + ψ ψ + ψ ψ

(0)
0

(2) (0)
1

(1)

(0) (0) (2) (1) (0) (1) (2) (0) (0)

H H

E E E

m n m n

n m n n m n n m n

 (7.23)

When we take =m n , the !rst term on the left-hand side cancels out the !rst term on the 
right-hand side, and the second term on the right-hand side vanishes, because ψ ψ = 0(0) (1)

m n  
due to non-inclusion of the =m n  term in ψ(1)

n . We therefore get:

 = ψ ψ(2) (0)
1

(1)E Hn n n  (7.24a)
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Time-independent perturbation

To find an expansion coefficient, we have for k=1


which yields: 
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(1)E Hn n n  (7.24a)

This equation is valid only for m ≠ n; it is not valid for m = 

n. We therefore obtain: 
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When we take =m n , the !rst term on the left-hand side cancels out the !rst term on the 
right-hand side, and the second term on the right-hand side vanishes, because ψ ψ = 0(0) (1)

m n  
due to non-inclusion of the =m n  term in ψ(1)

n . We therefore get:

 = ψ ψ(2) (0)
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also satisfies the Schrödinger equation of first-order wave 
function, for any constant A. This provides us freedom to 
subtract off the ψ(0)  term, and therefore, there is no need 
to include the m = n term in the sum for constructing ψ(1)


To calculate the second-order corrections to energy, we 
have,
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When we take m = n, the first term on the left-hand side 
cancels out the first term on the right-hand side, and the 
second term on the right-hand side vanishes.
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Time-independent perturbation

Therefore, we have 


which can be simplified as

On taking m ≠ n, 
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which with the use of Eqn. (7.22) gives:
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On taking ≠m n , Eqn. (7.19) gives:
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Substituting Eqn. (7.25) into Eqn. (7.23), we get for ≠m n :
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It is to be noted that Eqn. (7.27) cannot be used to calculate (2)Cnn , because Eqn. (7.27) is 
obtained for ≠m n . The (2)Cnn  can be calculated by imposing the condition that the per-
turbed wave function be normalized, that is ψ ψ = 1n n . Retaining the terms up to λ2  in 
Eqn. (7.6), we have:

 ψ + λ ψ + λ ψ  ψ + λ ψ + λ ψ  = 1(0) (1) 2 (2) (0) (1) 2 (2)
n n n n n n  (7.28)

With the use of the orthonormality condition ψ ψ = δµ ν µν
(0) (0) , Eqn. (7.28) simpli!es to:

 ∑( )λ + + λ + +








 =

ν

ν( ) ( ) 0(1) (1) * 2 (2) (2) * (1) 2
C C C C Cnn nn nn nn n  (7.29)

From discussions presented above in Section 7.1.1.1, we !nd that + =( ) 0(1) (1) *C Cnn nn . Therefore:

 ∑+ = −
ν

ν( )(2) (2) * (1) 2
C C Cnn nn n  (7.30)
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Finally, we get for m ≠ n, 
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It cannot be used to calculate C(2)nn, since it was obtained 
for m ≠ n. C(2)nn can be calculated by imposing the condition 
that the perturbed wave function be normalized 

191Approximation Methods

which with the use of Eqn. (7.22) gives:

 

(2)
(0)

1
(0) (0)

1
(0)

(0) (0)

(0)
1

(0) 2

(0) (0)

∑

∑
( )

( )

=
ψ ψ ψ ψ

−

=
ψ ψ

−

≠

≠

E
H H

E E

H

E E

n

m n

m n n m

m n

m n

m n

m n

 (7.24b)

On taking ≠m n , Eqn. (7.19) gives:

 ∑ψ = ψ
µ

µ µ
(2) (2) (0)Cn n  (7.25)

Substituting Eqn. (7.25) into Eqn. (7.23), we get for ≠m n :

 
∑ ∑

∑
( )− ψ ψ + ψ ψ

= ψ ψ

µ

µ µ

µ≠

µ µ

µ≠

µ µ

(0) (0) (2) (0) (0) (1) (0)
1

(0)

(1) (1) (0) (0)

E E C C H

E C

m n n m

n

n m

n

n

n m

 (7.26)

which gives:

 
∑
( )=

− ψ ψ

−
µ≠

µ µ

(2)

(1) (1) (1) (0)
1

(0)

(0) (0)
C

E C C H

E E
nm

n nm

n

n m

m n

 (7.27)

It is to be noted that Eqn. (7.27) cannot be used to calculate (2)Cnn , because Eqn. (7.27) is 
obtained for ≠m n . The (2)Cnn  can be calculated by imposing the condition that the per-
turbed wave function be normalized, that is ψ ψ = 1n n . Retaining the terms up to λ2  in 
Eqn. (7.6), we have:

 ψ + λ ψ + λ ψ  ψ + λ ψ + λ ψ  = 1(0) (1) 2 (2) (0) (1) 2 (2)
n n n n n n  (7.28)

With the use of the orthonormality condition ψ ψ = δµ ν µν
(0) (0) , Eqn. (7.28) simpli!es to:

 ∑( )λ + + λ + +








 =

ν

ν( ) ( ) 0(1) (1) * 2 (2) (2) * (1) 2
C C C C Cnn nn nn nn n  (7.29)

From discussions presented above in Section 7.1.1.1, we !nd that + =( ) 0(1) (1) *C Cnn nn . Therefore:

 ∑+ = −
ν

ν( )(2) (2) * (1) 2
C C Cnn nn n  (7.30)



02/12/2022 Jinniu Hu

Time-independent perturbation

Therefore,
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It is to be noted that Eqn. (7.27) cannot be used to calculate (2)Cnn , because Eqn. (7.27) is 
obtained for ≠m n . The (2)Cnn  can be calculated by imposing the condition that the per-
turbed wave function be normalized, that is ψ ψ = 1n n . Retaining the terms up to λ2  in 
Eqn. (7.6), we have:
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With the use of the orthonormality condition ψ ψ = δµ ν µν
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From discussions presented above in Section 7.1.1.1, we !nd that + =( ) 0(1) (1) *C Cnn nn . Therefore:
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and
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which with the use of Eqn. (7.22) gives:
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On taking ≠m n , Eqn. (7.19) gives:
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The imaginary parts of the left-hand side of the last 
equation cancel out each other. 
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The imaginary parts of the left-hand side of Eqn. (7.30) cancel out each other. Therefore, the 
real part of ,

(2)Cn n is given by:
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We thus, have:

1
2

(2)
(0)

1
(0) (0)

1
(0)

(0) (0) (0) (0)

(0)
1

(0) (0)
1

(0)

(0 ) (0) 2
(0)

(0)
1

(0) 2

(0) (0) 2
(0)

∑∑

∑

( )( ) ( )

( )

ψ =
ψ ψ ψ ψ

− −
−

ψ ψ ψ ψ

−













ψ

−
ψ ψ

−
ψ

ν≠ µ≠

µ ν µ

µ ν

µ

µ
− µ

ν≠

ν

ν

H H

E E E E

H H

E E

H

E E

n

n n

n

n n

n n n

n

n

n

n

n

 (7.32)

7.1.1.3 kth Order Corrections to Energy and Wave Function Ket

On operating with ψ(0)
n  from the left in both sides, Eqn. (7.13) goes to:
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This gives:

 = ψ ψ −( ) (0)
1

( 1)E Hn
k

n n
k  (7.34)

which is a generalization of Eqns. (7.16) and (7.24a). We note from Eqn. (7.34) that in general 
the (k - 1)th order correction to the wave function ket is required to obtain the kth order 
energy correction.

On operating with ψ(0)
m  from the left, Eqn. (7.13) becomes for ≠m n :
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or:
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We thus have,
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7.1.1.3 kth Order Corrections to Energy and Wave Function Ket
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Time-independent perturbation

As stated earlier, when there are more than one 
eigenvectors, the set of quantum numbers (nlm) takes more 
than one value, and all belong to same energy eigenvalue, 
the state is called the degenerate state. 


When energy states of H0  are degenerate, we can write
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element must be small compared to the energy difference between the unperturbed 
energy levels. We next examine what happens when energy states of 0H  are degenerate. 
Let us write:

 ψ = ψα α0
(0) (0) (0)H En n n  (7.43)

where α  takes values 1, 2,3, ….r, for a given value of n. Thus, α -labels represents quantum 
numbers other than n in a complete set of ( )nlm . We say that the nth state is r-fold degen-
erate. In the degenerate case, the mixing matrix element cannot possibly be small, and in 
principle it couples states of all orders. However, within a degenerate subspace, any linear 
combination of wave function kets is another wave function ket of 0H , with the same 
energy eigenvalue. Let us take the linear combination:

 ∑φ = ψ( ) ( )

α=

α α .0

1

0Dn

r

n  (7.44a)

which with the use of the above argument gives:

 φ = φ0
(0) (0) (0)H En n n  (7.44b)

We further say that the new set of wave function kets satis!es the orthonormality 
condition φ φ = δ δα ′β ′ αβ

(0) (0)
n n nn  because ψ ψ = δα β αβ

(0) (0)
n n . Then, on replacing ψ(0)

n  by φ(0)
n  in 

Eqn. (7.11), we get the !rst order perturbation expansion equation:

 ψ + φ = ψ + φ0
(1)

1
(0) (0) (1) (1) (0)H H E En n n n n n  (7.45)

Next operate from the left with ψ β
(0)
n  to get:

 ψ ψ + ψ φ = ψ ψ + ψ φβ β β β
(0)

0
(1) (0)

1
(0) (0) (0) (1) (1) (0) (0)H H E En n n n n n n n n n  (7.46)

Since ψ ψ = ψ ψβ β
(0)

0
(1) (0) (0) (1)H En n n n n , Eqn. (7.46) simpli!es to:
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 (7.47)

On de!ning ψ ψ =β α βα
(0)

1
(0)H hn n  and then varying both α  and β  between 1 and r, Eqn. (7.47) 

expands to a matrix equation:
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where α takes values 1,2,3, ....r, for a given value of n. Thus, 
α-labels represents quantum numbers other than n in a 
complete set of (nlm). We say that the nth state is r-fold 
degenerate.
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Time-independent perturbation

Within a degenerate subspace, any linear combination of 
wave function kets is another wave function ket of H0 , with 
the same energy eigenvalue. Let us take the linear 
combination, 


which with the use of the above argument gives, 
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We further say that the new set of wave function kets 
satisfies the orthonormality condition, 
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Time-independent perturbation

We get the first order perturbation expansion equation 
following the non-degenerate case,
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element must be small compared to the energy difference between the unperturbed 
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element must be small compared to the energy difference between the unperturbed 
energy levels. We next examine what happens when energy states of 0H  are degenerate. 
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element must be small compared to the energy difference between the unperturbed 
energy levels. We next examine what happens when energy states of 0H  are degenerate. 
Let us write:
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numbers other than n in a complete set of ( )nlm . We say that the nth state is r-fold degen-
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principle it couples states of all orders. However, within a degenerate subspace, any linear 
combination of wave function kets is another wave function ket of 0H , with the same 
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On de!ning ψ ψ =β α βα
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element must be small compared to the energy difference between the unperturbed 
energy levels. We next examine what happens when energy states of 0H  are degenerate. 
Let us write:

 ψ = ψα α0
(0) (0) (0)H En n n  (7.43)

where α  takes values 1, 2,3, ….r, for a given value of n. Thus, α -labels represents quantum 
numbers other than n in a complete set of ( )nlm . We say that the nth state is r-fold degen-
erate. In the degenerate case, the mixing matrix element cannot possibly be small, and in 
principle it couples states of all orders. However, within a degenerate subspace, any linear 
combination of wave function kets is another wave function ket of 0H , with the same 
energy eigenvalue. Let us take the linear combination:
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α=

α α .0

1

0Dn

r
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 φ = φ0
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We further say that the new set of wave function kets satis!es the orthonormality 
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On de!ning ψ ψ =β α βα
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(0)H hn n  and then varying both α  and β  between 1 and r, Eqn. (7.47) 
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Time-independent perturbation

On defining 

and then varying both α and β between 1 and r, we have 


Its non-trivial solution demands: 
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element must be small compared to the energy difference between the unperturbed 
energy levels. We next examine what happens when energy states of 0H  are degenerate. 
Let us write:
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where α  takes values 1, 2,3, ….r, for a given value of n. Thus, α -labels represents quantum 
numbers other than n in a complete set of ( )nlm . We say that the nth state is r-fold degen-
erate. In the degenerate case, the mixing matrix element cannot possibly be small, and in 
principle it couples states of all orders. However, within a degenerate subspace, any linear 
combination of wave function kets is another wave function ket of 0H , with the same 
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condition φ φ = δ δα ′β ′ αβ
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element must be small compared to the energy difference between the unperturbed 
energy levels. We next examine what happens when energy states of 0H  are degenerate. 
Let us write:
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where α  takes values 1, 2,3, ….r, for a given value of n. Thus, α -labels represents quantum 
numbers other than n in a complete set of ( )nlm . We say that the nth state is r-fold degen-
erate. In the degenerate case, the mixing matrix element cannot possibly be small, and in 
principle it couples states of all orders. However, within a degenerate subspace, any linear 
combination of wave function kets is another wave function ket of 0H , with the same 
energy eigenvalue. Let us take the linear combination:

 ∑φ = ψ( ) ( )

α=

α α .0

1

0Dn

r

n  (7.44a)
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A non-trivial solution of Eqn. (7.48) demands:
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Simpli!cation of the determinant gives rise to a polynomial of order r  in (1)En . Solution 
of the polynomial yields r-values of (1)En . Let us term these , , .........1

(1)
2

(1)
3

(1) (1)E E E En n n nr . All of 
, , .........1

(1)
2

(1)
3

(1) (1)E E E En n n nr  can be nonzero and distinct, or some of these could be zero or iden-
tical to each other. When all the r-values are non-zero and distinct, we have r-nonzero 
and distinct values of = + λ(0) (1)E E En n n , suggesting that the degeneracy is completely 
removed by perturbation. For the case when some of the r-values of (1)En  are zero or 
identical, degeneracy is partially removed. The expansion coef!cients , , .....1 2 3D D D Dr  
are determined by solving Eqn. (7.48) along with the normalizing condition of the wave 
function, which leads to + + + =..... 11

2
2
2

3
2 2D D D Dr . To illustrate the use of degenerate per-

turbation theory, we take an example of the effect of the application of an electric !eld 
to the !rst excited state in a hydrogen-like atom. The phenomenon is also referred as the 
linear Stark effect.

7.1.2.1  Effect of an Electric Field on the First Excited State 
in a Hydrogen Atom (Linear Stark Effect)

The !rst excited state =( 2)n  is a four-fold degenerate state; there are one 2s-state  
= =( 0, 0)l m and three p-states = = −( 1; 1, 0, 1)l m . Let us suppose that the electric !eld E  

is applied along the positive z-axis. The electric !eld interacts with the electron dipole 
moment − ′e r  and gives rise to an additional potential energy − ′ .e E r  for the electron, where 

′ =
πε4 0

e
e

, e is the charge on the electron. Since the !eld is along the z-axis, additional 
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When all the r-values are non-zero and distinct, we have r-
nonzero and distinct values of 
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suggesting that the degeneracy is completely removed by 
perturbation. For the case when some of the r-values of 
E(1)n are zero or identical, degeneracy is partially removed. 


The expansion coefficients D1, D2, D3….. Dr are determined by 
solving above determinant along with the normalizing 
condition of the wave function, which leads to
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Linear Stark effect

The first excited state (n=2) of hydrogen is a four-fold 
degenerate state; there are one 2s-state (l = 0,m = 0) and 
three p-states (l = 1; m = 1,0,−1). 

Let us suppose that the electric field E is applied along the 
positive z-axis. The electric field interacts with the electron 
dipole moment.

Since the field is along the z-axis, additional potential 
energy is 
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θ is an angle between the z-axis and r, and
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In this case,

and
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Wave functions for the hydrogen atom are
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Wave functions for the hydrogen atom from Eqn. (6.38) are:
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We here notice that the 10-values of αβh , consisting of ∫ φ
π

− φ

0

2

( ')e di m m , are zero because of  
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nal matrix elements 200 200 ,  210 210 ,  211 2111 1 1H H H , and − −21, 1 21, 11H  are 

also zero, because these involve the integral cos sin 0
0
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π

dq , since q  is an odd integer. 
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Since 200 2101H  is real, it is equal to 210 2001H . We thus "nd that Eqn. (7.49) in the 
present case reduces to:
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On simpli"cation, the above equation gives four roots ′3 E 0e a ; − ′3 E 0e a ; 0, and 0. 
We thus "nd that the energy of state n = 2 of the hydrogen atom has four values: 
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The remaining two non-zero matrix elements are 

and
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Wave functions for the hydrogen atom from Eqn. (6.38) are:

 

1
4

1
2

2 ,

, , 1
4

1
2

cos , and

( , , ) 1
4

1 (sin )

200
0 0

1/2

0

/2

210
0 0

1/2

0

/2

21, 1
0 0

3

1/2
/2

0

0

0

( )

( )ψ =
π







−





ψ θ φ =
π













θ

ψ θ ϕ =
π







θ

−

−

±
− ± ϕ

r
a a

r
a

e

r
a a

r
a

e

r
a a

re e

r a

r a

r a i

 (7.51b)

We here notice that the 10-values of αβh , consisting of ∫ φ
π

− φ

0

2

( ')e di m m , are zero because of  

m ≠ m′. These are − − −200 211 ; 200 21 1 ; 210 211 ; 210 21, 1 ; 211 21, 1 ;1 1 1 1 1H H H H H  
− −211 200 ; 21 1 200 ; 211 210 ; 21, 1 21, 01 1 1 1H H H H , and −21, 1 2111H . The diago-

nal matrix elements 200 200 ,  210 210 ,  211 2111 1 1H H H , and − −21, 1 21, 11H  are 

also zero, because these involve the integral cos sin 0
0
∫ ( )θ θ θ =
π

dq , since q  is an odd integer. 

The remaining two non-zero matrix elements are 200 2101H  and 210 2001H :
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Since 200 2101H  is real, it is equal to 210 2001H . We thus "nd that Eqn. (7.49) in the 
present case reduces to:
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On simpli"cation, the above equation gives four roots ′3 E 0e a ; − ′3 E 0e a ; 0, and 0. 
We thus "nd that the energy of state n = 2 of the hydrogen atom has four values: 
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Since <200|H1|210> is real, it is equal to <210|H1|200>. 
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Linear Stark effect

The states |200> and |210> are affected on application of 
the electric field, while the states |211> and |21,−1> remain 
unaffected. 


It can therefore be said that degeneracy has partially been 
lifted on the application field to the 2s and 2p states of 
the hydrogen atom. To evaluate eigenvectors, we solve: 
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along with the condition of normalization + + + = 11
2

2
2

3
2

4
2D D D D . Eqn. (7.54) gives:
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This suggests that = ±1 2D D  and = = 03 4D D . We take = 1
21D  and D= 1

22D . Thus, 

there are four states: (i) ( )+1
2

200 210 , which corresponds to the energy eigenvalue 

− ′32
(0)

0E e Ea ; (ii) ( )−1
2

200 210  belonging to the energy eigenvalue + ′32
(0)

0E e Ea , and 

(iii) 211  and (iv) −21, 1  both belonging to energy eigenvalue 2
(0)E . The first excited 

state of the hydrogen atom in the presence of an electric field applied along the z-axis 
presents a permanent electric dipole moment of magnitude ′3 0e Ea  with three orienta-
tions: one state parallel to the electric field, one state antiparallel to the electric field, 
and two states with zero interaction with the electric field, in the first order linear 
Stark effect.

FIGURE 7.1
Schematic diagram of linear Stark effect as an example of degenerate perturbation theory.
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Linear Stark effect

The first excited state of the hydrogen atom in the 
presence of an electric field applied along the z-axis 
presents a permanent electric dipole moment of magnitude 
3eʹEa0 with three orientations: one state parallel to the 
electric field, one state antiparallel to the electric field, 
and two states with zero interaction with the electric 
field, in the first order linear Stark effect. 
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Variation Method 

In solving the problems where it is hard to determine a 
good unperturbed Hamiltonian, to make the perturbation 
small and solvable, the variational method is more robust 
in comparison with the perturbation theory. 

The variational theorem states that the expectation value 
of the Hamiltonian <H> calculated with the use of a 
normalized trial wave function ket |φ> is always greater 
than or equal to Eg: 
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of a normalized trial wave function ket φ  is always greater than or equal to Eg :

 ≤ = φ φE H Hg  (7.56)

where 

 φ φ = 1.

To prove the variational theorem, the φ  can formally be expanded as a linear combina-
tion of the exact wave function kets ψn  of the system. Of course, in practice, we don’t 
know what are the  ψn , because we are going to apply the variational method to a prob-
lem that cannot be solved analytically. However, this does not prevent us from using the 
exact wave function kets in our proof, since they certainly do exist and form a complete 
set. Therefore φ  can be written as:

 ∑φ = ψc
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and:
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Let us write:

 ∑( )− = − 2H E E E cg

n

n g n  (7.60)

since ≥E En g , the right-hand side of Eqn. (7.60) is always greater than or equal to zero, 
proving that ≤E Hg , which means that the exact ground state energy is equal to or less 
than the energy computed with the use of an approximate wave function. Any variations 
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the right-hand side of above equation is always greater 
than or equal to zero, proving that 
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Variation Method 

Any variations in the trial function which lower the 
computed energy necessarily bring the approximate 
energy closer to Eg . 


An example of the above laid down procedure is the 
calculation of the ground state energy of the hydrogen atom 
with the use of the variational method by taking the wave 
function 
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as a trial wave function, where α is the variational 
parameter. 
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Variation Method 

The ground state (l = 0) Hamiltonian for the hydrogen 
atom is given by: 


201Approximation Methods

and:

 

∑ ∑
∑∑
∑

= ψ








 ψ











= ψ ψ

=

*

*

2

H c H c

c c E

E c

m

m m

n

n n

m n

m n n m n

n

n n

 (7.59)

Let us write:

 ∑( )− = − 2H E E E cg

n

n g n  (7.60)

since ≥E En g , the right-hand side of Eqn. (7.60) is always greater than or equal to zero, 
proving that ≤E Hg , which means that the exact ground state energy is equal to or less 
than the energy computed with the use of an approximate wave function. Any variations 
in the trial function which lower the computed energy necessarily bring the approximate 
energy closer to Eg . An example of the above laid down procedure is the calculation of 
the ground state energy of the hydrogen atom with the use of the variational method by 
taking the wave function φ = −α( )r Ae r  as a trial wave function, where α  is the variational 
parameter. From Eqn. (6.11), the ground state =( 0)l  Hamiltonian for the hydrogen atom is 
given by:

 ?= −
µ

+





 −

πε2
2

4

2 2

2

2

0
H

d
dr r

d
dr

e
r

 (7.61)

To "nd normalized φ( )r , we take:

 

∫∫ ∫

∫

( )

= φ φ

= θ θ φ

= π

= π
α

= π
α

⇒ = α
π

∞ π π
− α

∞
− α

1

sin

4

4 2!
2

2

0 0 0

2

2 2

2

0

2 2

2
3

2
3

3/2

A e r dr d d

A e r dr

A

A

A

r

r

 (7.62)

To find normalized φ(r), we take: 
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∂
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= 0
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 gives a minimum value of α  required to get the minimum value of H . We get:
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which matches with the answer obtained by solving the Schrödinger equation.

7.2.1 The Ground State of the Helium Atom

The helium atom consists of two electrons revolving in an orbit around a nucleus having 
charge 2e. Taking the origin of the coordinate system at the nucleus and the two electrons 
at the distances of r1 and r2 from the nucleus, as is shown in Fig. 7.2, the Hamiltonian for 
the system is:
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We want to calculate the ground state energy for this system. Though it is a simple prob-
lem, it does not have an exact solution. We would like to compute the approximate ground 

A minimum value of α required to get the minimum value 
of H,
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The Ground State of the Helium Atom 
 
The helium atom consists of two electrons revolving in an 
orbit around a nucleus having charge 2e. Taking the origin 
of the coordinate system at the nucleus and the two 
electrons at the distances of r1 and r2 from the nucleus, as 
shown, 


203Approximation Methods

state energy Eg that could be as close as possible with the experimentally measured value 
of -78.975 eV. The question is what would be the ground state wave function to compute the 
Eg . If the electron-electron interaction:

 =
πε −4

2

0 1 2
V

e
ee r r
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is ignorable, then the Hamiltonian Eqn. (7.65) simply breaks into two hydrogen-like 

Hamiltonians, and the ground state energy from Eqn. (6.22) is 
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E8 1 , and the ground state wave function will be the product of two hydrogen-like wave 
functions:
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However, the electron-electron interaction given by Eqn. (7.66) is not ignorable because 
it is roughly equal in size to the Hamiltonian of two hydrogen atoms. We hence solve 
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Its Hamiltonian for the system is 
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∂
∂α

= 0
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 gives a minimum value of α  required to get the minimum value of H . We get:
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which matches with the answer obtained by solving the Schrödinger equation.

7.2.1 The Ground State of the Helium Atom

The helium atom consists of two electrons revolving in an orbit around a nucleus having 
charge 2e. Taking the origin of the coordinate system at the nucleus and the two electrons 
at the distances of r1 and r2 from the nucleus, as is shown in Fig. 7.2, the Hamiltonian for 
the system is:
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We want to calculate the ground state energy for this system. Though it is a simple prob-
lem, it does not have an exact solution. We would like to compute the approximate ground 
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On average, each electron represents a cloud of negative 
charge that partially screens the nucleus, so that another 
electron sees an effective charge on the nucleus, which 
should be somewhat less than 2e. 
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The Hamiltonian of helium can be rewritten as,
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The expectation value of the Hamiltonian is
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Similarly calculation yields =1
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To evaluate these integrals, we !rst !x 1r  and then choose the coordinate system for 2r  in 
such a manner that the polar axis of it is along 1r ; see Fig. 7.3.

FIGURE 7.3
System of coordinates to evaluate the integral I .
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Therefore:
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Application of the variational method requires that H  be minimized with respect to Z:
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which tells that the other electron screens the nucleus and reduces its charge from 2e  to 
1.69e . Thus, the ground state energy for helium is:
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which is a reasonable result when compared with the experimental value −78.975 eV, 
because the computed result differs from the experimental result by only within 2%. The 
ground state energy of helium had been calculated with the use of a more complicated 
trial wave function having a larger number of adjustable parameters and = −78.7Eg  eV 
was achieved.

7.2.2 Rayleigh-Ritz Variational Method

A more convenient method would be to write the trial wave function ket as a linear com-
bination of known "xed basis vectors and then treat the expansion coef"cients as a varia-
tional parameter. Let us assume that the basis vectors form a complete set, and the trial 
wave function ket is ∑φ = ψ

=1

c
i

i i , where =( 1, 2, 3, ......)c ii  are real or complex variational 

parameters. We then have:
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i j i j  (7.78a)

Application of the variational method requires that <H> be 
minimized with respect to Z, 
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Application of the variational method requires that H  be minimized with respect to Z:
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which tells that the other electron screens the nucleus and reduces its charge from 2e  to 
1.69e . Thus, the ground state energy for helium is:
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which is a reasonable result when compared with the experimental value −78.975 eV, 
because the computed result differs from the experimental result by only within 2%. The 
ground state energy of helium had been calculated with the use of a more complicated 
trial wave function having a larger number of adjustable parameters and = −78.7Eg  eV 
was achieved.

7.2.2 Rayleigh-Ritz Variational Method

A more convenient method would be to write the trial wave function ket as a linear com-
bination of known "xed basis vectors and then treat the expansion coef"cients as a varia-
tional parameter. Let us assume that the basis vectors form a complete set, and the trial 
wave function ket is ∑φ = ψ
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experimental value −78.975 eV. The ground state energy 
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To find ground state energy, we minimize H with respect 
to the variational parameter c*
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We have
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where we de!ned = ψ ψh Hij i j  and = ψ ψsij i j . To !nd ground state energy, we mini-
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the non-trivial solution of which demands: 
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The determinant simpli!es to a polynomial of degree n having n-roots. We thus get n-val-
ues of H . The smallest value of H  is Eg , the ground state energy for a selected trial 
wave function.

7.2.3 The Hydrogen Molecule Ion

Another classic example of the variational method is calculation of the ground state energy 
of the hydrogen molecule ion, which consists of one electron in the !eld of two protons 
separated from each other by a distance of R, as is shown in Fig. 7.4.

This problem can be solved with the use of the Rayleigh-Ritz variational method. The 
Hamiltonian for the system is:
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πε2 4
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 (7.82)

where 1r  and 2r  are the distances of the electron from proton-1 and proton-2. The electron 
has equal probability of being associated with either of two protons; we take the following 
trial wave function:

 φ = ψ + ψ( ) ( ) ( )1 1 1 2 2 2r c r c r  (7.83)

Here ψ ( )1 1r  is the atomic orbital when the electron is in the neighborhood of proton-1, and 
ψ ( )2 2r  is the atomic orbital when it is in the neighborhood of proton-2. The 1c  and 2c  are the 
variational parameters, and Eqn. (7.83) represents the linear combination of atomic orbitals. 
We take ψ ( )1 1r  and ψ ( )2 2r  as the ground state wave functions for the hydrogen atom:
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FIGURE 7.4
Schematic diagram for hydrogen molecule +

2H .
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If we denote the wave function ket of the ground state 
of a system by &0 then the energy of the first excited 
state can be given by 
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the non-trivial solution of which demands:
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and:
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Equation (7.95) suggests that there are two possible cases: (i) =1 2c c , which corresponds to 
+H  and (ii) = −1 2c c  belonging to −H . We thus have:
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As is seen from Eqns. (7.98) and (7.99) +H  is smaller than −H . Thus φ+ ( )r  represents a 
bonding orbital, while φ− ( )r  corresponds to an anti-bonding orbital. The normalization 
condition φ φ =+ + 1 is used to determine 1c :
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7.2.4 Variational Method for Excited States

If we denote the wave function ket of the ground state of a system by φ0  then the energy 
of the !rst excited state can be given by:

 = φ φ1 1 1 minE H  (7.102)

under the conditions that φ φ = 11 1  and φ φ = 01 0 .under the conditions
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7.2.4 Variational Method for Excited States

If we denote the wave function ket of the ground state of a system by φ0  then the energy 
of the !rst excited state can be given by:

 = φ φ1 1 1 minE H  (7.102)

under the conditions that φ φ = 11 1  and φ φ = 01 0 .

In a similar manner, the energy of the second excited 
state will be given by 


213Approximation Methods

Similar to the case of the ground state, φ1  can be expressed in terms of exact but 
unknown states of the system:
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which suggests that the coef!cient = 00a , and hence ∑φ = ψ
=

∞

1

1

a
n

n n  with the condition 

∑ =
=

∞

1
1
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n

n . In a similar manner, the energy of the second excited state will be given by:

 = φ φ2 2 2 minE H  (7.105)

under the conditions φ φ = 12 2  and φ φ = = φ φ02 1 2 0 . We can proceed to compute 
energy and wave function for the third and further higher state in the same way with addi-
tional conditions. However, as can be realized, the variational method becomes increas-
ingly complicated for evaluated energy and wave functions for higher excited states.

7.2.5  Application of Variational Method to the Excited 
State of a 1D Harmonic Oscillator

The Hamiltonian of a 1D harmonic oscillator is:

 ?= − + ω
2

1
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2 2

2
2 2H

m
d
dx

m x  (7.106a)

We choose the ground state wave function by keeping in mind that it vanishes at ±∞  and 
should not have any nodes. Therefore we take φ = −α( )0

2
x Ae x . Now the trial wave func-

tion for the !rst excited state φ ( )1 x  must be orthogonal to φ ( )0 x . A right choice can be 
φ = −β( )1

2
x Bxe x , because:

 ∫ =
−∞

∞
− α+β 0( ) 2

xe dxx  (7.106b)
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energy and wave function for the third and further higher state in the same way with addi-
tional conditions. However, as can be realized, the variational method becomes increas-
ingly complicated for evaluated energy and wave functions for higher excited states.

7.2.5  Application of Variational Method to the Excited 
State of a 1D Harmonic Oscillator

The Hamiltonian of a 1D harmonic oscillator is:
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We choose the ground state wave function by keeping in mind that it vanishes at ±∞  and 
should not have any nodes. Therefore we take φ = −α( )0

2
x Ae x . Now the trial wave func-

tion for the !rst excited state φ ( )1 x  must be orthogonal to φ ( )0 x . A right choice can be 
φ = −β( )1

2
x Bxe x , because:
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∞
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xe dxx  (7.106b)



02/12/2022 Jinniu Hu

Variational Method for Excited States 

The normalization condition then gives: 


Next, we evaluate 


214 A Textbook on Modern Quantum Mechanics

The normalization condition φ φ = 11 1  then gives:
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Then:
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On evaluating integrals and then substituting the value of 2B  we get:
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Minimization of φ φ1 1H  with respect to β , gives 
?

β = ω
2min
m , substitution of which in 

Eqn. (7.109) yields:

 ?= φ φ = ω3
21 1 1 minE H  (7.110a)
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On evaluating integrals and then substituting the value of 2B  we get:
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Minimization of φ φ1 1H  with respect to β , gives 
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β = ω
2min
m , substitution of which in 

Eqn. (7.109) yields:

 ?= φ φ = ω3
21 1 1 minE H  (7.110a)

On evaluating integrals and then substituting the value of 
B2 we get
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On evaluating integrals and then substituting the value of 2B  we get:
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Minimization of φ φ1 1H  with respect to β , gives 
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β = ω
2min
m , substitution of which in 

Eqn. (7.109) yields:
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Minimization of φ φ1 1H  with respect to β , gives 
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Minimization of φ φ1 1H  with respect to β , gives 
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Then:
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which are the correct answers obtained by applying the variational method for the excited 
state.

7.3 The W K B Approximations

The Wentzel, Kramers, and Brillouin (WKB) approximation is applied to obtain an approx-
imate solution of a time-independent 1D Schrödinger equation. The idea can also be 
applied to many other differential equations and to the radial Schrödinger equation. Here, 
we con!ne ourselves to the applications of WKB approximations in calculating bound-
state energies and tunneling rates through potential barriers, which involve classical turn-
ing points, the points where total energy E  is equal to potential energy V ; the kinetic 
energy is zero. Turning points mark the boundaries between two regions: (i) the region 
where motion is allowed classically and (ii) the region in which motion is not permitted 
classically, known as the tunneling region, as is shown in Fig. 7.6.

For > ( )E V x , a particle is allowed to move freely if ( )V x  is constant, and the solution 
of the 1D Schrödinger equation is given by ψ = ±( )x Ae ikx , with = −2 ( )/k m E V ? . The 
plus and minus sign indicate the motion of the particle along the +x-axis and the -x-axis, 
respectively. The wave function is oscillatory with a constant wave length λ = π2 / k  and 
amplitude A. When ( )V x  varies very slowly (not constant) on a distance scale of λ , it is 
reasonable to assume that ψ( )x  remains practically sinusoidal, except that the λ  and A  
change slowly with x  on the scale of λ . This is known as the WKB approximation. By similar 
arguments, it can be said that for regions where E < V(x), the solution to the Schrödinger 
equation for the constant V is given by ψ = ±( )x Ae Kx , with = −2 ( )/K m V E ? . In these 
regions, a particle would not be allowed classically, but it is said to tunnel quantum 
mechanically. If potential is not constant but varies slowly with x , in comparison with 
1/K , then the solution remains practically exponential except that A  and K  are allowed 

FIGURE 7.6
1D-Potential energy curve: ≤ ≤1 2x x x  is the classically allowed region.
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We thus see that the perturbation theory underestimates the ground state energy as 
compared to that evaluated with the use of the variational method ( = −77.6Eg  eV); see 
Eqn. (7.77).

9.2.2 Excited State of Helium

In the excited state of helium two elections are in two different states. Let us consider 
one electron in α ≡ 100  (1s ) and the other electron in β ≡ nlm , which could be any of 
2 , 2s p, etc. In the excited state, both αβJ  and αβK  will be nonzero, and therefore both para 
and ortho forms exist. As is seen from Eqns. (9.14a) and (9.14b), computation of ϕ ( , )1 2

2
a r r  

and ϕ ( , )1 2
2

s r r  as a function of r r−1 2 , gives ϕ →( , ) 01 2
2

a r r  and ϕ ( , )1 2
2

s r r  equal to a maxi-
mum value at =1 2r r . This too means that two electrons have the tendency to avoid each 
other when represented by ϕa , whereas they like to reach closest to each other when 
represented by ϕs . Hence, in the excited state, parahelium has more energy than ortho-
helium. The dip in ϕ ( , )1 2

2
a r r  around =1 2r r  is called the Fermi hole, while an increase in 

ϕ ( , )1 2
2

s r r  is termed a Fermi heap. Each con"guration, −1 2s s, −1 2s p, etc., will split into 
the para state and the ortho state, where the para state lies higher on the energy scale. It is 
important to note that though the Hamiltonian described by Eqn. (9.16) is independent of 
spin variables, yet there is a spin-dependent effect on energy, which arises from the Fermi-
Dirac statistics. This can be understood from the Heisenberg theory of ferromagnetism. 
The idea of the alignment of spins has been extended over microscopic distances in the 
helium atom to give a physical interpretation of spin-dependent energy.

The αβJ  and αβK  have been evaluated for −1 2s s and −1 2s p  con"gurations. The values 

for −1 2s s con"guration are: = − =68
81

11.421 ,2 1J Es s  eV and = −



 =2

3
1.201 ,2
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13.221 ,2 1J Es p  eV and = − × =7 2
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0.941 ,2

6

8 1K Es p  eV. The sin-

glet and triplet states are separated by 2.4 eV in −1 2s s con"guration and by 1.88 eV in 
−1 2s p  con"guration.

9.3 Systems of N-Electrons

The Hamiltonian for an N-electron system such as a metal or a large atom is the general-
ization of Eqn. (9.16):
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where single electron potential at the position ir  is ∑= −
πε −
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 for a metal, 

with R  a position vector of a bare nuclei at a Bravais lattice point, and = −
πε

( )
4

2

0
V r

Ze
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i

 for 

an atom. In the case of a metal, the Hamiltonian may also be written to have an additional 

where single electron potential at the position ri is 
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9.3 Systems of N-Electrons
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where single electron potential at the position ir  is ∑= −
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an atom. In the case of a metal, the Hamiltonian may also be written to have an additional 

with R a position vector of a bare nuclei. The N-electrons 
wave function ψ(r1s1,r2s2,r3s3,.......rNsN), ri si ≡ i representing 
both position and spin coordinates, satisfies the 
Schrödinger equation: 
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constant term arising from nuclei-nuclei interactions. Since this does not affect the physics 
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≡s ii ir  representing both position and spin coordinates, satis!es the Schrödinger equation:
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The exact solution of Eqn. (9.31) is not possible, and hence one looks for an approximate 
solution that is most reasonable. An electron interacts with N-1 electrons, in addition to its 
interaction with nuclei.

The methods based on the variational principle have been found most successful and 
reasonable approximations to solve the N-electrons Schrödinger equation. The variational 
principle assumes that the equation:
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9.3.1 Hartree Approximation
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We take the trial wave function:

 ψ = φ φ φ φ(1, 2, 3, ..... ) (1 ) (2) (3)......... ( )1 1 2 3N NN  (9.36)
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The exact solution of this equation is not possible, and 
hence one looks for an approximate solution that is most 
reasonable. An electron interacts with N-1 electrons, in 
addition to its interaction with nuclei. 


The methods based on the variational principle have been 
found most successful and reasonable approximations to 
solve the N-electrons Schrödinger equation. The 
variational principle assumes that the equation,
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with respect to ψ* (r), we get 
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We can rewrite the Hamiltonian of multi-electrons as 
follows, 
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with φ φ = δ( ) ( )s si i i j j j ijr r . We then have:
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Note that: because Hi  operates only on φ ( )i ir  and integration over each of the other 
coordinates is equal to one. The electron-electron interaction term simpli!es to 
∫ ∫ φ φ φ φ( ) ( ) ( ) ( )3 3 * *d r d r Vi j i i j j ij i i j jr r r r . We then have:
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To minimize ψ ψH , we take the functional derivative with respect to φ ( )*
k kr  and obtain:
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It is to be noted that the factor of 1
2

 before interaction term drops out because two equal 

terms, one for =i k  and the other for =j k , appear when we take the derivative with respect 
to φ ( )*

k kr .
Further notice that φ φ = 1*

k k , and therefore:

 ( ) ( ) 0 with 1, 2, 3, .....3 *∫ε δφ φ = =d r k Nk k k k k kr r  (9.39b)

Here, εk  is a multiplying constant. Subtracting Eqn. (9.39b) from Eqn. (9.39a) we get:
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Further notice that φ φ = 1*

k k , and therefore:

 ( ) ( ) 0 with 1, 2, 3, .....3 *∫ε δφ φ = =d r k Nk k k k k kr r  (9.39b)

Here, εk  is a multiplying constant. Subtracting Eqn. (9.39b) from Eqn. (9.39a) we get:
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Here,
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Note that: because Hi  operates only on φ ( )i ir  and integration over each of the other 
coordinates is equal to one. The electron-electron interaction term simpli!es to 
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To minimize ψ ψH , we take the functional derivative with respect to φ ( )*
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It is to be noted that the factor of 1
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 before interaction term drops out because two equal 

terms, one for =i k  and the other for =j k , appear when we take the derivative with respect 
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Note that because Hi operates only on φi(ri) and integration 
over each of the other coordinates is equal to one. The 
electron-electron interaction term simplifies to 
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Note that: because Hi  operates only on φ ( )i ir  and integration over each of the other 
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To minimize ψ ψH , we take the functional derivative with respect to φ ( )*
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It is to be noted that the factor of 1
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Note that: because Hi  operates only on φ ( )i ir  and integration over each of the other 
coordinates is equal to one. The electron-electron interaction term simpli!es to 
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To minimize ψ ψH , we take the functional derivative with respect to φ ( )*
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It is to be noted that the factor of 1
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 before interaction term drops out because two equal 

terms, one for =i k  and the other for =j k , appear when we take the derivative with respect 
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To minimize <ψ|H|ψ> , we take the functional derivative 
with respect to φ*k (rk ) and obtain, 
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Note that: because Hi  operates only on φ ( )i ir  and integration over each of the other 
coordinates is equal to one. The electron-electron interaction term simpli!es to 
∫ ∫ φ φ φ φ( ) ( ) ( ) ( )3 3 * *d r d r Vi j i i j j ij i i j jr r r r . We then have:
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To minimize ψ ψH , we take the functional derivative with respect to φ ( )*
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It is to be noted that the factor of 1
2

 before interaction term drops out because two equal 

terms, one for =i k  and the other for =j k , appear when we take the derivative with respect 
to φ ( )*

k kr .
Further notice that φ φ = 1*

k k , and therefore:
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It is to be noted that the factor of 1/2 before interaction 
term drops out because two equal terms, one for i = k 
and the other for j = k , appear when we take the 
derivative with respect to φ*k ( rk ). 


Due to the normalization of wave function, we have 
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Note that: because Hi  operates only on φ ( )i ir  and integration over each of the other 
coordinates is equal to one. The electron-electron interaction term simpli!es to 
∫ ∫ φ φ φ φ( ) ( ) ( ) ( )3 3 * *d r d r Vi j i i j j ij i i j jr r r r . We then have:
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To minimize ψ ψH , we take the functional derivative with respect to φ ( )*
k kr  and obtain:
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It is to be noted that the factor of 1
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 before interaction term drops out because two equal 

terms, one for =i k  and the other for =j k , appear when we take the derivative with respect 
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Here, εk is a multiplying constant. Finally, we have 


Do make it stationary, the variations are zero for all 
possible forms of δφ*

k (rk ); hence we can get 
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Note that: because Hi  operates only on φ ( )i ir  and integration over each of the other 
coordinates is equal to one. The electron-electron interaction term simpli!es to 
∫ ∫ φ φ φ φ( ) ( ) ( ) ( )3 3 * *d r d r Vi j i i j j ij i i j jr r r r . We then have:
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To minimize ψ ψH , we take the functional derivative with respect to φ ( )*
k kr  and obtain:
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It is to be noted that the factor of 1
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 before interaction term drops out because two equal 

terms, one for =i k  and the other for =j k , appear when we take the derivative with respect 
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Further notice that φ φ = 1*

k k , and therefore:
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To make it stationary, the variations are zero for all possible forms of δφ ( )*
k kr ; hence we 

should have:
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More explicitly:
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which is an integro-differential equation, commonly known as the Hartree equation. It is an 
eigenvalue equation for an electron located at position ir  and moving under the in!uence 
of an effective potential:

 = +( ) ( ) ( )V V Veff i ext i ee ir r r  (9.42a)

with:
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 (9.42b)

The simple interpretation of this is as follows: The ith electron interacts with both nuclei 
and the remaining N-1 electrons. The remaining electrons are treated as a smooth dis-
tribution of negative charge with charge density ρ( )jr  around the position jr ; then the 
potential energy due to the interaction between the ith electron and the charge in in"ni-

tesimally small volume 3d rj  is: −
πε

ρ
−4
( )

0

3e d rj

i j
j

r
r r

. The contribution to charge density by a 

single electron and by the N-1 electron would be − φ ( )
2

e j jr  and ∑− φ
≠

( )
2

e
j i

j jr , respectively. 

Hence, Eqn. (9.42b) represents the potential energy due to the interaction of the ith electron 
with the remaining N-1 electrons.

We thus "nd that the Hartree approximation converts the N-particle problem into a set 
of N-single particle equations that can be solved. It is to be noted that solving Eqn. (9.41b) 
for state rφ ( )i i  and eigenvalue εi  requires the prior knowledge of rφ ( )j j . Therefore, the 
equation is to be solved by iterative methods. One starts with a guessed single particle 
state to compute the Eqn. (9.42b). The computed ( )V reff i  is then used to compute a new state. 
If the computed state differs from that used to compute ( )V ree i , repeat the procedure until 
a self-consistency is not achieved.

9.3.2 Hartree-Fock Approximation

Equation (9.41b) is a single electron equation that uses a potential obtained by averag-
ing over the positions of the remaining N-1 electrons. It does not represent the way in 
which a particular electron is affected by the con"guration of other N-1 electrons. In other 
words, Eqn. (9.41b) does not take care of the exchange effect, which demands that the 

More explicitly, 
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which is an integro-differential equation, commonly known as the Hartree equation. It is an 
eigenvalue equation for an electron located at position ir  and moving under the in!uence 
of an effective potential:
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The simple interpretation of this is as follows: The ith electron interacts with both nuclei 
and the remaining N-1 electrons. The remaining electrons are treated as a smooth dis-
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Hence, Eqn. (9.42b) represents the potential energy due to the interaction of the ith electron 
with the remaining N-1 electrons.

We thus "nd that the Hartree approximation converts the N-particle problem into a set 
of N-single particle equations that can be solved. It is to be noted that solving Eqn. (9.41b) 
for state rφ ( )i i  and eigenvalue εi  requires the prior knowledge of rφ ( )j j . Therefore, the 
equation is to be solved by iterative methods. One starts with a guessed single particle 
state to compute the Eqn. (9.42b). The computed ( )V reff i  is then used to compute a new state. 
If the computed state differs from that used to compute ( )V ree i , repeat the procedure until 
a self-consistency is not achieved.

9.3.2 Hartree-Fock Approximation

Equation (9.41b) is a single electron equation that uses a potential obtained by averag-
ing over the positions of the remaining N-1 electrons. It does not represent the way in 
which a particular electron is affected by the con"guration of other N-1 electrons. In other 
words, Eqn. (9.41b) does not take care of the exchange effect, which demands that the 
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Hartree Approximation

In 1927, D. R. Hartree introduced 
a procedure, which he called the 
self-consistent field method, to 
calculate approximate wave 
functions and energies for atoms 
and ions. His first proposed 
method of solution became known 
as the Hartree method, 
or Hartree product.
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Hartree Approximation

It is an eigenvalue equation for an electron located at 
position ri  and moving under the influence of an effective 
potential,

and
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The simple interpretation of this is as follows: The ith electron interacts with both nuclei 
and the remaining N-1 electrons. The remaining electrons are treated as a smooth dis-
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Hence, Eqn. (9.42b) represents the potential energy due to the interaction of the ith electron 
with the remaining N-1 electrons.

We thus "nd that the Hartree approximation converts the N-particle problem into a set 
of N-single particle equations that can be solved. It is to be noted that solving Eqn. (9.41b) 
for state rφ ( )i i  and eigenvalue εi  requires the prior knowledge of rφ ( )j j . Therefore, the 
equation is to be solved by iterative methods. One starts with a guessed single particle 
state to compute the Eqn. (9.42b). The computed ( )V reff i  is then used to compute a new state. 
If the computed state differs from that used to compute ( )V ree i , repeat the procedure until 
a self-consistency is not achieved.

9.3.2 Hartree-Fock Approximation

Equation (9.41b) is a single electron equation that uses a potential obtained by averag-
ing over the positions of the remaining N-1 electrons. It does not represent the way in 
which a particular electron is affected by the con"guration of other N-1 electrons. In other 
words, Eqn. (9.41b) does not take care of the exchange effect, which demands that the 

293Quantum Theory of Many Particle Systems

To make it stationary, the variations are zero for all possible forms of δφ ( )*
k kr ; hence we 

should have:

 ( ) ( ) ( ) ( ) ( )
( ) 1

3 *∑ ∫φ + φ φ φ = ε φ
≠ =

H d r Vk k k

j k

N

j j j kj j j k k k k kr r r r r  (9.41a)

More explicitly:

 r r
r r

r r r
? ∑ ∫− ∇ + +

πε
φ

−
φ












φ = ε φ

≠ =
2

( )
4

( ) 1 ( ) ( ) ( )
2

2
2

0 ( ) 1

3 *

m
V

e
d ri ext i

j i

N

j j j
i j

j j i i i i i  (9.41b)

which is an integro-differential equation, commonly known as the Hartree equation. It is an 
eigenvalue equation for an electron located at position ir  and moving under the in!uence 
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The simple interpretation of this is as follows: The ith electron interacts with both nuclei 
and the remaining N-1 electrons. The remaining electrons are treated as a smooth dis-
tribution of negative charge with charge density ρ( )jr  around the position jr ; then the 
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Hence, Eqn. (9.42b) represents the potential energy due to the interaction of the ith electron 
with the remaining N-1 electrons.

We thus "nd that the Hartree approximation converts the N-particle problem into a set 
of N-single particle equations that can be solved. It is to be noted that solving Eqn. (9.41b) 
for state rφ ( )i i  and eigenvalue εi  requires the prior knowledge of rφ ( )j j . Therefore, the 
equation is to be solved by iterative methods. One starts with a guessed single particle 
state to compute the Eqn. (9.42b). The computed ( )V reff i  is then used to compute a new state. 
If the computed state differs from that used to compute ( )V ree i , repeat the procedure until 
a self-consistency is not achieved.

9.3.2 Hartree-Fock Approximation

Equation (9.41b) is a single electron equation that uses a potential obtained by averag-
ing over the positions of the remaining N-1 electrons. It does not represent the way in 
which a particular electron is affected by the con"guration of other N-1 electrons. In other 
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The simple interpretation of this is as follows. The ith 
electron interacts with both nuclei and the remaining N-1 
electrons. We thus find that the Hartree approximation 
converts the N-particle problem into a set of N-single 
particle equations that can be solved. 
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Hartree-Fock Approximation

In the Hartree approximation, the exchange effect is not 
taken care, which demands that the wave function for a 
system of N-Fermions must be anti-symmetric, 


Let us first evaluate the matrix element of Hi
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wave function for a system of N-Fermions must be anti-symmetric. As discussed before, 
an anti-symmetric wave function is given by Eqn. (9.11b) not by Eqn. (9.36). However, 
the Hamiltonian of the system of N-electrons is still given by Eqn. (9.34). To derive the 
single electron equation within the Hartree-Fock approximation, we follow the proce-
dure outlined for the Hartree approximation, with the use of the wave function given by 
Eqn. (9.11b), which is:
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Let us !rst evaluate the matrix element of Hi , de!ned in Eqn. (9.35a):
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There will be an integral over ( !)2N  terms, where each term involves a product of the 
N  wave functions and an equal number of their complex conjugates. To understand the 
simpli!cation of this equation, let us consider a case of two electrons situated at ir  and jr .
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Using ∈ =∈ = 011 22  and ∈ = − ∈ = 112 21 , the equation reduces to:
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wave function for a system of N-Fermions must be anti-symmetric. As discussed before, 
an anti-symmetric wave function is given by Eqn. (9.11b) not by Eqn. (9.36). However, 
the Hamiltonian of the system of N-electrons is still given by Eqn. (9.34). To derive the 
single electron equation within the Hartree-Fock approximation, we follow the proce-
dure outlined for the Hartree approximation, with the use of the wave function given by 
Eqn. (9.11b), which is:
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There will be an integral over ( !)2N  terms, where each term involves a product of the 
N  wave functions and an equal number of their complex conjugates. To understand the 
simpli!cation of this equation, let us consider a case of two electrons situated at ir  and jr .
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Hartree-Fock Approximation

There will be an integral over (N!)2 terms, where each 
term involves a product of the N wave functions and an 
equal number of their complex conjugates. To understand 
the simplification of this equation, let us consider a case 
of two electrons situated at ri and rj . 


294 A Textbook on Modern Quantum Mechanics

wave function for a system of N-Fermions must be anti-symmetric. As discussed before, 
an anti-symmetric wave function is given by Eqn. (9.11b) not by Eqn. (9.36). However, 
the Hamiltonian of the system of N-electrons is still given by Eqn. (9.34). To derive the 
single electron equation within the Hartree-Fock approximation, we follow the proce-
dure outlined for the Hartree approximation, with the use of the wave function given by 
Eqn. (9.11b), which is:
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There will be an integral over ( !)2N  terms, where each term involves a product of the 
N  wave functions and an equal number of their complex conjugates. To understand the 
simpli!cation of this equation, let us consider a case of two electrons situated at ir  and jr .
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wave function for a system of N-Fermions must be anti-symmetric. As discussed before, 
an anti-symmetric wave function is given by Eqn. (9.11b) not by Eqn. (9.36). However, 
the Hamiltonian of the system of N-electrons is still given by Eqn. (9.34). To derive the 
single electron equation within the Hartree-Fock approximation, we follow the proce-
dure outlined for the Hartree approximation, with the use of the wave function given by 
Eqn. (9.11b), which is:
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There will be an integral over ( !)2N  terms, where each term involves a product of the 
N  wave functions and an equal number of their complex conjugates. To understand the 
simpli!cation of this equation, let us consider a case of two electrons situated at ir  and jr .
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the equation reduces to
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wave function for a system of N-Fermions must be anti-symmetric. As discussed before, 
an anti-symmetric wave function is given by Eqn. (9.11b) not by Eqn. (9.36). However, 
the Hamiltonian of the system of N-electrons is still given by Eqn. (9.34). To derive the 
single electron equation within the Hartree-Fock approximation, we follow the proce-
dure outlined for the Hartree approximation, with the use of the wave function given by 
Eqn. (9.11b), which is:
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which expands to 


The second term becomes identical to the first term on 
interchanging integrals over ri and rj , 
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The third and fourth terms are zero because of the orthonormality of φ1  and φ2 . The 
second term becomes identical to the !rst term on interchanging integrals over ir  and jr . 
We therefore get:

 ( ) ( )3
1
*

1∫ψ ψ = φ φH d r Ha i a i i i ir r  (9.46a)

The answer remains same, even when the two-electrons antisymmetric wave function is 
replaced by an N-electrons wave function to evaluate ψ ψHa i a . However, in place of 
suf!x 1, we can use a more generalized suf!x ni  to write:

 ( ) ( )3 *∫ψ ψ = φ φH d r Ha i a i n i i n ii ir r  (9.46b)

We next take the evaluation of ψ ψVa ij a . Following the procedure of Eqns. (9.26) and 
(9.27), we !nd that for a two-electrons system:
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A generalization for N-electrons can made by representing quantum states by ni  and nj  
in place of 1 and 2:
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From Eqn. (9.34), we then have:
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However, in place of suffix 1, we can use a more generalized 
suffix ni to write: 


295Quantum Theory of Many Particle Systems
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We find that for a two-electrons system, 

A generalization for N-electrons can made by representing 
quantum states by ni and nj  in place of 1 and 2: 


295Quantum Theory of Many Particle Systems
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We next take the evaluation of ψ ψVa ij a . Following the procedure of Eqns. (9.26) and 
(9.27), we !nd that for a two-electrons system:
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A generalization for N-electrons can made by representing quantum states by ni  and nj  
in place of 1 and 2:
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From Eqn. (9.34), we then have:
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Minimization with respect to φ*ni (ri ), 
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On the right-hand side, the third term consists of φ φ( ) ( )*
n i n ji ir r , while the second term 

has φ ( ) 2
n ii r . Minimization with respect to φ ( )*

n ii r  following the procedure described for 
Eqns. (9.39) to (9.41) gives us:
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This equation is known as the Hartree-Fock equation. On comparing Eqn. (9.49) with 
Eqn. (9.41b), we !nd that the third term on the left is originated from exchange interac-
tions. Unlike the direct interactions term (second term), the exchange interactions term 
(third term) is nonlinear having the structure φ = ∫ ′ φ ′ ′( ) ( ) ( , ) ( ) 3V U d rr r r r r , which is an 
integral operator

9.3.3 Thomas-Fermi Theory

For a system of N-electrons in a stationary state, this theory tries to avoid the complicated 
many-electron wave function by using electron density ( )n r , which is physically observ-
able, measured, calculated, and easily visualized. ( )n r  is simply a probability density to 
find the particle near some position r  and it is defined by = φ φ( ) ( ) ( )*n r r r , if there 
is one particle only. For a system of N-particles, electron density to !nd a particle at or 
around r  is given by:

 r r r r r r r r r∫ ∫ ∫= ψ ψ( ) ....... ( , , , ...... ) ( , , , ...... )3
2

3
3

3 *
2 3 N 2 3 Nn N d r d r d rN  (9.50)

Essentially, the Thomas-Fermi method concentrates on the particle density as a key vari-
able by circumventing completely the discussion on the wave function.

The Thomas-Fermi approach is semiclassical theory where certain ideas are borrowed 
from quantum mechanics. The condition to apply a semi-classical approach to a system 
is that the spatial variations of the de Broglie wavelength must be small; mathematically 
it means:

 λ( ) 1d x
dx

�  (9.51)

Thomas-Fermi method borrows two ideas from quantum mechanics: (i) Fermi 
statistics–all the states up to some maximum energy and momentum, say pF , which 
may vary over the space are occupied, and (ii) The principle of uncertainty–every cell of 
phase space (of volume 3h ) can host up to two electrons with opposite spin directions. 
Thus in the ground state volume occupied by the electrons in the phase space would be 

π4
3

3V
pF , where V  is the volume of a system in real space. It is assumed that all electrons 

This equation is known as the Hartree-Fock equation. 
The third term on the left is originated from exchange 
interactions. 
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In 1930, Slater and V. A. 
Fock independently pointed out that 
the Hartree method did not respect 
the principle of antisymmetry of the 
wave function. The Hartree method 
used the Pauli exclusion principle in 
its older formulation, forbidding the 
presence of two electrons in the 
same quantum state. In 1935, 
Hartree reformulated the method to 
be more suitable for the purposes of 
calculation.
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equations of electrons in central potentials V (r) is described. The considered potentials are such that
the function V(r) ⌘ rV (r) is finite for all r and tends to constant values when r ! 0 and r ! 1.
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computing the radial functions and phase shifts for free states of complex optical potentials having
a finite-range absorptive imaginary part. The solution subroutines are accompanied by example main
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radiation physics (the self-consistent solution of the Dirac–Hartee–Fock–Slater equations for neutral
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For a system of N-electrons in a stationary state, this 
theory tries to avoid the complicated many-electron wave 
function by using electron density n(r), which is physically 
observable, measured, calculated, and easily visualized. 


The electron density to find a particle at or around r is 
given by
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On the right-hand side, the third term consists of φ φ( ) ( )*
n i n ji ir r , while the second term 

has φ ( ) 2
n ii r . Minimization with respect to φ ( )*

n ii r  following the procedure described for 
Eqns. (9.39) to (9.41) gives us:
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This equation is known as the Hartree-Fock equation. On comparing Eqn. (9.49) with 
Eqn. (9.41b), we !nd that the third term on the left is originated from exchange interac-
tions. Unlike the direct interactions term (second term), the exchange interactions term 
(third term) is nonlinear having the structure φ = ∫ ′ φ ′ ′( ) ( ) ( , ) ( ) 3V U d rr r r r r , which is an 
integral operator

9.3.3 Thomas-Fermi Theory

For a system of N-electrons in a stationary state, this theory tries to avoid the complicated 
many-electron wave function by using electron density ( )n r , which is physically observ-
able, measured, calculated, and easily visualized. ( )n r  is simply a probability density to 
find the particle near some position r  and it is defined by = φ φ( ) ( ) ( )*n r r r , if there 
is one particle only. For a system of N-particles, electron density to !nd a particle at or 
around r  is given by:

 r r r r r r r r r∫ ∫ ∫= ψ ψ( ) ....... ( , , , ...... ) ( , , , ...... )3
2

3
3

3 *
2 3 N 2 3 Nn N d r d r d rN  (9.50)

Essentially, the Thomas-Fermi method concentrates on the particle density as a key vari-
able by circumventing completely the discussion on the wave function.

The Thomas-Fermi approach is semiclassical theory where certain ideas are borrowed 
from quantum mechanics. The condition to apply a semi-classical approach to a system 
is that the spatial variations of the de Broglie wavelength must be small; mathematically 
it means:

 λ( ) 1d x
dx

�  (9.51)

Thomas-Fermi method borrows two ideas from quantum mechanics: (i) Fermi 
statistics–all the states up to some maximum energy and momentum, say pF , which 
may vary over the space are occupied, and (ii) The principle of uncertainty–every cell of 
phase space (of volume 3h ) can host up to two electrons with opposite spin directions. 
Thus in the ground state volume occupied by the electrons in the phase space would be 

π4
3

3V
pF , where V  is the volume of a system in real space. It is assumed that all electrons 

The Thomas-Fermi approach is semiclassical theory where 
certain ideas are borrowed from quantum mechanics. 
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(I) Fermi statistics–all the states up to some maximum 
energy and momentum, say PF, which may vary over the 
space are occupied

(ii) The principle of uncertainty–every cell of phase space 
(of volume h3) can host up to two electrons with opposite 
spin directions. 


13.3. DEGENERATED FERMI GAS 165

13.3 Degenerated Fermi gas

In the low temperature limit, T ⌦ 0, the Fermi distribution function behaves like a step
function:

nk =
1

e⇥(⇤k�µ) + 1
T ⇤ 0⇤⇤⇤⌦

�
0 if ⌅k > µ
1 if ⌅k < µ

i.e.,

lim
T⇤0

nk =  (µ⇤ ⌅k) .

Fermi energy. This means that all the states with energy below the Fermi energy ⌅F ,

⌅F = µ(n, T = 0) ,

are occupied and all those above are empty.

Fermi sphere. In momentum space the occu-
pied states lie within the Fermi sphere of radius
pF . The system is then deep in the quantum
regime.

The Fermi energy is then be determined by the
condition that the the Fermi sphere contains the
correct number of states:
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with ⇤r < ⇤F

1 ,

which can be written for the case of free
fermions, and with (13.1), d3k/⇤k3 =
[V/(2⌃)3]d3k, as
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Here, kF = pF
h̄ is the Fermi wave number. We have
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Thus in the ground state volume occupied by the electrons 
in the phase space would be 


where V is the volume of a system in real space. It is 
assumed that all electrons are accommodated up to the 
phase space sphere of radius pF. Therefore, the total 
number of electrons is 
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On the right-hand side, the third term consists of φ φ( ) ( )*
n i n ji ir r , while the second term 

has φ ( ) 2
n ii r . Minimization with respect to φ ( )*

n ii r  following the procedure described for 
Eqns. (9.39) to (9.41) gives us:
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 (9.49)

This equation is known as the Hartree-Fock equation. On comparing Eqn. (9.49) with 
Eqn. (9.41b), we !nd that the third term on the left is originated from exchange interac-
tions. Unlike the direct interactions term (second term), the exchange interactions term 
(third term) is nonlinear having the structure φ = ∫ ′ φ ′ ′( ) ( ) ( , ) ( ) 3V U d rr r r r r , which is an 
integral operator

9.3.3 Thomas-Fermi Theory

For a system of N-electrons in a stationary state, this theory tries to avoid the complicated 
many-electron wave function by using electron density ( )n r , which is physically observ-
able, measured, calculated, and easily visualized. ( )n r  is simply a probability density to 
find the particle near some position r  and it is defined by = φ φ( ) ( ) ( )*n r r r , if there 
is one particle only. For a system of N-particles, electron density to !nd a particle at or 
around r  is given by:

 r r r r r r r r r∫ ∫ ∫= ψ ψ( ) ....... ( , , , ...... ) ( , , , ...... )3
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3 *
2 3 N 2 3 Nn N d r d r d rN  (9.50)

Essentially, the Thomas-Fermi method concentrates on the particle density as a key vari-
able by circumventing completely the discussion on the wave function.

The Thomas-Fermi approach is semiclassical theory where certain ideas are borrowed 
from quantum mechanics. The condition to apply a semi-classical approach to a system 
is that the spatial variations of the de Broglie wavelength must be small; mathematically 
it means:

 λ( ) 1d x
dx

�  (9.51)

Thomas-Fermi method borrows two ideas from quantum mechanics: (i) Fermi 
statistics–all the states up to some maximum energy and momentum, say pF , which 
may vary over the space are occupied, and (ii) The principle of uncertainty–every cell of 
phase space (of volume 3h ) can host up to two electrons with opposite spin directions. 
Thus in the ground state volume occupied by the electrons in the phase space would be 

π4
3

3V
pF , where V  is the volume of a system in real space. It is assumed that all electrons 
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are accommodated up to the phase space sphere of radius pF . Therefore, the total num-
ber of electrons is:
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which gives:

 r r r r? { }= = π( ) ( ), with ( ) 3 ( )2 1/3
p k k nF F F  (9.54)

The pF  and kF  are known as Fermi momentum and Fermi wave vector, respectively. It is 
assumed here that pF  and hence ( )n r  vary with space coordinates over the region in which 
the condition, Eqn. (9.51), is ful!lled.

Assuming that all electrons move as classical particles under the in"uence of common 
potential, the classical energy of fastest moving electrons is:
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where both kinetic and potential energy parts may independently depend on r, and their 
sum in equilibrium remains constant. We next take total energy +( )T U  of the entire elec-
trons distribution. With kinetic energy density t r( ), we write = ∫ ( ) 3T t d rr . To evaluate ( )t r , 
let us calculate the fraction of electrons that have momentum between p  and +p dp:
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The ( )t r  at around r , when the classical expression for the kinetic energy of an electron is 
used, is:
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 (9.57a)

and hence
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are accommodated up to the phase space sphere of radius pF . Therefore, the total num-
ber of electrons is:
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which gives:
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The pF  and kF  are known as Fermi momentum and Fermi wave vector, respectively. It is 
assumed here that pF  and hence ( )n r  vary with space coordinates over the region in which 
the condition, Eqn. (9.51), is ful!lled.

Assuming that all electrons move as classical particles under the in"uence of common 
potential, the classical energy of fastest moving electrons is:
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where both kinetic and potential energy parts may independently depend on r, and their 
sum in equilibrium remains constant. We next take total energy +( )T U  of the entire elec-
trons distribution. With kinetic energy density t r( ), we write = ∫ ( ) 3T t d rr . To evaluate ( )t r , 
let us calculate the fraction of electrons that have momentum between p  and +p dp:

 
?

= π
















=
π

<( )
4

2

when , zero otherwise.
2

3

2

2 3F p dp
p dp
h

p dp
p pF  (9.56)

The ( )t r  at around r , when the classical expression for the kinetic energy of an electron is 
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which gives


The pF and kF are known as Fermi momentum and Fermi 
wave vector, respectively. It is assumed here that pF and 
hence n(r) vary with space coordinates over the region. 


Assuming that all electrons move as classical particles 
under the influence of common potential, the classical 
energy of fastest moving electrons is 
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are accommodated up to the phase space sphere of radius pF . Therefore, the total num-
ber of electrons is:

 = π











= π4
3

/
2

8
3

3 3 3

3N
Vp h Vp

h
F F  (9.52)

and hence:

 = = π =
π

( )
8
3 3

3

3

3

2 3n N
V

p
h

pF Fr
?

 (9.53)

which gives:

 r r r r? { }= = π( ) ( ), with ( ) 3 ( )2 1/3
p k k nF F F  (9.54)

The pF  and kF  are known as Fermi momentum and Fermi wave vector, respectively. It is 
assumed here that pF  and hence ( )n r  vary with space coordinates over the region in which 
the condition, Eqn. (9.51), is ful!lled.

Assuming that all electrons move as classical particles under the in"uence of common 
potential, the classical energy of fastest moving electrons is:

 = +( )
2

( )max

2

E
p r
m

V rF  (9.55)

where both kinetic and potential energy parts may independently depend on r, and their 
sum in equilibrium remains constant. We next take total energy +( )T U  of the entire elec-
trons distribution. With kinetic energy density t r( ), we write = ∫ ( ) 3T t d rr . To evaluate ( )t r , 
let us calculate the fraction of electrons that have momentum between p  and +p dp:

 
?

= π
















=
π

<( )
4

2

when , zero otherwise.
2

3

2

2 3F p dp
p dp
h

p dp
p pF  (9.56)

The ( )t r  at around r , when the classical expression for the kinetic energy of an electron is 
used, is:

 

r

r

?

?
?

∫

∫

{ }

=

=
π

=
π

×

= π

( )
2

( )

1
2

1
2 5
3 (3)

10
( )

0

2

2 3

0

4

2 3

5

2 2/3 4/3
5/3

t
p
m
F p dp

m
p dp

m
p

m
n

p

p

F

F

F

 (9.57a)

297Quantum Theory of Many Particle Systems

are accommodated up to the phase space sphere of radius pF . Therefore, the total num-
ber of electrons is:

 = π











= π4
3

/
2

8
3

3 3 3

3N
Vp h Vp

h
F F  (9.52)

and hence:

 = = π =
π

( )
8
3 3

3

3

3

2 3n N
V

p
h

pF Fr
?

 (9.53)

which gives:

 r r r r? { }= = π( ) ( ), with ( ) 3 ( )2 1/3
p k k nF F F  (9.54)

The pF  and kF  are known as Fermi momentum and Fermi wave vector, respectively. It is 
assumed here that pF  and hence ( )n r  vary with space coordinates over the region in which 
the condition, Eqn. (9.51), is ful!lled.

Assuming that all electrons move as classical particles under the in"uence of common 
potential, the classical energy of fastest moving electrons is:

 = +( )
2

( )max

2

E
p r
m

V rF  (9.55)

where both kinetic and potential energy parts may independently depend on r, and their 
sum in equilibrium remains constant. We next take total energy +( )T U  of the entire elec-
trons distribution. With kinetic energy density t r( ), we write = ∫ ( ) 3T t d rr . To evaluate ( )t r , 
let us calculate the fraction of electrons that have momentum between p  and +p dp:

 
?

= π
















=
π

<( )
4

2

when , zero otherwise.
2

3

2

2 3F p dp
p dp
h

p dp
p pF  (9.56)

The ( )t r  at around r , when the classical expression for the kinetic energy of an electron is 
used, is:

 

r

r

?

?
?

∫

∫

{ }

=

=
π

=
π

×

= π

( )
2

( )

1
2

1
2 5
3 (3)

10
( )

0

2

2 3

0

4

2 3

5

2 2/3 4/3
5/3

t
p
m
F p dp

m
p dp

m
p

m
n

p

p

F

F

F

 (9.57a)

where both kinetic and potential energy parts may 
independently depend on r, and their sum in equilibrium 
remains constant. 
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We next take total energy (T+U) of the entire electrons 
distribution. With kinetic energy density t(r), we write 


To evaluate t(r), let us calculate the fraction of electrons 
that have momentum between p and p+dp: 
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The t(r) at around r, when the classical expression for the 
kinetic energy of an electron is used, is: 
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The total kinetic energy therefore is

where
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The total kinetic energy therefore is:

 ( )5/3 3∫=T C n d rk r  (9.58a)

The potential energy at r  is due to the interaction with the external !eld and electrostatic 
interaction of the electron density with itself. Therefore:
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Next, we search for the electron density, which minimizes the total energy subject to 
the normalization condition ∫ =( ) 3n d r Nr . On introducing a Lagrange multiplier µ, the 
method of the variational principle with respect to ( )n r  gives:
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This equation is known as the Thomas-Fermi equation for determining the equilibrium 

distribution of the electron density. The µ = ∂
∂
E
N
tot  suggests that it is the chemical potential. 

Also, it is energy of the fastest moving electron, which is generally known as Fermi energy.

9.3.4 Thomas-Fermi Model of Atom

Since the electrons cannot escape from the atom, µ = 0  for an atom in equilibrium. Hence:
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The potential energy at r is due to the interaction with 
the external field and electrostatic interaction of the 
electron density with itself. Therefore 
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The total energy of the system is
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Thomas-Fermi Theory for atom

Since the electrons cannot escape from the atom, µ = 0 
for an atom in equilibrium. Hence: 


where


Because of spherical symmetry inside the atom, both 
electron density and Veff (r) would be a function of r = |r|. 
The electrostatic potential satisfy the Poisson’s equation: 
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Because of spherical symmetry inside the atom, both electron density and ( )Veff r  would 

be a function of =r r . The electrostatic potential 
− ( )V r

e
eff  and charge density ρ = − ( )en r  

satisfy the Poisson’s equation:

 

∇ = −
ε

⇒ 





= −
ε

1 ( ) ( )

1 ( )

2

0

2
2

2

0

e
V r

en r

r
d
dr

r
dV
dr

e n r

eff

eff
 (9.63a)

which with the use of Eqn. (9.62a) gives:
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For → 0r  the leading term in ( )V reff  is the potential due to the nucleus and hence 
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which is known as the Thomas-Fermi equation for an atom. Note that χ →(0) 1 , while χ ∞ →( ) 0 .

9.3.5 Density Functional Theory

The Thomas-Fermi theory, which is the oldest theory to describe the electronic energy 
in terms of electron density distribution, was found quite useful to explain qualitative 
features of atoms. However, it is not of much use when one wants to study the electronic 
structures of large molecules and materials. A more generalized theory in terms of elec-
tron density distribution was derived by Hohenberg and Kohn, and later by Kohn and 
Sham, where it is found that the Thomas-Fermi theory is a special case of a generalized 
density functional theory (DFT). The two Hohenberg-Kohn theorems, which are the basis of 
DFT are as follows:

Theorem-1: The ground state properties of a many-electron system depend only on 
the electronic density ( )n r  and the external potential is determined by ( )n r .

Theorem-2: The correct ground state density for a system is the one that minimizes 
the total energy through the functional [ ]( )E n r  and yields ∫ =( ) 3n d r Nr .
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in terms of electron density distribution, was found quite useful to explain qualitative 
features of atoms. However, it is not of much use when one wants to study the electronic 
structures of large molecules and materials. A more generalized theory in terms of elec-
tron density distribution was derived by Hohenberg and Kohn, and later by Kohn and 
Sham, where it is found that the Thomas-Fermi theory is a special case of a generalized 
density functional theory (DFT). The two Hohenberg-Kohn theorems, which are the basis of 
DFT are as follows:

Theorem-1: The ground state properties of a many-electron system depend only on 
the electronic density ( )n r  and the external potential is determined by ( )n r .

Theorem-2: The correct ground state density for a system is the one that minimizes 
the total energy through the functional [ ]( )E n r  and yields ∫ =( ) 3n d r Nr .
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4.12 Time-evolution Operator and Pictures of Quantum Mechanics

We have seen that we can have various representations of the state vector and the
operators depending on the basis chosen in H . As it turns out, they are all equivalent and
related to one another by a unitary transformation. We also saw that under such a unitary
transformation, the forms of the wave function and that of the observables change, but the
physical state of the system remains unaltered because the unitary operator Ŝ is
time-independent.

We now want to know whether it is possible to do the same for the time-evolution of
the quantum system. In what follows, we shall show that it is possible to describe the time-
evolution of the state vector by a time-dependent unitary operator, Û(t). Û(t) is called the
time-evolution operator or, simply, the evolution operator. It turns out that there are more
than one ways to do it. Each of such descriptions is called a picture of quantum mechanics.

The Schrödinger picture: In this picture, the state vector, |ψ(t)〉, of a quantum system
depends explicitly on time, while the observables (operators of physical characteristics) of
the system are time-independent. The time evolution of the state vector is controlled by
the Schrödinger equation

ih̄
∂ |ψ(t)〉

∂ t
= Ĥ|ψ(t)〉, (4.12.1)

and can be represented in terms of a time evolution operator (propagator), Û(t, t0), as

|ψ(t)〉= Û(t, t0)|ψ(t0)〉. (4.12.2)

The condition of conservation of the norm of the wave function under this representation
reads

〈ψ(t)|ψ(t)〉= 〈Û(t, t0)ψ(t0)|Û(t, t0)ψ(t0)〉

= 〈ψ(t0)|Û†(t, t0)Û(t, t0)|ψ(t0)〉= 〈ψ(t0)|ψ(t0)〉. (4.12.3)

This requires the evolution operator, Û(t, t0), to be unitary:

Û†(t, t0)Û(t, t0) = Û(t, t0)Û†(t, t0) = Î. (4.12.4)

In addition, the evolution operator also satisfies the following properties

Û(t, t) = Î, (4.12.5)

Û†(t, t0) = Û−1(t, t0) = Û(t0, t), (4.12.6)
Û(tk, t j)Û(t j, ti) = Û(tk, ti), tk > t j > ti. (4.12.7)

The last of the above properties is due to the time translation invariance of the Schrödinger
equation.

and can be represented in terms of a time evolution 
operator (propagator), U(t,t0), as 


Algebraic Formulation of Quantum Mechanics 175

4.12 Time-evolution Operator and Pictures of Quantum Mechanics

We have seen that we can have various representations of the state vector and the
operators depending on the basis chosen in H . As it turns out, they are all equivalent and
related to one another by a unitary transformation. We also saw that under such a unitary
transformation, the forms of the wave function and that of the observables change, but the
physical state of the system remains unaltered because the unitary operator Ŝ is
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〈ψ(t)|ψ(t)〉= 〈Û(t, t0)ψ(t0)|Û(t, t0)ψ(t0)〉
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The propagator can be determined as follows. Substitution of (4.12.2) in the
Schrödinger equation (4.12.1) yields

ih̄
∂Û(t, t0)

∂ t
= ĤÛ(t, t0). (4.12.8)

If the Hamiltonian, Ĥ, is time independent, the solution of (4.12.8) satisfying the initial
condition, Û(t0, t0) = Î, can be written as

Û(t, t0) = e−
i
h̄ (t−t0)Ĥ . (4.12.9)

Using (4.12.9), equation(4.12.2) can be rewritten as

|ψ(t)〉= e−
i
h̄ (t−t0)Ĥ |ψ(t0)〉. (4.12.10)

The meaning of equation (4.12.10) is the following. We have to expand the wave function
ψ(q,0) into a series with respect to the eigenfunctions, φm(q),m = 1,2,3, . . ., of the
Hamiltonian

ψ(q, t0) = ∑
m

cmφm(q), (4.12.11)

use the definition of the exponential operator in the form of Mclaurent series

e−
i
h̄ Ĥ(t−t0) =

∞

∑
n=0

1
n!

(
−i
h̄

Ĥ(t− t0)
)n

(4.12.12)

and act on the wave function. If we do that and take into account that φm are
eigenfunctions of the Hamiltonian (Ĥφm = E0

mφm) and sum up the resulting series, we get
the wave function at time t:

ψ(q, t) =
∞

∑
n=0

1
n!

(
−iĤ

h̄
(t− t0)

)n

∑
m

cmφm

= ∑
m

cmφm

∞

∑
n=0

1
n!

(
−iE0

m
h̄

(t− t0)
)n

= ∑
m

cmφme−
i
h̄ E0

m(t−t0). (4.12.13)

The Heisenberg picture: In this picture, the state vector, |ψ〉, is time-independent, while
the observables are time-dependent. This is accomplished by defining the Heisenberg state
vector, |ψH〉, as

|ψH〉= Û†(t, t0)|ψ(t)〉, (4.12.14)

If the Hamiltonian, H, is time independent, its solution 
satisfying the initial condition, U(t0,t0) = I, can be written as 
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Û(t, t0) = e−
i
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h̄ (t−t0)Ĥ |ψ(t0)〉. (4.12.10)

The meaning of equation (4.12.10) is the following. We have to expand the wave function
ψ(q,0) into a series with respect to the eigenfunctions, φm(q),m = 1,2,3, . . ., of the
Hamiltonian

ψ(q, t0) = ∑
m

cmφm(q), (4.12.11)

use the definition of the exponential operator in the form of Mclaurent series

e−
i
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vector, |ψH〉, as

|ψH〉= Û†(t, t0)|ψ(t)〉, (4.12.14)

We can expand the wave function !(q,0) into a series with 
respect to the eigenfunctions, 'm(q), m = 1,2,3,..., of the 
Hamiltonian 

  

176 Fundamentals of Quantum Mechanics

The propagator can be determined as follows. Substitution of (4.12.2) in the
Schrödinger equation (4.12.1) yields
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= ĤÛ(t, t0). (4.12.8)

If the Hamiltonian, Ĥ, is time independent, the solution of (4.12.8) satisfying the initial
condition, Û(t0, t0) = Î, can be written as

Û(t, t0) = e−
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and act on the wave function. If we do that and take into account that φm are
eigenfunctions of the Hamiltonian (Ĥφm = E0
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The Heisenberg picture: In this picture, the state vector, |ψ〉, is time-independent, while
the observables are time-dependent. This is accomplished by defining the Heisenberg state
vector, |ψH〉, as

|ψH〉= Û†(t, t0)|ψ(t)〉, (4.12.14)
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mφm) and sum up the resulting series, we get
the wave function at time t:

ψ(q, t) =
∞

∑
n=0

1
n!

(
−iĤ
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The Heisenberg picture: In this picture, the state vector, |ψ〉, is time-independent, while
the observables are time-dependent. This is accomplished by defining the Heisenberg state
vector, |ψH〉, as

|ψH〉= Û†(t, t0)|ψ(t)〉, (4.12.14)

With such a definition |!H⟩ turns out to be time-independent 
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where |ψ(t)〉 is the state vector in the Schrödinger picture. With such a definition |ψH〉
turns out to be time-independent

|ψH〉= Û†(t, t0)|ψ(t)〉. = Û−1(t, t0)|ψ(t)〉= e
i
h̄ (t−t0)Ĥ |ψ(t)〉= |ψ(t0)〉, (4.12.15)

If we compare (4.12.10) and (4.12.14), we conclude that the definition (4.12.14) is
equivalent to going over to a basis (in the Hilbert space) which is translating in time in the
sense opposite to that in the Schrödinger picture. As a consequence, the state vector |ψH〉
gets frozen in time. This leads to

d|ψH〉
dt

= 0. (4.12.16)

Since (4.12.14) represents a unitary transformation of the state vector, physical properties
of a quantum system in both the the Schrödinger and the Heisenberg pictures should be the
same. For instance, consider the average value of time-independent observable, ÂS, in the
Schrödinger picture

〈ÂS〉 =
〈
ψ(t)

∣∣ÂS
∣∣ψ(t)

〉
=

〈
Û(t, t0)ψH

∣∣ÂS
∣∣Û(t, t0)ψH

〉

=
〈
ψH

∣∣(Û†(t, t0)ÂSÛ(t, t0)
)∣∣ψH

〉
(4.12.17)

The requirement of the unchanged average value of Â in both the pictures gives

ÂH(t) = Û†(t, t0)ÂS(t0)Û(t, t0) = e
i
h̄ (t−t0)Ĥ ÂS(t0)e−

i
h̄ (t−t0)Ĥ . (4.12.18)

Or,

ÂS(t0) = ÛÂH(t)Û†(t, t0)(t, t0) = e−
i
h̄ (t−t0)Ĥ ÂH(t)e

i
h̄ (t−t0)Ĥ . (4.12.19)

Equations (4.12.18) and (4.12.19) show that the observables in the Heisenberg and the
Schrödinger pictures are related through a similarity transformation.

The Heisenberg’s equation of motion for an observable is obtained from (4.12.18) by
simply differentiating it with respect to time

dÂH

dt
=

i
h̄

e
i
h̄ (t−t0)Ĥ ĤÂSe−

i
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e
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h̄ (t−t0)Ĥ Ĥe−
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h̄ (t−t0)Ĥ

})

=
i
h̄
(
ĤHÂH − ÂHĤH

)
. (4.12.20)

As a consequence, the state vector |!H⟩ gets frozen in time. 
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h̄ (t−t0)Ĥ |ψ(t)〉= |ψ(t0)〉, (4.12.15)

If we compare (4.12.10) and (4.12.14), we conclude that the definition (4.12.14) is
equivalent to going over to a basis (in the Hilbert space) which is translating in time in the
sense opposite to that in the Schrödinger picture. As a consequence, the state vector |ψH〉
gets frozen in time. This leads to

d|ψH〉
dt

= 0. (4.12.16)

Since (4.12.14) represents a unitary transformation of the state vector, physical properties
of a quantum system in both the the Schrödinger and the Heisenberg pictures should be the
same. For instance, consider the average value of time-independent observable, ÂS, in the
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i
h̄ (t−t0)Ĥ
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}{
e

i
h̄ (t−t0)Ĥ Ĥe−
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where |ψ(t)〉 is the state vector in the Schrödinger picture. With such a definition |ψH〉
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ÂS(t0) = ÛÂH(t)Û†(t, t0)(t, t0) = e−
i
h̄ (t−t0)Ĥ ÂH(t)e
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Equations (4.12.18) and (4.12.19) show that the observables in the Heisenberg and the
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The Heisenberg’s equation of motion for an observable is obtained from (4.12.18) by
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dÂH
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i
h̄ (t−t0)Ĥ
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∣∣ÂS
∣∣ψ(t)

〉
=

〈
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where |ψ(t)〉 is the state vector in the Schrödinger picture. With such a definition |ψH〉
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∣∣Û(t, t0)ψH

〉

=
〈
ψH
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i
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Equations (4.12.18) and (4.12.19) show that the observables in the Heisenberg and the
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h̄
e

i
h̄ (t−t0)Ĥ ÂSĤe−
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Therefore, the Heisenberg’s equation of motion can be 
written as 
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Since the evolution operator, e−
i
h̄ (t−t0)Ĥ , commutes with the Hamiltonian, we have ĤH =

Ĥ. Therefore, the Heisenberg’s equation of motion can be written as

dÂH

dt
=

1
ih̄

[
ÂH , Ĥ

]
. (4.12.21)

If, in addition, ÂH depends explicitly on time, the equations of motion takes the form

dÂH

dt
=

∂ ÂH

∂ t
+

1
ih̄

[
ÂH , Ĥ

]
. (4.12.22)

It remind us of the equations of motion of a dynamical variable, A, in the Poisson bracket
formalism

dA
dt

=
∂A
∂ t

+ {A,H} , (4.12.23)

in which the Poisson bracket, {A,H} has been replaced by the commutator of the
corresponding operators divided by ih̄.

Interaction picture: The interaction picture, the same way as the Heisenberg’s picture,
is useful for the solution of the problems involving time-dependent Hamiltonians. In this
picture, both the state vector, |ψI(t)〉, and the observables depend explicitly on time. In
the cases when the total Hamiltonian, Ĥ, can be separated into a time-independent part,
Ĥ0, and a time-dependent part, Ŵ (t) (interaction Hamiltonian), the state vector, |ψI(t)〉, is
defined through

|ψI〉= Û†
0 (t, t0)|ψ(t)〉= Û−1

0 (t, t0)|ψ(t)〉 ≡ e
i
h̄ (t−t0)Ĥ0 |ψ(t)〉, (4.12.24)

where |ψ(t)〉 is the state vector in the Schrödinger picture. The equation of motion for the
state vector is obtained as follows. Differentiating |ψI〉 with respect to time, we obtain
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∂ t
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Using the equation of motion (4.12.1), for |ψ(t)〉 in the Schrödinger’s picture, and a bit of
algebra we obtain

ih̄
∂ |ψI(t)〉

∂ t
= ŴI(t)|ψI(t)〉, (4.12.26)

where ŴI(t) = e
i
h̄ (t−t0)Ĥ0Ŵ (t)e−

i
h̄ (t−t0)Ĥ0 is the time-dependent part of the total

Hamiltonian in the interaction picture.
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Interaction picture: In this picture, both the state vector, |
!I(t)⟩, and the observables depend explicitly on time. 


In the cases when the total Hamiltonian, H, can be separated 
into a time-independent part, H0, and a time-dependent 
part, W(t) (interaction Hamiltonian), the state vector, |!I(t)⟩, 

is defined through 
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h̄ (t−t0)Ĥ , commutes with the Hamiltonian, we have ĤH =
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ÂH , Ĥ
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formalism
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+ {A,H} , (4.12.23)

in which the Poisson bracket, {A,H} has been replaced by the commutator of the
corresponding operators divided by ih̄.
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0 (t, t0)|ψ(t)〉= Û−1
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where |!(t)⟩ is the state vector in the Schrödinger picture. 

The equation of motion for the state vector is obtained as 
follows.
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Defining an observable, AI(t), in the interaction picture by 


where A is the corresponding observable in the 
Schrödinger’s, and following the same calculations as in the 
case of Heisenberg’s picture, we arrive at the following 
equation of motion for an observable in the interaction 
picture 
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Defining an observable, ÂI(t), in the interaction picture by

ÂI(t) = e
i
h̄ (t−t0)Ĥ0Âe−

i
h̄ (t−t0)Ĥ0 , (4.12.27)

where Â is the corresponding observable in the Schrödinger’s picture, and following the
same calculations as in the case of Heisenberg’s picture, we arrive at the following equation
of motion for an observable in the interaction picture

ih̄
dÂI

dt
=

[
ÂI , Ĥ0

]
. (4.12.28)

We see that, in this picture, the time evolution of the state vector is governed by the time-
dependent interaction Hamiltonian ŴI(t) only, while the time variation of an observable is
controlled only by the time-independent part, Ĥ0, of the total Hamiltonian, Ĥ.

We would like to note here that all the three pictures of quantum mechanics, discussed
above, are equivalent because they are related trough unitary transformations. Depending
on the problem at hand, one can choose to work with any one of them for relatively easier
and faster solution of the problem.

4.13 Algebraic Treatment of One-dimensional Harmonic Oscillator

The harmonic oscillator: We are now going to discuss the one-dimensional harmonic
oscillator that serves as one of the most important models (if not the most important model)
in quantum theory and can be solved analytically.

The Hamiltonian for the one-dimensional harmonic oscillator (a particle of mass m
attached to a spring) is given by

Ĥ =
p̂2

2m
+

1
2

mω2x̂2 = − h̄2

2m
d2

dx2 +
1
2

mω2x̂2, (4.13.1)

where x represents the displacement of the oscillator from the point of equilibrium (which
is taken to be at the origin of the coordinate system) and ω is its angular frequency. The
corresponding time-independent Schrödinger equation reads

− h̄2

2m
d2φ (x)

dx2 +
1
2

mω2x̂2φ (x) = Eφ (x). (4.13.2)

Our main aim, in this section, is to use the algebraic method for obtaining the energy
eigenvalues and the corresponding bound state wave functions.

Let us introduce the following operators

â =
1√

2mh̄ω
(ip̂+mω x̂) , (4.13.3)
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dependent interaction Hamiltonian ŴI(t) only, while the time variation of an observable is
controlled only by the time-independent part, Ĥ0, of the total Hamiltonian, Ĥ.
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Let us introduce the following operators

â =
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2mh̄ω
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We see that, in this picture, the time evolution of the state 
vector is governed by the time-dependent interaction 
Hamiltonian WI(t) only, while the time variation of an 
observable is controlled only by the time-independent part.
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Differentiating |!I ⟩ with respect to time, we obtain 
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Since the evolution operator, e−
i
h̄ (t−t0)Ĥ , commutes with the Hamiltonian, we have ĤH =

Ĥ. Therefore, the Heisenberg’s equation of motion can be written as

dÂH

dt
=

1
ih̄

[
ÂH , Ĥ

]
. (4.12.21)

If, in addition, ÂH depends explicitly on time, the equations of motion takes the form

dÂH

dt
=

∂ ÂH

∂ t
+

1
ih̄

[
ÂH , Ĥ

]
. (4.12.22)

It remind us of the equations of motion of a dynamical variable, A, in the Poisson bracket
formalism

dA
dt

=
∂A
∂ t

+ {A,H} , (4.12.23)

in which the Poisson bracket, {A,H} has been replaced by the commutator of the
corresponding operators divided by ih̄.

Interaction picture: The interaction picture, the same way as the Heisenberg’s picture,
is useful for the solution of the problems involving time-dependent Hamiltonians. In this
picture, both the state vector, |ψI(t)〉, and the observables depend explicitly on time. In
the cases when the total Hamiltonian, Ĥ, can be separated into a time-independent part,
Ĥ0, and a time-dependent part, Ŵ (t) (interaction Hamiltonian), the state vector, |ψI(t)〉, is
defined through

|ψI〉= Û†
0 (t, t0)|ψ(t)〉= Û−1

0 (t, t0)|ψ(t)〉 ≡ e
i
h̄ (t−t0)Ĥ0 |ψ(t)〉, (4.12.24)

where |ψ(t)〉 is the state vector in the Schrödinger picture. The equation of motion for the
state vector is obtained as follows. Differentiating |ψI〉 with respect to time, we obtain

∂ |ψI〉
∂ t

=
i
h̄

e
i
h̄ (t−t0)Ĥ0Ĥ0|ψ(t)〉+ e

i
h̄ (t−t0)Ĥ0

∂ |ψ(t)〉
∂ t

. (4.12.25)

Using the equation of motion (4.12.1), for |ψ(t)〉 in the Schrödinger’s picture, and a bit of
algebra we obtain

ih̄
∂ |ψI(t)〉

∂ t
= ŴI(t)|ψI(t)〉, (4.12.26)

where ŴI(t) = e
i
h̄ (t−t0)Ĥ0Ŵ (t)e−

i
h̄ (t−t0)Ĥ0 is the time-dependent part of the total

Hamiltonian in the interaction picture.

For |!(t)⟩ in the Schrödinger’s picture, and a bit of algebra 

we obtain 
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dt
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= ŴI(t)|ψI(t)〉, (4.12.26)
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h̄ (t−t0)Ĥ0 is the time-dependent part of the total

Hamiltonian in the interaction picture.

where

178 Fundamentals of Quantum Mechanics

Since the evolution operator, e−
i
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dÂH

dt
=

1
ih̄

[
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ÂH , Ĥ
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Exactly Solvable Time-dependent

The time independence of the Hamiltonian allows to us to 
factorize the wave function into space- and time-
dependent parts, 


and
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10
Time-dependent Perturbations and Semi-classical 
Treatment of Interaction of Field with Matter

In the preceding chapters, we discussed solutions and the applications of the Schrödinger 
wave equation having time-independent potentials. Schrödinger quantum mechan-
ics assume that operators and the Hamiltonian are independent of time. And the time 
evolution of a system is taken care of by wave function. The time independence of the 
Hamiltonian allows to us to factorize the wave function into space- and time-dependent 
parts. Therefore, in Schrödinger representation we write:

 ( , )
2

( ) ( , ),  with   ( , ) ( )
2

2?
? ?∂ψ

∂
= − ∇ +






ψ ψ = ϕ

−

i
t

t m
V t t e

iEtr
r r r r  (10.1)

This allows us to obtain an eigenvalue equation:

 
2

( ) ( ) ( )
2

2?− ∇ +





ϕ = ϕ

m
V Er r r  (10.2)

where E  is the energy eigenvalue. The ( , ) 2ψ tr , which is interpreted as probability density, 
is constant in time. In addition to this, expectation values of operators (observables) are 
also constant in time. Equation (10.2), which involves time-independent potential, is solved 
exactly or approximately, depending upon the nature of the potential ( )V r .

10.1 Time-dependent Potentials

The Hamiltonians of a large number of systems depend on time through the time-depen-
dent potentials. When, the Hamiltonian is time-dependent, factorization of the wave 
function into space- and time-dependent parts is not possible and hence the Schrödinger 
picture is inadequate to describe the system. In this chapter, we are going to deal with the 
Hamiltonian that has the form ( , ) ( ) ( , )0 1= +H t H H tr r r , where ( )0H r  is time-independent 
and it is assumed to be an unperturbed part, whose energy eigenvalues and eigenstates 
are known exactly. ( , )1H tr  is the time-dependent part of the Hamiltonian, and it is treated 
as a perturbation applied to the system. A perturbation theory can be used if 1 0�H H . 
Because of the time dependence of ( , )1H tr , calculation for stationary energy eigenstates 
is not expected to be of any importance. ( , )ψ tr  for a time-dependent Hamiltonian cannot 
be found in the Schrödinger representation. The interaction picture of quantum mechan-
ics, which utilizes some elements of the Heisenberg picture and some elements of the 
Schrödinger picture have been used to "nd ( , )ψ tr  for the time-dependent Hamiltonian. 315
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When, the Hamiltonian is time-dependent, factorization of 
the wave function into space- and time-dependent parts 
is not possible and hence the Schrödinger picture is 
inadequate to describe the system. 
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The approach adopted by us is as follows. Let us say H0 

satisfies the eigenvalue equation: 
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However, we are not going to use the interaction picture here. The approach adopted by us 
is as follows. Let us say 0H  satis!es the eigenvalue equation:

 0 φ = φH En n n  (10.3)

where En  and φn  are the energy eigenvalue and eigenstate  of the nth state of the sys-
tem in the absence of perturbation. Let us also assume that φn  form a complete set. 
Unlike time-independent perturbation theory, we here used En  in place of (0)En , because 
here we are not going to determine energy corrections, which are irrelevant in the case 
of time-dependent perturbations. The eigenstate φn  can be taken as basis vectors of 

Hilbert space to write (0)∑ϕ = φc
n

n n , where (0)cn  is a constant in time. In the absence of 

( , )1H tr , we are dealing with stationary state problems and hence we have:

 ( , ) (0) ( )?∑ψ = φ
−

t c e
n

n

iE t

n

n

r r  (10.4)

Now, let us consider the situation where initially, in the absence of ( , )1H tr , only one of 
the eigenstates, say φi , is populated. But as time goes on and ( , )1H tr  is turned on, states 
other than φi  get populated. We are then no longer dealing with stationary state prob-
lems and hence the time evolution of ( , )ψ tr  is not as simple as given by Eqn. (10.4). The 
time-dependence of ( , )1H tr  causes transition to states other than φi . The basic question 
we would like to address is: What change in ( , )ψ tr  is expected on introducing ( , )1H tr ? Or, 
how does an arbitrary state ket change as time goes on, where the Hamiltonian is time-
dependent? We can expect that ( , )ψ tr  is still represented in the same form as in Eqn. (10.4), 
provided cn  is made time-dependent: We therefore write:

 ( ) ( ) ?∑ψ = φ
−

t c t e
n

n

iE t

n

n

 (10.5)

Note that in this procedure, time-dependence of ( )c tn  is solely arising due to ( , )1H tr  and 
it must go to (0)cn  whenever ( , ) 01 =H tr . Then the probability of !nding a particle in the 
state φn  is given by ( ) 2c tn  in place of (0) 2cn . The time-dependence of ( )c tn  is thus deter-
mined from the Schrödinger equation having the Hamiltonian ( , ) ( ) ( , )0 1= +H t H H tr r r . 
We then have:
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which with the use of Eqn. (10.5) gives:
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where En  and φn  are the energy eigenvalue and eigenstate 
of the nth state of the system in the absence of 
perturbation. 

The eigenstate φn  can be taken as basis vectors of Hilbert 
space to write   
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where cn (0) is a constant in time. 
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We can expect that ψ(r,t) is still represented in the same 
form as above equation, provided cn is made time-dependent. 
We therefore write,
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Note that in this procedure, time-dependence of cn(t) is 
solely arising due to H1(r,t) and it must go to cn(0) 
whenever H1(r,t) = 0. 


The time-dependence of cn (t) is thus determined from the 
Schrödinger equation having the Hamiltonian H(r,t)=H0(r)
+H1(r,t), 
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On taking the inner product with
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Here, we have used ,φ φ = δm n m n  and de!ned r= φ φ( ) ( , )1h t H tmn m n . We thus obtained a 
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which yields coupled equations that are solved to !nd ( ), ( )..... ( ).....1 2c t c t c tn . After knowing 
( ), ( )..... ( ).....1 2c t c t c tn , one determines the probability of !nding the system in any particular 

state at a later time. Note that we have not used any approximation until now and hence all treat-
ments are exact. Exactly solvable problems with time-dependent potentials are rather rare. 
In most of the cases, perturbation expansion is used to solve coupled equations. However, 
there are problems of enormous practical importance such as nuclear magnetic resonance 
and MASERs, which are exactly solvable.

10.2 Exactly Solvable Time-dependent Two-state Systems

The matrix Eqn. (10.8b) is solved exactly for two-state systems perturbed by a periodic 
external !eld. The real physical systems may have more than two states, but for some 
important cases two of the states are very weakly coupled to other states, and hence two-
state analysis becomes relevant. One of the examples is the ammonia MASER.

A two-state system problem with sinusoidal perturbing potential is described as 
follows:
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and: 

 1 1 2 2 1= γ φ φ + γ φ φω − ωH e ei t i t  (10.10b)
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follows:
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 , with0 1 1 1 2 2 2 2 1= φ φ + φ φ >H E E E E  (10.10a)

and: 
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states and the transition between two states takes place. 
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Periodic external field

318 A Textbook on Modern Quantum Mechanics

where γ  and ω  are real positive. We thus have time-dependent perturbing potential that 
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Therefore, a general solution of Eqn. (10.13b) is:
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21 21
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c t e Ae Be
i

t i t i t
 (10.16)

if initially at 0=t  only the lower state φ1  is populated so that (0) 11 =c  and (0) 02 =c . This 
implies = −A B  and from Eqn. (10.12b):

 ( )2
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=

i
dc t

dt t

 (10.17)

Differentiating Eqn. (10.16) with respect to t  and then using Eqn. (10.17), we get:
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The probability that both the states φ1  and φ2  are populated at later time t  is then 
given by:
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and ( ) 1 ( )1
2

2
2= −c t c t .

Equation (10.19) is the famous Rabi’s formula. I.I. Rabi is known as the father of molecu-
lar beam technologies.

The plot of ( )2
2c t  as a function of ω  at 

2
?= π

γ
t  is displayed in Fig. 10.1.

FIGURE 10.1

Plot of c t2
2( )  versus ω  at t

2
?= π

γ
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is the famous Rabi’s formula. Rabi is known as the father 
of molecular beam technologies. 
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if initially at 0=t  only the lower state φ1  is populated so that (0) 11 =c  and (0) 02 =c . This 
implies = −A B  and from Eqn. (10.12b):
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Differentiating Eqn. (10.16) with respect to t  and then using Eqn. (10.17), we get:
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and ( ) 1 ( )1
2

2
2= −c t c t .

Equation (10.19) is the famous Rabi’s formula. I.I. Rabi is known as the father of molecu-
lar beam technologies.

The plot of ( )2
2c t  as a function of ω  at 

2
?= π

γ
t  is displayed in Fig. 10.1.

FIGURE 10.1

Plot of c t2
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2
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γ
.

A maximum occurs of |c2(t)|2 at 
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As is seen from Fig. 10.1, a maximum occurs at:
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which is known as the Resonance condition. The full width at half maximum of the curve is 
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γ . Note that the weaker time-dependent potential (smaller γ ) makes the resonance peak 

narrower.
The ( )2

2c t  and ( )1
2c t are plotted as the function of t  at 21ω = ω  (resonance condition) in 

Fig. 10.2.
As is seen from the !gure, both ( )2

2c t  and ( )1
2c t  exhibit oscillatory behavior. The behav-

ior of ( )2
2c t  is the opposite of that of ( )1
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populated and the lower state is empty. Then between 
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t , ( )1

2c t  increases 

and ( )2
2c t  decreases, which means that the system gives up the excess energy back to 

the perturbing !eld during this time interval. This cycle of absorption and emission is 
repeated in!nitely, as is seen from Fig. 10.2. We thus see that time-dependent perturbation 
is causing transitions from φ1  to φ2  (absorption) and then from φ2  to φ1  (emission) 
as time increases.

The absorption-emission cycle takes place even if 21ω ≠ ω . However, in that case, ( )2
2c t  

no longer reaches to 1 and ( )1
2c t  does not reduce down to zero. Transition from φ2  to φ1  

starts even if the state φ1  is not completely empty.
There are many applications of the general time-dependent two state problem, such as 

nuclear magnetic resonance, spin-magnetic resonance, MASER (microwave ampli!cation 
of stimulated emission of radiations), the atomic clock, and optical pumping. It is amazing 
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Plot 1
2( )c t  and 2

2( )c t  as a function t  at 21ω = ω  (resonance condition).

There are many applications of the general time-
dependent two state problem, such as nuclear magnetic 
resonance, spin-magnetic resonance, microwave 
amplification of stimulated emission of radiations (MASER), 
the atomic clock, and optical pumping. 
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Except for a few problems such as two state time-
dependent systems, the exact solution to differential 
equations that determine cn (t) is not possible. 


Time-dependent Perturbation Theory 

Similar to the case of time-independent perturbation 
theory, we include the small dimensionless parameter λ to 
write the Hamiltonian 
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to know that four Nobel Prizes have been awarded to those who exploited the applications of a time-
dependent two state system in some form.

We have seen that an oscillating !eld can drive a collection of molecules from the ground 
state to an excited state. In an ammonia MASER, a stream of ammonia molecules travels 
down with known velocity through a tube of de!nite length. The tube has an oscillating 
microwave !eld, so that all (or almost all) molecules emerging at the other end of the tube 
are in the !rst excited state. Then, the excited outgoing molecules will decay on applica-
tion of a small amount of electromagnetic radiation of the same frequency, generating an 
intense and coherent radiation because of the shorter period for all to decay.

10.3 Time-dependent Perturbation Theory

Except for a few problems such as two state time-dependent systems, the exact solution to 
differential equations that determine ( )c tn  is not possible. One then attempts a perturbative 
approach to solve Eqn. (10.7). Similar to the case of time-independent perturbation theory, 
we include the small dimensionless parameter λ  to write the Hamiltonian 0 1= + λH H H  
and expand the ( )c tn  in terms of λ  as follows:

 ( ) ( ) ( ) ( ) ( ) ......(0) (1) 2 (2) 3 (3)= + λ + λ + λ +c t c t c t c t c tn n n n n  (10.21)

Substituting Eqn. (10.21) into Eqn. (10.8a) and replacing 1H  by 1λH  we get:
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i
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n
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i tmn  (10.22)

To satisfy this, the coef!cient of each power of λ  must vanish. We therefore have:

 ( ) 0
(0)

=dc t
dt
m  (10.23a)

 ( ) 1 ( ) ( )
(1)

(0)

?∑= ωdc t
dt i
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i tmn  (10.23b)
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?∑= ωdc t
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h t c t em

n

mn n
i tmn  (10.23c)

and so on.
Equation (10.23a) implies that ( )(0)c tm  is constant in time, which is because of the fact that 

the zeroth order Hamiltonian 0H  is independent of time.

10.3.1 First Order Perturbation

The !rst order contribution to ( )c tm  is given by Eqn. (10.23b). We obtain:

 
? ∑∫= ′ ′ ′ω ′( ) 1 ( ) ( )(1) (0)c t

i
h t c t e dtm

n

mn n
i tmn  (10.24)

and expand the cn (t) in terms of λ as follows: 
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Therefore,
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To satisfy this, the coefficient of each power of λ must 
vanish. We therefore have,


Time-dependent Perturbation Theory 

The first order contribution to cm (t) is 
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If the system initially at t = 0 is in only one unperturbed 
state φn then cn(0) is non-zero (equal to 1) only for one value 
of n belonging to φn , and it is zero for all other values of m. 
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When t > 0 but very small, such that we still have c(0) (t)≃1, 
we then can drop all other terms 


Time-dependent Perturbation Theory 
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The majority of problems of practical interest are de!nable by assuming that the system 
evolves according to 0H  until 0=t , and then a time-dependent perturbation is turned on. 
If the system initially at 0=t  is in only one unperturbed state φn  then (0)cn  is non-zero 
(equal to 1) only for one value of n belonging to φn , and it is zero for all other values of n. 
When 0>t  but very small, such that we still have ( ) 1(0) �c tn , we then can drop all terms on 
right side of Eqn. (10.24) except one term. We get:

 ( )(0) = δc tm mn  (10.25a)

 ( ) 1 ( ) ,(1)

0
? ∫= ′ ′ ≠ω ′c t

i
h t e dt m nm

t

mn
i tmn  (10.25b)

The perturbation ( , )1H tr  has introduced transitions to other states. If we con!ne ourselves 
only to !rst order perturbation theory, then the probability that the transition from φn  
to φm  has occurred after time t  is given by:

 ( ) ( ) .2 (1) 2
=c t c tm m  (10.26)

To see that the !rst order perturbation theory gives a reasonably correct answer, notice 
that if all elements in the column matrix on the right side of Eqn. (10.8b) are zero except one 
element ( )c tn  that is equal to unity, we have the equation:

 
?

= ≠ω( ) 1 , withdc t
dt i

h e m nm
mn

i tmn  (10.27)

This is equivalent to saying that initially at 0=t  only the φn  state is populated, and other 
states are empty.

The integration of Eqn. (10.27) between 0 → t  yields:

 ( ) 1 ( )
0

? ∫= ′ ′ω ′c t
i

h t e dtm

t

mn
i tmn  (10.28)

which has right hand side identical to that in Eqn. (10.25b), justifying the use of !rst order 
perturbation theory.

10.4 Harmonic Perturbation

Let us consider a system initially in the state of φn  perturbed by a periodic potential that 
is described by:

 ( , ) 2 ( )cos( ) ( )1 1 1 { }= ω = +ω − ωH t H t H e ei t i tr r r  (10.29)

which is switched on at 0=t . An example of this is an atom or a molecule exposed to elec-
tromagnetic radiation (harmonic perturbation). The probability amplitude for an atom in 

If we confine ourselves only to first order perturbation 
theory, we have
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the initial state φn  to be in state φm  after time t  is then obtained from Eqn. (10.25b) with 
the use of:
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where the !rst term on the right-hand side will reach to its maximum value when 
?( )− → ωE Em n , while the second term will tend to a maximum value for ?( )− → − ωE Em n . 

On application of an harmonic perturbating !eld, the system either receives energy from 
the !eld (absorption) or it transfers the energy to the !eld (induced or stimulated emis-
sion). We thus !nd that the !rst term on the right-hand side represents absorption, while 
the second corresponds to stimulated emission. Since both absorption and stimulated 
emission cannot take place simultaneously, only one term is to be discussed at a time. We 
retain the !rst term for further discussions and obtain:
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10.4.1 Transition Probability

If the system was in the φn  state initially at 0=t , then the probability to !nd the system 
in the state φm  after time t  is given by:

 ( ) ( )

2

sin ( )
2

(1) 2
2

2
2

2

?
{ }= =

ω − ω





ω − ω
→P t c t

H t
n m m

mn

mn

mn  (10.33)

Note that sin α
α

→t
t , its maximum value, when ( )

2
0α = ω − ω →mn  or ?( )− → ωE Em n . Thus, 

( )→P tn m  exhibits a peak of height equal to
2 2

2?
H tmn  and width equal to 2 /π t  at 

?
( )ω = −E Em n , 

when plotted as a function of ω . The ( )→P tn m  shows more peaks at ( )
2

1
2

ω − ω = +



 πt nmn  

where n is an integer. A plot ( )→P tn m  versus ω − ωmn  is displayed in Fig. 10.3.
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10.4.1 Transition Probability

If the system was in the φn  state initially at 0=t , then the probability to !nd the system 
in the state φm  after time t  is given by:
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where the !rst term on the right-hand side will reach to its maximum value when 
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10.4.1 Transition Probability

If the system was in the φn  state initially at 0=t , then the probability to !nd the system 
in the state φm  after time t  is given by:
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where the !rst term on the right-hand side will reach to its maximum value when 
?( )− → ωE Em n , while the second term will tend to a maximum value for ?( )− → − ωE Em n . 

On application of an harmonic perturbating !eld, the system either receives energy from 
the !eld (absorption) or it transfers the energy to the !eld (induced or stimulated emis-
sion). We thus !nd that the !rst term on the right-hand side represents absorption, while 
the second corresponds to stimulated emission. Since both absorption and stimulated 
emission cannot take place simultaneously, only one term is to be discussed at a time. We 
retain the !rst term for further discussions and obtain:
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10.4.1 Transition Probability

If the system was in the φn  state initially at 0=t , then the probability to !nd the system 
in the state φm  after time t  is given by:
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where the !rst term on the right-hand side will reach to its maximum value when 
?( )− → ωE Em n , while the second term will tend to a maximum value for ?( )− → − ωE Em n . 

On application of an harmonic perturbating !eld, the system either receives energy from 
the !eld (absorption) or it transfers the energy to the !eld (induced or stimulated emis-
sion). We thus !nd that the !rst term on the right-hand side represents absorption, while 
the second corresponds to stimulated emission. Since both absorption and stimulated 
emission cannot take place simultaneously, only one term is to be discussed at a time. We 
retain the !rst term for further discussions and obtain:
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10.4.1 Transition Probability

If the system was in the φn  state initially at 0=t , then the probability to !nd the system 
in the state φm  after time t  is given by:
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where the !rst term on the right-hand side will reach to its maximum value when 
?( )− → ωE Em n , while the second term will tend to a maximum value for ?( )− → − ωE Em n . 

On application of an harmonic perturbating !eld, the system either receives energy from 
the !eld (absorption) or it transfers the energy to the !eld (induced or stimulated emis-
sion). We thus !nd that the !rst term on the right-hand side represents absorption, while 
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emission cannot take place simultaneously, only one term is to be discussed at a time. We 
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10.4.1 Transition Probability

If the system was in the φn  state initially at 0=t , then the probability to !nd the system 
in the state φm  after time t  is given by:
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Note that sin α
α

→t
t , its maximum value, when ( )

2
0α = ω − ω →mn  or ?( )− → ωE Em n . Thus, 

( )→P tn m  exhibits a peak of height equal to
2 2

2?
H tmn  and width equal to 2 /π t  at 
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when plotted as a function of ω . The ( )→P tn m  shows more peaks at ( )
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where n is an integer. A plot ( )→P tn m  versus ω − ωmn  is displayed in Fig. 10.3.
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A central peak has the largest height. As t increases, the 
height of the central peak enhances as t2, while its width 
decrease as 1/t. For t�∞, one expects that the functions:
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10.4.2 Fermi’s Golden Rule

We next consider the transitions from one of the initial discrete states to a !nal state that 
is part of a continuum, with density of states ( )ρ Em . For example consider the case of ion-
ization of an atom in which the initial state may be one of the discrete bound states and 
the !nal state includes a free electron momentum eigenstate that is part of a continuum of 
non-normalizable states. As has been shown above, the probability of transition between 
discrete states exhibits periodic dependence in time. But, if the !nal state is part of a con-
tinuum, an integral over all !nal states is required to get a resultant transition probability. 
A transition rate is associated with such a probability function. The !nal transition rate is 
given by Fermi’s Golden Rule.

An approximation to the sum of transition probabilities over !nal states is given by 
the integral:

 ∑ ∫= = ρ→ →( ) ( ) ( ) ( )P t P t P t E dE
m

n m n m m m  (10.35a)

which gives:

 
?∫ ( )= α

α
ρ( )

sin
( )

2

2

2

2P t
H t

E dEmn
m m  (10.35b)

As discussed above, when transitions are allowed for a longer time, the width of the 
central peak becomes very narrow, and therefore a very small energy range is expected 
to contribute to the integral (Eqn. 10.35b). In this range of energy, 2Hmn  and ( )ρ Em  almost 
remain the same, and they are treated independent of energy in the continuum of states. 
We thus have:
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We next consider the transitions from one of the initial 
discrete states to a final state that is part of a continuum, 
with density of states ρ(Em ).

Transition Probability 

The probability of transition between discrete states 
exhibits periodic dependence in time. But, if the final 
state is part of a continuum, an integral over all final 
states is required to get a resultant transition probability. 
A transition rate is associated with such a probability 
function. The final transition rate is given by Fermi’s 
Golden Rule. 
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An approximation to the sum of transition probabilities 
over final states is given by the integral 
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In this range of energy, Hmn 
2 and ρ(Em ) almost remain the 

same, and they are treated independent of energy in the 
continuum of states. We thus have 
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Note that


Transition Probability 

Since the integral is contributed by a very small energy 
range, our answer will not be changed even if the limit of 
integration over α is extended to ±∞ . We therefore have 


325Time-dependent Perturbations and Interaction of Field

If all !nal states do not necessarily have the same matrix element, then 2Hmn  must be 
replaced by an average value of 2Hmn .

Note that: 

 2 2 2
2

?
?

( )α = ω − ω = − − ω

⇒ = α

E E

dE d

mn m n

m

 (10.37)

Since the integral is contributed by a very small energy range, our answer will not be 
changed even if the limit of integration over α  is extended to ±∞ . We therefore have:
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where we made use of:
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Note that the total transition probability is proportional to t  for larger values of t . This 
linearity in t  is a consequence of the fact that total transitional probability is proportional 
to the area under the main peak whose height varies as 2t  and width varies as 1/t .

In obtaining Eqn. (10.38), we restricted the integral to the central peak only, which yields 
our answer 90% correct. Inclusion of more peaks from to the left and right of the central 
peak improves accuracy further.

The probability of transition per unit time ( )P t
t

, also termed the transition rate is:
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t
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This equation is known as Fermi’s Golden Rule. Equation (10.40) shows that total transition 

probability is independent of time, or ( )(1) 2∑d
dt

c t
m

m  is constant in time, provided that the 

!rst order perturbation theory is valid.
Note that for larger t , Eqn. (10.33), with the use of Eqn. (10.34), gives:
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which is the rate of transition from state φn  to φm . The total transition probability is 
then obtained from the integration 2?( ) ( )∫ ρ = ∫ ρ α→ →w E dE w E dn m m m n m m , which yields the 
same results as are given by Eqn. (10.40). Equation (10.41) also is called Fermi’s Golden Rule. 
It agrees well with experimental results when applied to atomic systems, and it is of great 
practical importance.
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Note that the total transition probability is proportional to 
t for larger values of t. 


Transition Probability 

We restricted the integral to the central peak only, which 
yields our answer 90% correct. Inclusion of more peaks 
from to the left and right of the central peak improves 
accuracy further.
The probability of transition per unit time P(t)/t, also 
termed the transition rate is 
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This equation is known as Fermi’s Golden Rule. It shows 
that total transition probability is independent of time.
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The probability of transition per unit time ( )P t
t

, also termed the transition rate is:

 ( ) 2 ( )2

?
= = π ρW

P t
t

H Emn m  (10.40)

This equation is known as Fermi’s Golden Rule. Equation (10.40) shows that total transition 

probability is independent of time, or ( )(1) 2∑d
dt

c t
m

m  is constant in time, provided that the 

!rst order perturbation theory is valid.
Note that for larger t , Eqn. (10.33), with the use of Eqn. (10.34), gives:
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 (10.41)

which is the rate of transition from state φn  to φm . The total transition probability is 
then obtained from the integration 2?( ) ( )∫ ρ = ∫ ρ α→ →w E dE w E dn m m m n m m , which yields the 
same results as are given by Eqn. (10.40). Equation (10.41) also is called Fermi’s Golden Rule. 
It agrees well with experimental results when applied to atomic systems, and it is of great 
practical importance.
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Exercise

1. A delta function bump H1 = αδ(x − a/2) is introduced at 
the center of the infinite potential well of width a , with 
walls at x = 0 and x = a . Calculate the first order 
correction to the allowed energies and wave function. 
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which is equal to α − +2 ( 1)
a

m n  for odd values of m  and n, and vanishes 
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Exercise

The first order corrections on the wave function
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