


General Theory

Consider a system consisting of N particles with masses m;,
mz, M3, .., mn. Let rj, j=1, 2,3, .., N, be the position
vector of the jth particle. The wave function of such a
system will depend on the position vectors of all the
particles and time:

‘// — W(71,72,73,-..,7N,I).

The Schrodinger equation for this N-particle system is
written as
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General Theory

where the Hamiltonian H is given by
A AR
H=— Z —V? —|—V(71,?2,?3,...,7N).

=1 2m]‘

Here, V(ri, rz, r3, ..,ry) is the potential energy of the
system, and the Laplace operator with respect to the
coordinates of the jth particle is

- 0> 9%  9?
V2 — ,
/ 8x§ i 07y? i 8z§

In analogy with the single-particle case, the quantity

(71,72, F3s s Ps ) |2 dT1d Tad T....d T,
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General Theory

is interpreted as the probability, at a given instant t, of
finding the particle 1 in the infinitesimal volume element d<,
particle 2 in the infinitesimal volume element dt,, and so on,

Therefore, as earlier, the normalization for the wave
function is written as

—+ oo —+ oo —+ o0 —+ oo oL . )
/ d’Cl/ dt drts... d’L’N|l//(7'1,I”2,I”3,...,I’N,l‘)‘ = 1.

—0Q —0Q

If the potential, V, is time independent, the stationary
states of an N-particle system are characterized by the
wave functions of the form

W (71,72, 73, e Pnst) = O (F1, T2, T, Py e HE
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General Theory

where E is the total energy of the system and the function
¢ satisfies the following time independent Schrodinger

equation

N 2
2o, o o
— Z —2m'V§¢(r1’-..,rN) +V(r1,...,rN)¢(r1,,,,,}"N) :E¢(r1’.“’rN).
=1 4Mm;

The expectation value of operator, A

A

+°° N — —
<W|A|w> = (]5*(71,...,71\7) A (P(I”l,...,rN) d’L’ld’Csz3...dTN,

The operators representing observables related to different
particles commute, while those related to a given particle
satisfy the commutation relations valid for a single-particle

system.
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General Theory

For instance, the position and momentum operators satisfy
the following commutation relations

[(Pa )k (Pp)e] = i1 6p,

where the Roman indices, Kk, |,..., stand for the particle’s
number (1,2,3,...,N) in the system, while the Greek indices
«,B,..., represent the Cartesian components of the position
vector, r, and momentum, p.

In summary, the coordinate and momentum operators of
different particles commute, while the coordinate and
momentum operators of the same particle satisfy the usual
single-particle commutation relations.
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Independent and Distinguishable Particles

When the particles belonging to a quantum mechanical
system do not interact among themselves and are subject
solely to an externally applied potential, they are called
independent.

For such a system, the potential can be written as
N
V(71,72,73,...,7N) = Z Vj(?j),
j=1

If, in addition, the particles can be distinguished from each
other in terms of one or several individual properties, they
are called distinguishable. The system of particles is then
said to be consisting of distinguishable independent particles.
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Independent and Distinguishable Particles

The separation of variables leading to N independent single-
particle Schrodinger equations

oo, o . |
3 VIO FV GO, 05) B0 (). J=1.23.N.
The stationary state wave function of the system is then

given by the product of the single-particle wave functions
V(1) = 01(F1) 2 (F2) 03 (75 () ¢ 012 B

= (Hl ¢j(?,-)) e it

with energy

N
E=E+E+E+..+Ey=) E|;
j=1
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System of Identical Particles

Let all the particles constituting the system be identical,
that is, they all have the same physical characteristics.

In classical mechanics, these particles, despite being
identical, may be distinguished from each other.

There is no way to distinguish between identical particles in
quantum mechanics. Clearly, identical particles are inevitably
indistinguishable in quantum mechanics.

let us define the so-called permutation operator Pj, which
interchanges the particles that are at the positions rjand r«.

Pir® (F1, P2y e Py oos Phs s I ) = O (P12 ooy Py coes By eons P ).
N—— N——
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System of Identical Particles

Since the particles are indistinguishable, no experiment can
determine which of the particles of the system is at rjand

which one is at r«. The probability density, therefore, should
remain unchanged, that is,

O (P17 o P eos Fhr oo PN) |7 = [0 (FLa P s P evn P o P )|

This, in turn, gives

O (P12 P Fhr s TN) = O (1o P oos Ts s B s ).
As a consequence, the wave function of a system of N
identical particles can either be symmetric or anti-
symmetric with respect to the interchange of any pair of
particles of the system.
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System of Identical Particles

In nature, as confirmed by experiments, particles with
integer spin have symmetric wave functions, while the
particles with half-odd integer spin are characterized by
the anti-symmetric wave functions.

The Hamiltonian of a system of N identical particles is a
sum of the Kinetic energy operators and the potential
energy operators of all the particles
N 32
A p; -

H(?l,?z,...,?j,...,?k,...,?N) = Z — —|—\7(?1,?2,...,?j,...,?k,...,rN)

= 2m

If we exchange any pair of particles, say the jth and the
kth, the potential energy must remain unchanged, that is,

25/11/2022 Jinniu Hu ==,



System of Identical Particles

A\

V(?la o.-,?ja coes ?k, coes ?N) — V(?l’ '”7?](’ ""?j’ Tt

If it is not so, the particles will be distinguishable and that
will contradict the quantum mechanical assertion that
identical particles are indistinguishable.

Consider the eigenvalue problem

A\

B (PP e oos N O (Lo P oo Flr eos TN ) = EQ (Pl s P eoos T eons Py ).

The wave functions corresponding to all possible
permutations of particles of the system will have one and
the same energy E. That is, the eigenstates of the
Hamiltonian are degenerate. This is called the exchange

degeneracy.
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System of Identical Particles i

Furthermore, we have

ﬁpjkd)(?laa?]aa?k”?]v) 1 r

— EQ(Fly oo FhreosFja o) = EP4® (Fro oo oo P

= PuEQ(FlyeesFiseos Fhr s ') = PitH O (P1y oy Ty ooty Py s P
In other words,

(APy— PyB1) O (Frs oo T oo s s Py) = 0.

The last equation shows that the operator Pjx commutes with
the Hamiltonian

(I:]pjk—pjkl:\]) — [H,pjk] = 0.

It means that the symmetry property of the wave function
of a system of N identical particles is conserved in time
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Pauli Exclusion Principle

Let ¢. (%), ¢..(5.), ¢..(E),..., ¢..(E) be the normalized
single- particle wave functions, where each of the indices
n, N, N,,.., nystands for the total set of quantum numbers
relevant to the problem at hand. We shall assume, for now,

that n, n,, n,,...,n,are all different.

The symmetric and the anti-symmetric wave functions, ¢.(&,

£ Eapees &) and @. (5, &, &, ..., &) respectively, of the

system of N identical and indistinguishable particles are
written as

05(£1.82.83,....8N) = \/—ZP{% E1)Ony (82) Oy (E3) 0N (EN) }

%(&1 52,3, ---,§N \/72 P{¢n1(§1)¢n2(§2)¢n3(§3)(PN(‘SN)}
2B 117202 o NIU U =



Pauli Exclusion Principle

where the sum stands for the summation over all possible
permutations (N! in all) of the particles.

It is worth noting that in the case of the anti-symmetric
wave function, (-1)p= +1, if (&, &,.., &,.., &,.., &) (resulting

from the interchange of the ith and the jth particles) is an
even permutation of (&, &,..., &,..., &,.., &), while (-1)p= -1,

if (5, &,ees Eiyenes Eyees &) i an odd permutation of (%, &,.., &,
s Eipenes En)-
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Pauli Exclusion Principle

According to this prescription, the symmetric wave function
for a system of two indistinguishable particles assumes the
form 1

¢S(§1’§2) — NG [(Pnl (§1)¢n2(§2) + On, <§2>¢n2(€1)] ’

while the anti-symmetric wave function for the same
system can be written as

1
¢a(§1,§2) — ﬁ [(Pnl (51)4)712(52) _ (P”ll (52)@12(51)] y

The factor in these formulae, comes from normalization of
the two-particle wave function
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Pauli Exclusion Principle

Similarly, for a three-particle system, the symmetric wave
function has the form

0s(&1,80.83) = % (D, (1) Oy (82) Py (E3) + Oy (82) Py (83) Dy (S1)

+ ¢n1 (53)4)”2 (51)¢n3 (62) + ¢n1 (&1)¢n2 (&3)¢n3 (52)

T ¢ﬂ1 (&3)@!2 (&2)(1)”3 (&1) + ¢n1 (§Z)¢n2 (§I)¢n3 (53)] ’
while the anti-symmetric wave function for the three-

particle system can be written as

bu(E1, 6, E3) = % [0y (E1) 0 (E2) 0y (E3) + 0y (E2) By (E3) 00 (61)

+ ¢n1 (53)‘1)”2 (gl)d)ns (62) - ¢n1 (61)(:1)”2 (53)(1)”3 (62)
- ¢n1 (‘53)¢n2 (§2>¢n3 (él) - ¢n1 (§2)¢n2 (§1>¢n3 (63)] :
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Pauli Exclusion Principle

The anti-symmetric wave functions can also be written as
determinants:

1

¢a(§1a§2) — \ﬁ

(bnl(&l) ¢n1<§2)
¢n2<§1> ¢n2(§2> |

. Pn, (‘gl) On) (52) On, (&3)
¢a(§1,§2,§3) — ﬁ ¢n2(‘§1) ¢n2(§2) ¢n2(§3)
¢n3 (61) ¢n3 (62) ¢)n3 (53)
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Pauli Exclusion Principle

In general, the N-particle anti-symmetric wave function can
be written as

¢n1(§1) ¢n1(€2) (Pnl(’gN)
1 (Pnz(gl) ¢n2(‘§2) (Pnz(‘SN)
¢a(§1,§2,€3,...,§j\i)zﬁ

Oy (81) Py (S2) o Puy(Sn)
This is known as the Slater determinant. Note that
interchanging any two identical particles is equivalent to
interchanging the corresponding columns of the Slater
determinant. From the properties of the determinants, we
know that interchanging two columns of a determinant

results in the multiplication of the determinant by (-1).
W



Pauli Exclusion Principle

What will be the expressions for the functions ¢.and ¢,

when some (or may be all) of n,, j = 1,2,3,...,N coincide?

If some of these n,coincide, then we have to avoid double
counting. For instance, if n,occurs m, times, n,occurs m,
times, ..., nyoccurs m, times, then the total number of
distinct permutation of N indices will be

N!
mi!my'ms!.. .my!’
and hence, the symmetric wave function of the system will
be

0§10 i) = LI 5, (60)0 (2) 0 ()}
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Pauli Exclusion Principle

For anti-symmetric wave function, all n,have to be different,
otherwise the wave function will vanish.

In a system of N identical fermions, no two fermions can
occupy the same single-particle state at a time; every
single-particle state can be occupied by (at most) one
fermion only. This is known as the Pauli exclusion principle.

Note that £ includes spatial as well as spin variables. The

wave function of a particle is written as a product of the
spatial and the spin parts
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Pauli Exclusion Principle

Generalizing it to the system of N identical particles, we
have

—

¢(?la---a?Na§1a-“7SN) — ¢(?la,?N)X(§1,,§N)

In the case of identical bosons, when the wave function must
be symmetric, the spatial and the spin parts must have the
same parity, that is, they are both either symmetric or anti-
symmetric. Thus,
¢S(71,...,?N,§1,...,§1) = { ¢S(?1,.”,?N) XS(S):},W,S;N)
Ou (Pl s PN) Xa(S15.- SN ),

where the suffixes s and a stand for the symmetric and the
anti-symmetric wave functions, respectively.
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Pauli Exclusion Principle

For a system of N identical fermions, the wave function
must be overall anti-symmetric and, therefore, the
spatial and the spin parts of the wave function must
have opposite parities, that is, if one of them is
symmetric, the other has to be anti-symmetric, and vice

versa. Thus, .

¢a(?l9“"?]\79§1,-..,§1) :{ ¢S(r1’.“,rN)xa( )

Xa = %{ﬂ =T, ~L1}ms =0; $=0, singlet state

7
Tl Tz mg, = 1

As = %{Tl ~Lz + Tz ~L1} ms; =0 ; S=1, triplet state
\Ll \Lz mg = -1
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Second quantization & 4% % £ %7

\\V/_
/1919

The Hamiltonian for the one-dimensional harmonic
oscillator (a particle of mass m attached to a spring) is

iven b A
W P e P o
2m 2 2mdx: 2 ’

Let us introduce the following operators
1 L1

a = ip+mwx), a —ip+mwx).
T P ) TR )
Consider the product
AAt . A A . A AN AD Ry . A A
aa' = (ip + mwX)(—ip + mwx) = (p°+ m-w“x — imw(X, p])
2mhw 2mhw
1 1 (p* 1 1 A 1
= (P + m*w?3* + mhw) = D o ) == =
2mhw ho \ 2m 2 2 ho 2
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Second quantization %‘ 3 /’

We get that

Similarly, we have
1 1

a'4d = ———(—ip + moR)(ip + mwx) = ———(p* + m*w?*3* + imw[x, p])
2mhw 2mhw
1 1 [ 1 1 H 1
——(p? + m*w?%? — mho) = b +—mwi? | ——=— ——
2mha) ho \ 2m 2 2 ho 2
and 1
=hw ( a—+ 2)

The following commutation relation between a and a*
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Second quantization

The Schrodinger equation is completely equivalent to any
of the following equations

ho (aT&Jr %) 0 =E¢, or ho <acff - —) o =Eo.
Assume that ¢,is an eigenfunction of the Hamiltonian H
with energy E.. Then, a*¢,is an eigenfunction of the

Hamiltonian with energy (E,+hiw).
. 1 1
Aad' ¢, = ho (&TH 5) a'g, =ho (a*aa’f + icﬁ ) O
(1 Latay o Lat | st iy |
=hw-< a (1—|—a a)—l—ia =a' |ho aa—l—i O, +hwo,

= 4" [H¢y+hoo,) = a' [E ¢y +hoo,] = (E,+ho)d' ¢,
W



Second quantization

Similarly
A 1 1
A4, = ho (aa‘f - 5) a¢, = ho (azﬁ a— 5&) On

— o {a (aa" —1) — %a} 0, = a4 [h(o (a&* - %) O —hwd)n]

=da [H(pn _hw(Pn} = &[En¢n _hwq)n] — (En _hw)d On.
Thus, while acting on the eigenfunction ¢,of H with
energy E, the operator a lowers the energy by one unit
of hw. The operators a* and a are called ladder

operators. The operator a+*is also known as creation
operator, while the operator a is also called annihilation
operator.
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Second quantization

All what we said earlier suggests that there must exist

the lowest energy state (lowest rung in the ladder)

whose wave function ¢,(x) must satisfy the equation
ClA(P() (x) = 0.

We can use this to determine ¢.(x). We have
1

(ip + mw£) o (x) = 0.

V2mho
Or,
d
¢d0ix) = —$x¢o(x)

25/11/2022 Jinniu Hu ==,



Second quantization

Integrating, we get

d maeo .2 _x_2
¢(/())O(S;) = —n;—w/xdx. = @o(x) =Age 2 =Apge 0,
where A,is a constant to be determined and
X0 = Vh/mw
The wave function of the first excited state is obtained as
A 1 d - 2 -5
01 (x) =a"¢o(x) = N (—ha —I—ma)x)Aoe 0 = \/Exgxe 0,

Since, by acting on an eigenstate of the Hamiltonian, the
creation operator increases its energy by one unit of fiw,

the energy of the first excited state is 3iiw /2.
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Second quantization

Let us introduce an operator
N=ad'a
It is called the occupation number operator or, simply,
the number operator.

First, we notice that the number operator commutes with
the Hamiltonian:

Since, N and H commute, they must have a common set of
eigenvectors. Let |n) be the nth joint eigenvector of these

operators:
Nln) =n|n).
W



Second quantization

and
H|n) = E, |n),

where n is a positive integer and E,, n=1,2,3,... are the
energy eigenvalues.

Next, we compute the commutator of a and a+ with N. We
have

Similarly,
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Second quantization

Therefore,

N@ n)) =a"(N+1)|n) = (n+1)a"|n).

By acting on the state In), the operator a decreases the
number n by unity and generates a new eigenstate |n - 1),

that is,

alny = ayln—1).
Similarly, the operator a+, when acting on |n), increases n
by unity and generates a new eigenstate, In + 1) of N, that

is
a'lny=>b |n+1)
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Second quantization
On the other hand

(nladh) - (@|n)) = |a,|*(n—1|n—-1) = |a,|

Therefore, we must have

> =n. = a,=+/n
Similarly, we arrive at
b =n+1. = b,=vVn+l1.
We can now apply the creation operator a+ on |0) to

generate all possible excited state energy eigenvectors.

1) =a'l).
1 1
— — 411 = —— 4™|0), e,
2) = 7 1) =% a"10), !
1 1
1 1 = — ATl — = — 5Tn
3) — 7 AT2) = = at?10) ) NG, a'ln—1) py a™|o)
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Second quantization

Hence, to find any excited state eigenvector |n), we need to

apply the creation operator n successive times to the
vacuum state |0).

Any two of the energy eigenvectors In) and |n)
(corresponding to different eigenvalues) are orthogonal, and
the sequence of the vectors {l0), |1, 12) |3),. . . ,In)}
constitutes an orthonormal and complete basis:

oo

(n'[n) = Oyns ) In)(n| =1

n=0

25/11/2022 Jinniu Hu ==,



Occupation number representation 4% %z £ %7
— e O

The set of occupation numbers contains all the information
necessary to construct an appropriately symmetrized or
antisymmetrized basis vector, denoted

D) = |n1,n9,...,ng, - .).

For bosons, n,must be a non-negative integer; for fermions,
the Pauli exclusion principle restricts n, to be either O or 1.
There is a unique vacuum or no-particle state:

0) = [0,0,0,0,...).

The single-particle states can be represented

‘CV> = \0,0,...,O,na: 1,0,> = |01702,...,Oa_l,la,0a+1,...>.
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Occupation number representation 4% %z £ %7
— e O

Let us define the bosonic creation operator a’, by
GJL|7?,1,TL2, vy Na—1, Ny Na415 - - > -V na—l_l |n17n27 s 7na—17na+17 Nat1, - - '>7

and the corresponding annihilation operator a, by

Q|1 M2, o s a1, M, Mot 1y -+ +) = A/Toa M1, M2y -+ o a1, Mo — 1, Ny 1, - - 1)

We can define the number operator

N, = a! aq,,
such that
Nolni,no, .oy ngy o) = Na|ni,no, oo gy - 2)
and
N => N,.

-
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Occupation number representation 4% %z £ %7

The simplest application of the creation and annihilation
operators involves the single-particle states:

all0) = la),  aalB) = da,s/0).
When applied to multi-particle states, the properties of the
creation and annihilation operators must be consistent with

the symmetry of bosonic states under pairwise interchange
of particles.

For any pair of single particle states |o) and |8), and for
any vector |¥) in the Fock space, we have

al,ah|¥) = apal |T) 1005|¥) = a5a| ).
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. = V47
Occupation number representation (il); 1% il £ 2
L

alag|V) = agal |¥) for a # 5. aual |U) — al ag|¥) = (No+1)|U) — N, |T) = |T)

The properties described in the preceding paragraph can
be summarized in the commutation relations

[aL,aE] = |aq,ag] =0, [aa,ag] = 0o, 1.

One consequence of these commutation relations is that any
multi-particle basis state can be written

71, M9, ..y Ny e o) = (ai)m (a£>n2 . <al>na ... ]0),

or equally well, as any permutation of the above product of
operators acting on the vacuum. For example,

2,1,0,0,...) = ajaja|0) = ajala}|0) = ajaiai0).
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Occupation number representation 1% %z £ %7
— e O

The fermionic case is a little trickier than the bosonic one
because we have to enforce antisymmetry under all
possible pairwise interchanges. We define the fermionic
creation operator c*, by

CL|7’L1,TZ2, ey Na—1, Oaana-l-h . > — (_1)Va ‘n17n27 sy N1, 1a7na+17 . '>7

CL|n1,n2, oo 1, Loy Naat,--.) = 0

and the annihilation operator ¢, by

ca|n1,n2,...,na_l,la,naﬂ,...) = (—1)%‘ |n1,n2,...,na_l,Oa,naH,...},
CalM1,m2, . Na—1, 00, Nay1,---) = 0.
where

vo =Y. Ns, where Nj = clics,

B<a
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Occupation number representation 4% %z £ %7
— e O

measures the total number of particles in single-particle
states having an index § < a.

Therefore, in Fermionic system, the particle number

operator has
Nolni,ng, .o ing, . ..) = nglnig,ne, oo ng, ... for n, = 0 or 1.

and
AT =~ W) fora £ 5, b =0 = )

caCp|V) = —cpca|¥) for a # 3, and cuce|V) = 0.
(Cach + €4ca)|¥) = (1= No) W) + No|¥) = |¥)
The properties above can be summarized in the

anticommutation relations
{C:rw Cg} — {COH Cﬁ} =0, {Ca, C};} — 5Oé,ﬂ]7
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\UN/

Ha x Y

where {A, B} = AB + BA is the anticommutator of A and B.
These anticommutation properties fundamentally distinguish
the fermionic operators from their commuting bosonic
counterparts.

Occupation number representation (i)

Given the anticommutation relations, any multi-particle basis
state can be written

71, n0, o Ny e 2y = (ci)nl (cg)m . (CL)M ... ]0),
or equally well, as any permutation of the above product of

creation operators with a sign change for each pairwise

interchange of adjacent operators. For example,

[1,1,1) = cicheb|0) = —cheich|0) = clebei|0) = —ciebei|0) = cicie}]0) = —cieiei|0)
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Occupation number representation (% %z £ 4

The operators which involve sum over only single particles
are known as single-parficle operators

Zfl Tz,p@

In second quan’rization, this operator can be written as
By =) (A)a]ay

where LU
WA = [ i) A p)én(r
The operators which involve sum over two particles are

known as two particle operators
FQZ Z <l1l2]f2\l4l3>a;rla2r2algal4

l1,l2,l3,l4

(l1la| fa|lalz) = &r (r1) @5, (r2) f2(r1, p1; r2, p2) 1, (71) 15 (72)

1,72
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Exercise

1. Three spinless non-interacting particles, with respective
masses m;, mz, and msin the ratio myi:mz:ms3=1:2:3, are
subject to a common infinite square well potential of width
L in one spatial dimension. Determine the energies and the
corresponding wave functions in the three lowest lying
states of the system.
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Exercise

1. Three spinless non-interacting particles, with respective
masses m;, mz, and msin the ratio myi:mz:ms3=1:2:3, are
subject to a common infinite square well potential of width
L in one spatial dimension. Determine the energies and the
corresponding wave functions in the three lowest lying
states of the system.

Solution: The corresponding single-particle wave functions
and energies are

2 T
(Z)nj(xj) = \/;Sin (nJij) , J=1,2,3,
B n?nzhz
o 2mjL2 ’

25/11/2022 Jinniu Hu ==,

L;

i=1,2,3.



Exercise (% %z £ %7

/1919

Ground state: For the ground state, we have n,= n,= n,= 1,
and the energy of the system will be

2% [ 1 1 1 117272
Ei = —

2L2 mj my ms B 12m1L2 .

The corresponding ground state wave function is given by

1/1111()61,)62,)63) = \/g sin (%xl) sin <%X2> sin <%X3> .
First excited state: Since m.> m,> m,, the first excited state
will correspond to n,=n,=1 and n,= 2.

- w1 L 17
e m, mo m3) 12mL?

(x1,x x)—\/ﬁsin(zx)sin<£x)sin z—ﬂx
Vi2(x1,x2,43) =4/ 73 7 72 73
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Exercise

Second excited state: The second excited state corresponds
to the case when n,= n,=1 and n,=2. Hence, its energy, E.,

po_mn (1 L4 _ 5n°h?
RPU7or \m,  m, my; ] 3mL2

equals:

The corresponding wave function is given by

8 . (T . (27 : T
l,lflzz(xl,xQ,)Q): Esm(le) Sin TX2 sm(fxg .

Similarly, one can determine the energies and the
corresponding wave functions of all other excited states of
this three-particle system.
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Exercise

2. Two non-interacting particles, each of mass m, are
confined to move in a one-dimensional potential well: V (x)
=0, for 0 < x < 2a and V (x) = co elsewhere, where a is a
positive constant. What are the energies and the
corresponding degeneracies of the three lowest lying states
of the system, if the particles are indistinguishable spin-1/2
fermions?
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Exercise

2. Two non-interacting particles, each of mass m, are
confined to move in a one-dimensional potential well: V (x)
=0, for 0 < x < 2a and V (x) = co elsewhere, where a is a
positive constant. What are the energies and the
corresponding degeneracies of the three lowest lying states
of the system, if the particles are indistinguishable spin-1/2
fermions?

Solution: The single particle wave function and energy are

I . /nm n? m? i
On(x) = \/g sin (Zx) & = S
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Exercise

It is obvious that the nth energy state of the system will
be characterized by two sets of quantum numbers n,and n..
The corresponding stationary state wave function of the
system will be

Vi (E1.E0.1) = Gy, (11,%2) £ (S1,5) €™ 7 Emim!
where 2
Epny = 6n, + &y, = (nf +n3) -
Since the particles are indistinguishable fermions, the
ground state of the system will have both the fermions in
the single-particle states with n,= n,= 1 under the condition
that they will have opposite spins.

& + & = n*h* /4ma’.
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Exercise

Since for a fermionic system the overall wave function must
be anti-symmetric, the ground state wave function will be
given by

1 mrmw nym

vi1(&1,8) = . sin <EX1) sin (z—axz) Xsinglet (51,52),

where

1 O -
tomges1,52) = —= |16 -
is anti-symmetric with respect to the interchange of

particles. The superscripts ‘(+)" and ‘(-)’ stand for spin up
and spin down, respectively.

The first excited state of the system will correspond to n,=
2,n,=1or n=1,n,= 2. This state will have energy
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5m2h?
Epp=Ey =

Sma?

The wave function of the system will be given by

ds(x1,x2) Xsinglet(sl ,52)

¢a (-xla-x2) Atriplet (51,52).

Va(&1,6) = {

where

Xtriplet(SIaSZ) = 9 % [Xl X(_) +X(_)X2

25/11/2022 Jinniu Hu ==,



Exercise

The spatial parts of the wave function are

1 TX

= ) ) =) 5]
Ou(x1,X2) = fa {sm (@) sin (%) — sin (%) sin (%) :

Since there are four possible spin configurations, the first
excited state of the system is 4-fold degenerate.

The second excited state of the system corresponds to n,=
n.= 2 and the energy of the system in this state will be

2
ma a
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Q) _ _ Th 1 . /7x . (TTX
EYY =Fy = ——. W22(§1a§2) — a sin <—1> Sin <—a2> Xsinglet(slaSZ)'



Exercise

3. Show that operators a and at+are not Hermitian while
operator at+a is Hermitian.
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Exercise

3. Show that operators a and at+are not Hermitian while
operator ata is Hermitian.

Solution: The matrix elements of a and a+ are:
G = (mla|n)=n(mln-1)=nd, s () =(nlalm) =(Vm (njm=1)) = Vb,
(a+)mn =(m|a"|n)=Vn+1(mn+1)=vn+18,, .1,

(a;;m)* =(n|a’|\m) =Jm+1(njm+1)

- m + 18n/m+1 i a;m

The matrix elements of ata are:

(a+a)mn = <m|a+a\ n> = namn {(a+a)nm }* = <n\a+a\m>* = ma”m
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