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Consider a system consisting of N particles with masses m1, 
m2 , m3 , ..., mN . Let rj , j = 1, 2, 3, …, N, be the position 
vector of the jth particle. The wave function of such a 
system will depend on the position vectors of all the 
particles and time: 
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1,2,3, ...,N, be the position vector of the jth particle. The wave function of such a system
will depend on the position vectors of all the particles and time:

ψ = ψ(!r1,!r2,!r3, ...,!rN , t). (10.1.1)

The quantum mechanical formalism for a many-particle system is developed by
generalizing the single-particle machinery to the N-particle system. The Schrödinger
equation for this N-particle system is written as

ih̄
∂ψ
∂ t

= Ĥψ(!r1,!r2,!r3, ...,!rN , t), (10.1.2)

where the Hamiltonian Ĥ is given by

Ĥ = −
N

∑
j=1

h̄2

2m j
!∇2

j +V (!r1,!r2,!r3, ...,!rN). (10.1.3)

Here, V (!r1,!r2,!r3, ...,!rN) is the potential energy of the system, and !∇2
j is the Laplace

operator with respect to the coordinates of the jth particle, that is,

!∇2
j =

∂ 2

∂x2
j
+

∂ 2

∂y2
j
+

∂ 2

∂ z2
j
. (10.1.4)

In analogy with the single-particle case, the quantity

|ψ(!r1,!r2,!r3, ...,!rN , t)|2 dτ1dτ2dτ3...dτN , (10.1.5)
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is interpreted as the probability, at a given instant t, of 
finding the particle 1 in the infinitesimal volume element d�1, 
particle 2 in the infinitesimal volume element d�2, and so on, 
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is interpreted as the probability, at a given instant t, of finding the particle 1 in the
infinitesimal volume element dτ1 around!r1, particle 2 in the infinitesimal volume element
dτ2 around !r2, particle 3 in the infinitesimal volume element dτ3 around !r3, and so on,
particle N in dτN around!rN . Therefore, as earlier, the normalization for the wave function
is written as

∫ +∞

−∞
dτ1

∫ +∞

−∞
dτ2

∫ +∞

−∞
dτ3...

∫ +∞

−∞
dτN |ψ(!r1,!r2,!r3, ...,!rN , t)|2 = 1. (10.1.6)

If the potential, V , is time independent, the stationary states of an N-particle system are
characterized by the wave functions of the form

ψ(!r1,!r2,!r3, ...,!rN , t) = φ (!r1,!r2,!r3, ...,!rN)e−
i
h̄ Et , (10.1.7)

where E is the total energy of the system and the function φ (!r1,!r2,!r3, ...,!rN) satisfies the
following time independent Schrödinger equation

−
N

∑
j=1

h̄2

2m j
!∇2

jφ (!r1, ...,!rN)+V (!r1, ...,!rN)φ (!r1, ...,!rN) = Eφ (!r1, ...,!rN). (10.1.8)

As in the case of a single-particle system, the probability density, ρ ,

ρ = |ψ|2 = φ ∗(!r1, ...,!rN)e
i
h̄ Etφ (!r1, ...,!rN)e−

i
h̄ Et = |φ (!r1, ...,!rN)|2, (10.1.9)

and the probability current density, !j,

!J =
h̄
2i

N

∑
k=1

1
mk

[(
!∇kφ ∗(!r1, ...,!rN)

)
φ (!r1, ...,!rN)−φ ∗(!r1, ...,!rN)

(
!∇kφ (!r1, ...,!rN)

)]
,

(10.1.10)

do not depend on time in a stationary state. Also, the expectation value,

〈ψ|Â|ψ〉=
∫ +∞

−∞
φ ∗(!r1, ...,!rN) Â φ (!r1, ...,!rN) dτ1dτ2dτ3...dτN , (10.1.11)

of a time-independent observable Â does not depend on time in a stationary state.
Consequently, it is conserved. For instance, energy of a many-particle system in a
stationary state is conserved.

So far as the commutation relations for the operators are concerned, the operators
representing observables related to different (distinct) particles commute, while those
related to a given (specific) particle satisfy the commutation relations valid for a

If the potential, V, is time independent, the stationary 
states of an N-particle system are characterized by the 
wave functions of the form 


320 Fundamentals of Quantum Mechanics

is interpreted as the probability, at a given instant t, of finding the particle 1 in the
infinitesimal volume element dτ1 around!r1, particle 2 in the infinitesimal volume element
dτ2 around !r2, particle 3 in the infinitesimal volume element dτ3 around !r3, and so on,
particle N in dτN around!rN . Therefore, as earlier, the normalization for the wave function
is written as

∫ +∞

−∞
dτ1

∫ +∞

−∞
dτ2

∫ +∞

−∞
dτ3...

∫ +∞

−∞
dτN |ψ(!r1,!r2,!r3, ...,!rN , t)|2 = 1. (10.1.6)

If the potential, V , is time independent, the stationary states of an N-particle system are
characterized by the wave functions of the form

ψ(!r1,!r2,!r3, ...,!rN , t) = φ (!r1,!r2,!r3, ...,!rN)e−
i
h̄ Et , (10.1.7)

where E is the total energy of the system and the function φ (!r1,!r2,!r3, ...,!rN) satisfies the
following time independent Schrödinger equation

−
N

∑
j=1

h̄2

2m j
!∇2

jφ (!r1, ...,!rN)+V (!r1, ...,!rN)φ (!r1, ...,!rN) = Eφ (!r1, ...,!rN). (10.1.8)

As in the case of a single-particle system, the probability density, ρ ,

ρ = |ψ|2 = φ ∗(!r1, ...,!rN)e
i
h̄ Etφ (!r1, ...,!rN)e−

i
h̄ Et = |φ (!r1, ...,!rN)|2, (10.1.9)

and the probability current density, !j,

!J =
h̄
2i

N

∑
k=1

1
mk

[(
!∇kφ ∗(!r1, ...,!rN)

)
φ (!r1, ...,!rN)−φ ∗(!r1, ...,!rN)

(
!∇kφ (!r1, ...,!rN)

)]
,

(10.1.10)

do not depend on time in a stationary state. Also, the expectation value,

〈ψ|Â|ψ〉=
∫ +∞

−∞
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The operators representing observables related to different 
particles commute, while those related to a given particle 
satisfy the commutation relations valid for a single-particle 
system. 
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For instance, the position and momentum operators satisfy 
the following commutation relations 

General Theory 

where the Roman indices, k, l,..., stand for the particle’s 
number (1,2,3,...,N) in the system, while the Greek indices 
�,�,..., represent the Cartesian components of the position 
vector, r, and momentum, p. 
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single-particle system. For instance, the position and momentum operators satisfy the
following commutation relations

[(r̂α)k, ( p̂β )!] = ih̄δk!δαβ , (10.1.12)

where the Roman indices, k,!, . . ., stand for the particle’s number (1,2,3, ...,N) in the
system, while the Greek indices α ,β , . . ., represent the Cartesian components of the
position vector,"r, and momentum, "p. Note that if k = !, we are talking about the one and
the same particle. For instance, if k = != 1, we have the following commutation relations
among the position and momentum operators of the first particle:

[(r̂α)1, ( p̂β )1] = ih̄δ11δαβ = ih̄δαβ . (10.1.13)

If α = β = 1 in (10.1.13), we get that [(x̂1)1, ( p̂1)1] = ih̄δ11 or [x̂1, p̂x1] = ih̄. On the other
hand, if α = 1 and β = 2, we have [x̂1, p̂x2] = ih̄δ12 = 0. Similarly, we can calculate the
aforementioned commutators for other values of α and β .

In summary, the coordinate and momentum operators of different particles commute,
while the coordinate and momentum operators of the same particle satisfy the usual single-
particle commutation relations.

It is quite clear now that in order to study the physical characteristics of a many-particle
system in a stationary state, we have to solve the equation (10.1.8) for a given potential
energy operator V . In the general case of arbitrary V , it is very difficult (almost impossible)
to solve the equation (10.1.8). Our earlier experience tells us that it would be possible to
find the solutions if (10.1.8) could somehow be split into a system of N single-particle time
independent Schrödinger equations. It turns out that this can be achieved in a special case
of systems consisting of the so-called, independent particles. We shall discuss these in the
following subsections.

10.2 System of Independent and Distinguishable Particles

When the particles belonging to a quantum mechanical system do not interact among
themselves and are subject solely to an externally applied potential, they are called
independent. This is because of the fact that each of them experiences its own potential,
independent of all other particles of the system. For such a system, the potential in
(10.1.8) can be written as

V ("r1,"r2,"r3, ...,"rN) =
N

∑
j=1

Vj("r j), (10.2.1)

where Vj("r j) is the potential experienced by the jth particle. If, in addition, the particles
can be distinguished from each other in terms of one or several individual properties, they
are called distinguishable. The system of particles is then said to be consisting of
distinguishable independent particles. Let us assume that the particles of our system are

In summary, the coordinate and momentum operators of 
different particles commute, while the coordinate and 
momentum operators of the same particle satisfy the usual 
single-particle commutation relations. 
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other in terms of one or several individual properties, they 
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said to be consisting of distinguishable independent particles. 
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The separation of variables leading to N independent single-
particle Schrödinger equations 


Independent and Distinguishable Particles 

The stationary state wave function of the system is then 
given by the product of the single-particle wave functions 
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distinguishable by their masses, that is, each of the particles has its own mass
m j, j = 1,2,3, . . . ,N, different from the masses of all other particles of the system. Under
these conditions, the time-independent Schrödinger equation (10.1.8) permits separation
of variables leading to N independent single-particle Schrödinger equations

− h̄2

2m j
!∇2

jφ (!r j)+V (!r j)φ j(!r j) = E jφ j(!r j), j = 1,2,3, ...,N. (10.2.2)

The solution of each of these equations yields a single-particle wave function φn j
corresponding to the energy eigenvalue En j , j = 1,2,3, ...,N, where n j stands for the entire
set of quantum numbers of the jth particle. The stationary state wave function of the
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Let all the particles constituting the system be identical, 
that is, they all have the same physical characteristics. 


System of Identical Particles 

In classical mechanics, these particles, despite being 
identical, may be distinguished from each other. 

There is no way to distinguish between identical particles in 
quantum mechanics. Clearly, identical particles are inevitably 
indistinguishable in quantum mechanics. 


let us define the so-called permutation operator Pjk, which 
interchanges the particles that are at the positions rj and rk. 
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The energy required to excite the system will be

E(1)−E(0) =
3π2h̄2

2m1c2 . (10.2.22)

10.3 System of Identical Particles

Let all the particles constituting the system be identical, that is, they all have the same
physical characteristics. In classical mechanics, these particles, despite being identical,
may be distinguished from each other. For instance, we can colour them differently at t = 0
and then keep track of their individual trajectories separately in time. This will enable us
to distinguish them at any instant of time t. We thus conclude that in classical mechanics,
identical particles are always distinguishable.

Let us see whether identical and classically distinguishable particles remain
distinguishable in quantum mechanics or not. In quantum mechanics, colouring the
particles means putting separate tags on them which we cannot do. This is because putting
a tag on them means specifying some distinct physical characteristic for each of the
particles of the system and this cannot be achieved in view of the fact that all of them have
the same maximal set of commuting observables. Secondly, due to the uncertainty
principle, even if the position of a particle is known at a given instant of time, its
momentum is completely indeterminate. Therefore, the very concept of trajectory of a
quantum particle loses its meaning and we cannot follow trajectories of the individual
particles, the way we proposed to do in classical mechanics. Therefore, there is no way to
distinguish between identical particles in quantum mechanics. Clearly, identical particles
are inevitably indistinguishable in quantum mechanics. This indistinguishability of
identical quantum particles has some interesting consequences, which we are going to
discuss here.

It turns out that, due to indistinguishability, it is possible to deduce some important
properties of the wave functions of a system of N identical particles without solving
(10.1.8). For this purpose, let us define the so-called permutation operator P̂jk, which
interchanges the particles that are at the positions !r j and !rk. Its action on the wave
function of the system will then read

P̂jkφ (!r1,!r2, ...,!r j, ...,!rk︸ ︷︷ ︸
, ...,!rN) = φ (!r1,!r2, ...,!rk, ...,!r j︸ ︷︷ ︸

, ...,!rN). (10.3.1)

Since the particles are indistinguishable, no experiment can determine which of the
particles of the system is at!r j and which one is at!rk. The probability density, therefore,
should remain unchanged, that is,
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|φ (!r1,!r2, ...,!r j, ...,!rk, ...,!rN)|2 = |φ (!r1,!r2, ...,!rk, ...,!r j, ...,!rN)|2. (10.3.2)

This, in turn, gives

φ (!r1,!r2, ...,!r j, ...,!rk, ...,!rN) = ±φ (!r1,!r2, ...,!rk, ...,!r j, ...,!rN). (10.3.3)

As a consequence, the wave function of a system of N identical particles can either be
symmetric or anti-symmetric with respect to the interchange of any pair of particles of the
system. In nature, as confirmed by experiments, particles with integer spin
(s = 0,1h̄,2h̄,3h̄, ...) have symmetric wave functions, while the particles with half-odd
integer spin (h̄/2,3h̄/2,5h̄/2, ...) are characterized by the anti-symmetric wave functions.
The former satisfy Bose–Einstein statistics and are called bosons, whereas the latter
satisfy Fermi–Dirac statistics and are called fermions. Note that the relation between spin
and statistics can be derived only in relativistic quantum mechanics. In our non-relativistic
quantum mechanics, it is taken to be as an axiom.

Composite particles: The natural question arises: What are the symmetry properties of the
wave functions of composite particles under the interchange transformation?

Particles that are not elementary but consist of several identical elementary particles
(electrons, positrons, muons, etc) are called composite particles. They can also be
classified as fermions and bosons. The thing is that the spin of a composite particle can be
obtained by adding up the spins of its constituents. If the spins of the constituent particles
add up to a half-odd integer (in the units of h̄), the composite particle has a half-odd
integer spin and it behaves like a fermion. Consequently, it obeys Fermi–Dirac statistics.
If, on the other hand, the resultant spin has an integer value, the composite particle
behaves like a boson and obeys Bose–Einstein statistics. For instance, nucleons are
fermions because they consist of three quarks with half-odd integer spins, while mesons
are bosons because they consist of two quarks only. Atoms can also be classified likewise.
For instance, a hydrogen atom consisting of two fermions (an electron and a proton) is a
boson, while the isotope 3He of the helium atom is a fermion since it consists of three
fermions: one neutron and two protons. The wave functions of all such composite
particles also abide by the symmetry properties discussed earlier.

10.4 Exchange Degeneracy

The Hamiltonian of a system of N identical particles is a sum of the kinetic energy
operators and the potential energy operators of all the particles

Ĥ(!r1,!r2, ...,!r j, ...,!rk, ...,!rN) =
N

∑
j=1

!̂p2
j

2m
+ V̂ (!r1,!r2, ...,!r j, ...,!rk, ...,!rN) (10.4.1)

If we exchange any pair of particles, say the jth and the kth, the potential energy must
remain unchanged, that is,

This, in turn, gives
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If it is not so, the particles will be distinguishable and that 
will contradict the quantum mechanical assertion that 
identical particles are indistinguishable. 
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V̂ (!r1, ...,!r j, ...,!rk, ...,!rN) → V̂ (!r1, ...,!rk, ...,!r j, ...,!rN) = V̂ (!r1, ...,!r j, ...,!rk, ...,!rN). (10.4.2)

If it is not so, the particles will be distinguishable and that will contradict the quantum
mechanical assertion that identical particles are indistinguishable. Since the kinetic energy
part of Ĥ remains unchanged, if any two particles are interchanged, the total Hamiltonian
of the system will be invariant under the exchange of any pair of particles of the system.
In other words, Ĥ is completely symmetric with respect to the coordinates of the particles.
This fact leads to a novel phenomenon called the exchange degeneracy.

Consider the eigenvalue problem

Ĥ(!r1, ...,!r j, ...,!rk, ...,!rN)φ (!r1, ...,!r j, ...,!rk, ...,!rN) = Eφ (!r1, ...,!r j, ...,!rk, ...,!rN). (10.4.3)

In view of the invariance of the Hamiltonian under the exchange of any pair of particles,
the wave functions corresponding to all possible permutations of particles of the system
will have one and the same energy E. That is, the eigenstates of the Hamiltonian are
degenerate. This is called the exchange degeneracy.
Furthermore, we have

ĤP̂jkφ (!r1, ...,!r j, ...,!rk, ...,!rN) = Ĥφ (!r1, ...,!rk, ...,!r j, ...,!rN)

= Eφ (!r1, ...,!rk, ...,!r j, ...,!rN) = EP̂jkφ (!r1, ...,!r j, ...,!rk, ...,!rN)

= P̂jkEφ (!r1, ...,!r j, ...,!rk, ...,!rN) = P̂jkĤφ (!r1, ...,!r j, ...,!rk, ...,!rN). (10.4.4)

In other words,

(ĤP̂jk− P̂jkĤ)φ (!r1, ...,!r j, ...,!rk, ...,!rN) = 0. (10.4.5)

The last equation shows that the operator P̂jk commutes with the Hamiltonian

(ĤP̂jk− P̂jkĤ) ≡ [Ĥ, P̂jk] = 0. (10.4.6)

It means that the symmetry property of the wave function of a system of N identical
particles is conserved in time, that is, if at t = t0 the system starts out with a symmetric
(anti-symmetric) wave function, the wave function remains symmetric (anti-symmetric) at
any instant t > t0. In addition, since P̂jk and Ĥ are hermitian and commute, they possess a
complete set of common eigenfunctions (see Chapter 3).

10.5 Symmetric and Anti-symmetric Wave Functions and the Pauli
Exclusion Principle

Let us construct the wave functions for a system of identical particles. Let us for the sake of
convenience, combine the spatial and the spin variables together and write them as ξ , that
is, ξ ≡ (!r,S). By doing so, we put a label on the particles using their position vector!r and

Consider the eigenvalue problem 


Quantum Mechanics of Many-Particle Systems 327

V̂ (!r1, ...,!r j, ...,!rk, ...,!rN) → V̂ (!r1, ...,!rk, ...,!r j, ...,!rN) = V̂ (!r1, ...,!r j, ...,!rk, ...,!rN). (10.4.2)

If it is not so, the particles will be distinguishable and that will contradict the quantum
mechanical assertion that identical particles are indistinguishable. Since the kinetic energy
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This fact leads to a novel phenomenon called the exchange degeneracy.

Consider the eigenvalue problem

Ĥ(!r1, ...,!r j, ...,!rk, ...,!rN)φ (!r1, ...,!r j, ...,!rk, ...,!rN) = Eφ (!r1, ...,!r j, ...,!rk, ...,!rN). (10.4.3)

In view of the invariance of the Hamiltonian under the exchange of any pair of particles,
the wave functions corresponding to all possible permutations of particles of the system
will have one and the same energy E. That is, the eigenstates of the Hamiltonian are
degenerate. This is called the exchange degeneracy.
Furthermore, we have

ĤP̂jkφ (!r1, ...,!r j, ...,!rk, ...,!rN) = Ĥφ (!r1, ...,!rk, ...,!r j, ...,!rN)
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In other words,

(ĤP̂jk− P̂jkĤ)φ (!r1, ...,!r j, ...,!rk, ...,!rN) = 0. (10.4.5)

The last equation shows that the operator P̂jk commutes with the Hamiltonian

(ĤP̂jk− P̂jkĤ) ≡ [Ĥ, P̂jk] = 0. (10.4.6)

It means that the symmetry property of the wave function of a system of N identical
particles is conserved in time, that is, if at t = t0 the system starts out with a symmetric
(anti-symmetric) wave function, the wave function remains symmetric (anti-symmetric) at
any instant t > t0. In addition, since P̂jk and Ĥ are hermitian and commute, they possess a
complete set of common eigenfunctions (see Chapter 3).

10.5 Symmetric and Anti-symmetric Wave Functions and the Pauli
Exclusion Principle

Let us construct the wave functions for a system of identical particles. Let us for the sake of
convenience, combine the spatial and the spin variables together and write them as ξ , that
is, ξ ≡ (!r,S). By doing so, we put a label on the particles using their position vector!r and
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Ĥ(!r1, ...,!r j, ...,!rk, ...,!rN)φ (!r1, ...,!r j, ...,!rk, ...,!rN) = Eφ (!r1, ...,!r j, ...,!rk, ...,!rN). (10.4.3)

In view of the invariance of the Hamiltonian under the exchange of any pair of particles,
the wave functions corresponding to all possible permutations of particles of the system
will have one and the same energy E. That is, the eigenstates of the Hamiltonian are
degenerate. This is called the exchange degeneracy.
Furthermore, we have
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spin S. For instance, if we write ψn(ξk), then what we mean is that this is the wave function
of the nth energy state of the particle with spin variable Sk and the position!rk. Sometimes,
it is also written as ψn(k), meaning thereby the wave function of the kth particle or of a
particle with a label k. Note that the latter method of labelling identical particles is not
quite acceptable because the particles are indistinguishable and we cannot identify which
one is the ith and which one is the jth or which one is the kth etc.

Proceeding further, let φn1(ξ1), φn2(ξ2), φn3(ξ3),..., φnN (ξN) be the normalized single-
particle wave functions, where each of the indices n1, n2, n3,...,nN stands for the total set
of quantum numbers relevant to the problem at hand. We shall assume, for now, that n1,
n2, n3,...,nN are all different.

The first guess could be to write the wave function of the system as a product

φn1n2...nN (ξ1,ξ2,ξ3, . . . ,ξN) = φn1(ξ1)φn2(ξ2)φn3(ξ3) . . .φnN (ξN). (10.5.1)

However, this is incorrect because writing the wave function this way means that we can
distinguish between the particles and that contradicts our earlier assertion about the
indistinguishability of identical particles in quantum mechanics. Secondly, such a product
function is neither symmetric nor anti-symmetric, whereas our wave function has to be
either symmetric or anti-symmetric in view of the indistinguishability of the particles.
The problem is overcome by taking the linear combination of the products of the
single-particle wave functions corresponding to all possible permutations of the particles.

Thus, the symmetric and the anti-symmetric wave functions, φs(ξ1,ξ2,ξ3, ...,ξN) and
φa(ξ1,ξ2,ξ3, ...,ξN) respectively, of the system of N identical and indistinguishable
particles are written as

φs(ξ1,ξ2,ξ3, ...,ξN) =
1√
N! ∑P

P
{

φn1(ξ1)φn2(ξ2)φn3(ξ3)...φN(ξN)
}

, (10.5.2)

φa(ξ1,ξ2,ξ3, ...,ξN) =
1√
N! ∑P

(−1)P P
{

φn1(ξ1)φn2(ξ2)φn3(ξ3)...φN(ξN)
}

(10.5.3)

where the sum stands for the summation over all possible permutations (N! in all) of the
particles. It is worth noting that in the case of the anti-symmetric wave function,
(−1)P = +1, if (ξ1,ξ2, ...,ξ j, ...,ξi, ...,ξN) (resulting from the interchange of the ith and
the jth particles) is an even permutation of (ξ1,ξ2, ...,ξi, ...,ξ j, ...,ξN), while (−1)P = −1,
if (ξ1,ξ2, ...,ξ j, ...,ξi, ...,ξN) is an odd permutation of (ξ1,ξ2, ...,ξi, ...,ξ j, ...,ξN). Note that
the factor 1/

√
N! comes from the normalization and, as stated earlier, all

n j, j = 1,2,3, ...,N have been taken to be different.
According to this prescription, the symmetric wave function for a system of two

indistinguishable particles assumes the form

φs(ξ1,ξ2) =
1√
2
[φn1(ξ1)φn2(ξ2)+φn1(ξ2)φn2(ξ1)] , (10.5.4)
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√
N! comes from the normalization and, as stated earlier, all

n j, j = 1,2,3, ...,N have been taken to be different.
According to this prescription, the symmetric wave function for a system of two

indistinguishable particles assumes the form

φs(ξ1,ξ2) =
1√
2
[φn1(ξ1)φn2(ξ2)+φn1(ξ2)φn2(ξ1)] , (10.5.4)

while the anti-symmetric wave function for the same 
system can be written as 
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while the anti-symmetric wave function for the same system can be written as

φa(ξ1,ξ2) =
1√
2
[φn1(ξ1)φn2(ξ2)−φn1(ξ2)φn2(ξ1)] . (10.5.5)

The factor of 1/
√

2, in these formulae, comes from normalization of the two-particle wave
function. It is easy to check that if we interchange the particles, φs(ξ2,ξ1) = φs(ξ1,ξ2) but
φa(ξ2,ξ1) = −φa(ξ1,ξ2), as it should be.

Similarly, for a three-particle system, the symmetric wave function has the form

φs(ξ1,ξ2,ξ3) =
1√
3!

[φn1(ξ1)φn2(ξ2)φn3(ξ3)+φn1(ξ2)φn2(ξ3)φn3(ξ1)

+ φn1(ξ3)φn2(ξ1)φn3(ξ2)+φn1(ξ1)φn2(ξ3)φn3(ξ2)

+ φn1(ξ3)φn2(ξ2)φn3(ξ1)+φn1(ξ2)φn2(ξ1)φn3(ξ3)] , (10.5.6)

while the anti-symmetric wave function for the three-particle system can be written as

φa(ξ1,ξ2,ξ3) =
1√
3!

[φn1(ξ1)φn2(ξ2)φn3(ξ3)+φn1(ξ2)φn2(ξ3)φn3(ξ1)

+ φn1(ξ3)φn2(ξ1)φn3(ξ2)−φn1(ξ1)φn2(ξ3)φn3(ξ2)

− φn1(ξ3)φn2(ξ2)φn3(ξ1)−φn1(ξ2)φn2(ξ1)φn3(ξ3)] . (10.5.7)

As in the previous case, the factor 1/
√

3! comes from normalization. Clearly, using the
general formulae, we can write down the wave functions for a system of any given number
of identical particles.

Slater determinant
The anti-symmetric wave functions (10.5.5) and (10.5.7) can also be written as
determinants:

φa(ξ1,ξ2) =
1√
2

∣∣∣∣∣
φn1(ξ1) φn1(ξ2)

φn2(ξ1) φn2(ξ2)

∣∣∣∣∣ , (10.5.8)

φa(ξ1,ξ2,ξ3) =
1√
3!

∣∣∣∣∣∣∣

φn1(ξ1) φn1(ξ2) φn1(ξ3)

φn2(ξ1) φn2(ξ2) φn2(ξ3)

φn3(ξ1) φn3(ξ2) φn3(ξ3)

∣∣∣∣∣∣∣
. (10.5.9)

The factor in these formulae, comes from normalization of 
the two-particle wave function
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In general, the N-particle anti-symmetric wave function can be written as

φa(ξ1,ξ2,ξ3, ...,ξN) =
1√
N!

∣∣∣∣∣∣∣∣∣∣∣

φn1(ξ1) φn1(ξ2) . . . φn1(ξN)

φn2(ξ1) φn2(ξ2) . . . φn2(ξN)
. . . . . . . . . . . .
. . . . . . . . . . . .

φnN (ξ1) φnN (ξ2) . . . φnN (ξN)

∣∣∣∣∣∣∣∣∣∣∣

. (10.5.10)

This is known as the Slater determinant. The product of the diagonal elements of the
determinant gives the original unsymmetrized product of the single-particle wave
functions, and the rest of the terms correspond to all permutations of the particles with
proper signs. Note that interchanging any two identical particles is equivalent to
interchanging the corresponding columns of the Slater determinant. In other words,
exchanging two columns exchanges the labels on two particles. From the properties of the
determinants, we know that interchanging two columns of a determinant results in the
multiplication of the determinant by (−1), that is, the sign of the determinant changes.
Thus, writing down the wave function of a system, consisting of fermions, as a Slater
determinant is consistent with the anti-symmetry of the wave function under the exchange
of any pair of fermions.

Let us now ask the question: What will be the expressions for the functions φs and φa
when some (or may be all) of n j, j = 1,2,3, ...,N coincide?

1. Symmetric wave function

(a) In this case, if all n j, j = 1,2,3, ...,N coincide (n1 = n2 = n3 = ... = nN ≡ n), the
symmetric wave function is given by

φs(ξ1, ...,ξN) = φn(ξ1)φn(ξ2)φn(ξ3)...φn(ξN). (10.5.11)

(b) If some of these n j coincide, then we have to avoid double counting. For instance,
if n1 occurs m1 times, n2 occurs m2 times, . . ., nN occurs mN times, then the total
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P =
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and hence, the symmetric wave function of the system will be
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For instance, consider a system of four independent identical bosons with n1 =
n2 = n3 = n, and n4 $= n. Since m1 = 3, we get

This is known as the Slater determinant. Note that 
interchanging any two identical particles is equivalent to 
interchanging the corresponding columns of the Slater 
determinant. From the properties of the determinants, we 
know that interchanging two columns of a determinant 
results in the multiplication of the determinant by (−1).
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In general, the N-particle anti-symmetric wave function can be written as
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Pauli Exclusion Principle 

For anti-symmetric wave function, all nj have to be different, 
otherwise the wave function will vanish.

In a system of N identical fermions, no two fermions can 
occupy the same single-particle state at a time; every 
single-particle state can be occupied by (at most) one 
fermion only. This is known as the Pauli exclusion principle. 


Note that � includes spatial as well as spin variables. The 
wave function of a particle is written as a product of the 
spatial and the spin parts 
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φs =

√
3!
4! ∑

P
P̂
{

φn1(ξ1)φn2(ξ2)φn3(ξ3)φn4(ξ4)
}

=
1√
4
[φn(ξ1)φn(ξ2)φn(ξ3)φn4(ξ4)+φn(ξ1)φn(ξ2)φn4(ξ3)φn(ξ4)

+ φn(ξ1)φn4(ξ2)φn(ξ3)φn(ξ4)+φn4(ξ1)φn(ξ2)φn(ξ3)φn(ξ4)] . (10.5.14)

2. Anti-symmetric wave function.
In this case, all n j have to be different, otherwise the wave function will vanish. For
instance, if the particles at positions x j and xk are in the same spatial and spin states,
that is, n j = nk, then the jth and the kth rows of the Slater determinant will coincide
and the determinant will vanish. Consequently, the wave function of the system will be
identically equal to zero: φa(ξ1,ξ2,ξ3, ...,ξN) ≡ 0.
Conclusion: In a system of N identical fermions, no two fermions can occupy the same
single-particle state at a time; every single-particle state can be occupied by (at most)
one fermion only. This is known as the Pauli exclusion principle.
Note that the Pauli exclusion principle does not apply to a system of identical bosons.
There is no restriction on the number of bosons that can occupy a single-particle state.
On the contrary, it so happens that, under suitable conditions, bosons tend to occupy
the same quantum state, the ground state. This phenomenon has been experimentally
observed and is known as the Bose–Einstein condensation.
Note that ξ includes spatial as well as spin variables. Since spin represents an internal
degree of freedom (independent of the spatial degrees of freedom), the wave function
of a particle is written as a product of the spatial and the spin parts (see Chapter 5), that
is, φ (ξ ) = φ (!r,!S) = φ (!r)χ(!S). Generalizing it to the system of N identical particles,
we have

φ (!r1, ...,!rN ,!S1, ...,!SN) = φ (!r1, ...,!rN) χ(!S1, ...,!SN). (10.5.15)

Since this wave function, as discussed earlier, has to be either symmetric or
anti-symmetric, the parities of the spatial part and that of the spin part of the wave
function cannot be arbitrary. They must be such that their product gives, depending on
the nature of the particles, the required parity of the total wave function. In the case of
identical bosons, when the wave function must be symmetric, the spatial and the spin
parts must have the same parity, that is, they are both either symmetric or
anti-symmetric. Thus,

φs(!r1, ...,!rN ,!S1, ...,!S1) =

{
φs(!r1, ...,!rN) χs(!S1, ...,!SN)

φa(!r1, ...,!rN) χa(!S1, ...,!SN),
(10.5.16)
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where the suffixes s and a stand for the symmetric and the 
anti-symmetric wave functions, respectively. 
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For a system of N identical fermions, the wave function 
must be overall anti-symmetric and, therefore, the 
spatial and the spin parts of the wave function must 
have opposite parities, that is, if one of them is 
symmetric, the other has to be anti-symmetric, and vice 
versa. Thus, 
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where the suffixes s and a stand for the symmetric and the anti-symmetric wave
functions, respectively.

For a system of N identical fermions, the wave function must be overall anti-symmetric
and, therefore, the spatial and the spin parts of the wave function must have opposite
parities, that is, if one of them is symmetric, the other has to be anti-symmetric, and
vice versa. Thus,

φa(!r1, ...,!rN ,!S1, ...,!S1) =

{
φs(!r1, ...,!rN) χa(!S1, ...,!SN)
φa(!r1, ...,!rN) χs(!S1, ...,!SN).

(10.5.17)

Example 10.5.1: Two identical non-interacting particles are in an isotropic harmonic
oscillator potential. Find the degeneracy of the ground state and the first excited state of
the system (a) if the particles are spin-1/2 fermions and (b) when they are spin-1 bosons.

As shown in Chapter 4, the nth stationary state of a single-particle in an isotropic
harmonic oscillator potential can be characterized by a triplet of non-negative integers
nx,ny and nz. It has energy Enxnynz =

(
nx + ny + nz + 3

2
)

h̄ω . The ground state corresponds
to nx = ny = nz = 0, while the first excited state corresponds to nx = 1,ny = nz = 0 or
nx = 0,ny = 1,nz = 0 or nx = 0,ny = 0,nz = 1.

(a) In the ground state of the system, both the particles are in the single-particle ground
states (nx j = ny j = nz j = 0, j = 1,2) with opposite spins. Since the quantum numbers
coincide, the anti-symmetric spatial part of the wave function,

φa(!r1,!r2) =
1√
2

[
φnx1 ny1 nz1

(x1,y1,z1)φnx2 ny2 nz2
(x2,y2,z2)

− φnx1 ny1 nz1
(x2,y2,z2)φnx2 ny2 nz2

(x1,y1,z1)
]

. (10.5.18)

vanishes. It means that the spatial part of the total wave function of the system will
be symmetric:

φs(!r1,!r2) =
1√
2

[
φnx1 ny1 nz1

(x1,y1,z1)φnx2 ny2 nz2
(x2,y2,z2)

+ φnx1 ny1 nz1
(x2,y2,z2)φnx2 ny2 nz2

(x1,y1,z1)
]

, (10.5.19)

Therefore, in view of the fact that, for spin 1
2 particles, the overall wave function must

be anti-symmetric, the spin part of the wave function must be the anti-symmetric
singlet spin function. Hence, the ground-state energy is non-degenerate, that is, its
degeneracy equals 1.

The first excited state corresponds to one particle in the single-particle ground state,
nx = ny = nz = 0 and the other in the first excited state with nx = 1,ny = nz = 0
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9.1.2 Space and Spin Parts of Wave Function

In the above section we said that numbers compositely represent both space and spin coor-
dinates. The wave function of a single particle consists of both space and spin dependent 
parts. If the Hamiltonian (1, 2, 3, ....., )H N  does not have a space-spin interaction term, then 
the single particle wave function ket is expressible as the product of the space-dependent 
and spin-dependent wave function φ = ϕ χα α ( ) msr . Here, composite suf!x α  represents 
a set of quantum numbers , ,n l m . The spin part of the wave function ket χms  describes 
the orientation of spin of the particle. Unlike position coordinates, a particle with spin s  can 
only have +(2 1)s  spin orientations. As discussed in Section 5.5, χms  are represented by 
column matrices having +(2 1)s  rows with zeros at all places except one place. Two spin 

wave function kets of sz  for a spin ±
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2

 system are:

 χ =






=↑ = χ =






=↓ = −↑ ↓
1
0

; 1
2
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1
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2
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In case of two electron system, symmetric and antisymmetric wave function kets are writ-
ten as follows:

 ψ =
ϕ χ

ϕ χ
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s s
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and:
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where, spatial parts are given by:

 r r r r r r{ }ϕ = φ φ + φ φα β α β( , ) 1
2!

( ) ( ) ( ) ( )1 2 1 2 2 1s  (9.14a)

and:

 r r r r r r{ }ϕ = φ φ − φ φα β α β( , ) 1
2!

( ) ( ) ( ) ( )1 2 1 2 2 1a  (9.14b)

The spin parts of wave function kets are:

 { }χ = ↑ ↓ − ↑ ↓ = =1
2

0; 0, singlet  state1 2 2 1 m Sa s  (9.15a)
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Second quantization 

The Hamiltonian for the one-dimensional harmonic 
oscillator (a particle of mass m attached to a spring) is 
given by 
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Defining an observable, ÂI(t), in the interaction picture by

ÂI(t) = e
i
h̄ (t−t0)Ĥ0Âe−

i
h̄ (t−t0)Ĥ0 , (4.12.27)

where Â is the corresponding observable in the Schrödinger’s picture, and following the
same calculations as in the case of Heisenberg’s picture, we arrive at the following equation
of motion for an observable in the interaction picture

ih̄
dÂI

dt
=

[
ÂI , Ĥ0

]
. (4.12.28)

We see that, in this picture, the time evolution of the state vector is governed by the time-
dependent interaction Hamiltonian ŴI(t) only, while the time variation of an observable is
controlled only by the time-independent part, Ĥ0, of the total Hamiltonian, Ĥ.

We would like to note here that all the three pictures of quantum mechanics, discussed
above, are equivalent because they are related trough unitary transformations. Depending
on the problem at hand, one can choose to work with any one of them for relatively easier
and faster solution of the problem.

4.13 Algebraic Treatment of One-dimensional Harmonic Oscillator

The harmonic oscillator: We are now going to discuss the one-dimensional harmonic
oscillator that serves as one of the most important models (if not the most important model)
in quantum theory and can be solved analytically.

The Hamiltonian for the one-dimensional harmonic oscillator (a particle of mass m
attached to a spring) is given by

Ĥ =
p̂2

2m
+

1
2

mω2x̂2 = − h̄2

2m
d2

dx2 +
1
2

mω2x̂2, (4.13.1)

where x represents the displacement of the oscillator from the point of equilibrium (which
is taken to be at the origin of the coordinate system) and ω is its angular frequency. The
corresponding time-independent Schrödinger equation reads

− h̄2

2m
d2φ (x)

dx2 +
1
2

mω2x̂2φ (x) = Eφ (x). (4.13.2)

Our main aim, in this section, is to use the algebraic method for obtaining the energy
eigenvalues and the corresponding bound state wave functions.

Let us introduce the following operators

â =
1√

2mh̄ω
(ip̂+mω x̂) , (4.13.3)

Let us introduce the following operators 
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â† =
1√

2mh̄ω
(−ip̂+mω x̂) . (4.13.4)

Consider the product

ââ† =
1

2mh̄ω (ip̂+mω x̂) (−ip̂+mω x̂) =
1

2mh̄ω
(

p̂2 +m2ω2x̂2 + imω [x̂, p̂]
)

,

=
1

2mh̄ω
(

p̂2 +m2ω2 +mh̄ω
)
=

1
h̄ω

(
p̂2

2m
+

1
2

mω2x̂2
)
+

1
2
=

Ĥ
h̄ω

+
1
2

. (4.13.5)

From (4.13.5), we get that

Ĥ = h̄ω
(

ââ†− 1
2

)
. (4.13.6)

Similarly, we have

â†â =
1

2mh̄ω (−ip̂+mω x̂) (+ip̂+mω x̂) =
1

2mh̄ω
(

p̂2 +m2ω2x̂2− imω [x̂, p̂]
)

,
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Ĥ = h̄ω
(
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Theorem 4.13.1: Assume that φn is an eigenfunction of the Hamiltonian Ĥ with energy En.
Then, â†φn is an eigenfunction of the Hamiltonian with energy (En + h̄ω).
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ââ† =
1

2mh̄ω (ip̂+mω x̂) (−ip̂+mω x̂) =
1

2mh̄ω
(

p̂2 +m2ω2x̂2 + imω [x̂, p̂]
)

,

=
1

2mh̄ω
(

p̂2 +m2ω2 +mh̄ω
)
=

1
h̄ω

(
p̂2

2m
+

1
2

mω2x̂2
)
+

1
2
=

Ĥ
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Then, â†φn is an eigenfunction of the Hamiltonian with energy (En + h̄ω).
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Theorem 4.13.1: Assume that φn is an eigenfunction of the Hamiltonian Ĥ with energy En.
Then, â†φn is an eigenfunction of the Hamiltonian with energy (En + h̄ω).
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Two important points are to be mentioned here. Firstly, equations (4.13.5) and (4.13.7)
lead to the following commutation relation between â and â†:

[â, â†] = 1. (4.13.9)

Secondly, the Schrödinger equation (4.13.2) is completely equivalent to any of the
following equations

h̄ω
(

â†â+
1
2

)
φ = Eφ , or h̄ω

(
ââ†− 1

2

)
φ = Eφ . (4.13.10)

Theorem 4.13.1: Assume that φn is an eigenfunction of the Hamiltonian Ĥ with energy En.
Then, â†φn is an eigenfunction of the Hamiltonian with energy (En + h̄ω).
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Proof: We have

Ĥâ†φn = h̄ω
(

â†â+
1
2

)
â†φn = h̄ω

(
â†ââ† +

1
2

â†
)

φn

= h̄ω
{

â† (1+ â†â
)
+

1
2

â†
}
= â†

[
h̄ω

(
â†â+

1
2

)
φn + h̄ωφn

]

= â† [Ĥφn + h̄ωφn
]
= â† [Enφn + h̄ωφn] = (En + h̄ω) â†φn. (4.13.11)

Since Ĥâ†φn = (En + h̄ω) â†φn, the theorem is proved.

Theorem 4.13.2: Assume that φn is an eigenfunction of the Hamiltonian Ĥ with energy En.
Then, âφn is an eigenfunction of the Hamiltonian with energy (En− h̄ω).

Proof: We have

Ĥâφn = h̄ω
(

ââ†− 1
2

)
âφn = h̄ω

(
ââ†â− 1

2
â
)

φn

= h̄ω
{

â
(
ââ†−1

)
− 1

2
â
}

φn = â
[

h̄ω
(

ââ†− 1
2

)
φn− h̄ωφn

]

= â
[
Ĥφn− h̄ωφn

]
= â [Enφn− h̄ωφn] = (En− h̄ω) â†φn. (4.13.12)

Since Ĥâ†φn = (En− h̄ω) â†φn, the theorem is proved.
Thus, while acting on the eigenfunction φn of Ĥ with energy En, the operator â lowers

the energy by one unit of h̄ω , the operator â† increases the energy by one unit of h̄ω .
Hence, if we set out with φn(x), describing the nth energy state of the oscillator (with
energy En), we can generate all possible states of the oscillator, with energies higher than
En as well as lower than En, by repeatedly acting on φn(x) with â† and â, respectively. The
operators â† and â are called ladder operators because they permit us to ascend or descend
in energy. The operator â† is also known as creation operator, while the operator â is also
called annihilation operator.

However, a paradoxical situation arises if we continue to act with the annihilation
operator infinitely. If we do so, eventually we shall reach a state with energy less than
zero, which for the harmonic oscillator does not exist. Thus, we have the situation where
âφn is a solution of the Schrödinger equation but the corresponding state does not exist. It
means that the given procedure fails at some point or the other. What is the way out? All
what we said earlier suggests that there must exist the lowest energy state (lowest rung in
the ladder) whose wave function φ0(x) must satisfy the equation

âφ0(x) = 0. (4.13.13)
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Since Ĥâ†φn = (En− h̄ω) â†φn, the theorem is proved.
Thus, while acting on the eigenfunction φn of Ĥ with energy En, the operator â lowers
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called annihilation operator.
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zero, which for the harmonic oscillator does not exist. Thus, we have the situation where
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Thus, while acting on the eigenfunction "n of H with 
energy En, the operator a lowers the energy by one unit 
of ℏω. The operators a+ and a are called ladder 

operators. The operator a+  is also known as creation 
operator, while the operator a is also called annihilation 
operator. 
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En as well as lower than En, by repeatedly acting on φn(x) with â† and â, respectively. The
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However, a paradoxical situation arises if we continue to act with the annihilation
operator infinitely. If we do so, eventually we shall reach a state with energy less than
zero, which for the harmonic oscillator does not exist. Thus, we have the situation where
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âφ0(x) = 0. (4.13.13)
We can use this to determine "0(x). We have 
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We can use this to determine φ0(x). We have

1√
2mh̄ω

(ip̂+mω x̂)φ0(x) = 0. (4.13.14)

Or,

dφ0(x)
dx

= −mω
h̄

xφ0(x). (4.13.15)

Integrating, we get

∫ dφ0(x)
φ0(x)

= −mω
h̄

∫
xdx. ⇒ φ0(x) = A0 e−

mω
2h̄ x2 ≡ A0 e

− x2

2x2
0 , (4.13.16)

where A0 is a constant to be determined and x0 =
√

h̄/mω with the dimensions of length.
To find the energy of this state, let us put this solution into the first of the Schrödinger
equations (4.13.10). We have

h̄ω
(

â†â+
1
2

)
φ0(x) =

h̄ω
2

φ0(x), (4.13.17)

where we have taken into account the fact that âφ0(x) = 0. Hence, the energy of this state,
called the ground state, is h̄ω/2.

Once we have determined the ground state eigenfunction and energy, we can find the
eigenfunction and the corresponding energy of any excited state of the oscillator by
successively applying the creation operator to the ground state wave function. For
instance, the wave function of the first excited state is obtained as

φ1(x) = â†φ0(x) =
1√

2mω h̄

(
−h̄

d
dx

+mωx
)

A0 e
− x2

2x2
0 =

√
2√
πx3

0
x e
− x2

2x2
0 . (4.13.18)

Note that the wave function φ1(x) is normalized to unity

∫ +∞

−∞
φ 2

1 (x)dx =
2√
πx3

0

∫ +∞

−∞
x2 e

− x2

x2
0 dx =

2√
πx3

0

√
πx3

0
2

= 1. (4.13.19)

Since, by acting on an eigenstate of the Hamiltonian, the creation operator increases its
energy by one unit of h̄ω , the energy of the first excited state is h̄ω/2+ h̄ω = 3h̄ω/2.
Similarly, we can apply â† to φ1(x) to get the wave function of the second excited state
φ2(x), and so on and so forth.

Or, 
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Since, by acting on an eigenstate of the Hamiltonian, the creation operator increases its
energy by one unit of h̄ω , the energy of the first excited state is h̄ω/2+ h̄ω = 3h̄ω/2.
Similarly, we can apply â† to φ1(x) to get the wave function of the second excited state
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To find the energy of this state, let us put this solution into the first of the Schrödinger
equations (4.13.10). We have
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where we have taken into account the fact that âφ0(x) = 0. Hence, the energy of this state,
called the ground state, is h̄ω/2.

Once we have determined the ground state eigenfunction and energy, we can find the
eigenfunction and the corresponding energy of any excited state of the oscillator by
successively applying the creation operator to the ground state wave function. For
instance, the wave function of the first excited state is obtained as

φ1(x) = â†φ0(x) =
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Note that the wave function φ1(x) is normalized to unity
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Since, by acting on an eigenstate of the Hamiltonian, the creation operator increases its
energy by one unit of h̄ω , the energy of the first excited state is h̄ω/2+ h̄ω = 3h̄ω/2.
Similarly, we can apply â† to φ1(x) to get the wave function of the second excited state
φ2(x), and so on and so forth.
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Since, by acting on an eigenstate of the Hamiltonian, the creation operator increases its
energy by one unit of h̄ω , the energy of the first excited state is h̄ω/2+ h̄ω = 3h̄ω/2.
Similarly, we can apply â† to φ1(x) to get the wave function of the second excited state
φ2(x), and so on and so forth.

Since, by acting on an eigenstate of the Hamiltonian, the 
creation operator increases its energy by one unit of ℏω, 

the energy of the first excited state is 3ℏω/2.
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Second quantization 

Let us introduce an operator 


Since, N and H commute, they must have a common set of 
eigenvectors. Let |n⟩ be the nth joint eigenvector of these 
operators: 


N̂ = ̂a† ̂a
It is called the occupation number operator or, simply, 
the number operator. 
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The number operator and the energy eigenfunctions: Let us introduce an operator N̂ =
â†â. It is called the occupation number operator or, simply, the number operator.

First, we notice that the number operator commutes with the Hamiltonian:

[N̂, Ĥ] =

[
N̂, N̂ +

1
2

]
h̄ω = h̄ω [N̂, N̂]+

h̄ω
2
[N̂, Î] = 0. (4.13.20)

Since, N̂ and Ĥ commute, they must have a common set of eigenvectors. Let |n〉 be the nth
joint eigenvector of these operators:

N̂|n〉= n |n〉, (4.13.21)

and

Ĥ|n〉= En |n〉, (4.13.22)

where n is a positive integer and En,n = 1,2,3, . . . are the energy eigenvalues. Using the
definition of N̂, along with equations (4.13.8) and (4.13.21), the energy eigenvalues for the
oscillator are readily obtained to be En = h̄ω

(
n+ 1

2
)
.

Next, we compute the commutator of â and â† with N̂. We have

[N̂â] = [â†â, â] = â†[â, â]+ [â†, â]â = −â. (4.13.23)

Similarly,

[N̂, â†] = â†. (4.13.24)

Therefore, N̂â = â(N̂−1) and N̂â† = â†(N̂ + 1). As a result,

N̂(â|n〉) = â(N̂−1)|n〉= (n−1)â|n〉,

N̂(â†|n〉) = â†(N̂ + 1)|n〉= (n+ 1)â†|n〉. (4.13.25)

These results say that, if |n〉 is an eigenstate of the number operator N̂, then â|n〉 and â†|n〉
are also eigenstates of N̂, but with eigenvalues (n−1) and (n+ 1), respectively. In other
words, by acting on the state |n〉, the operator â decreases the number n by unity and
generates a new eigenstate |n− 1〉, that is, â|n〉 = an|n− 1〉. Similarly, the operator â†,
when acting on |n〉, increases n by unity and generates a new eigenstate, |n+ 1〉 of N̂, that
is, â†|n〉 = bn|n− 1〉. Here, an and bn are constants to be determined from the condition
that the states |n〉 be normalized for all values of n.

Using â|n〉= an|n−1〉, we have
(
〈nâ†|

)
· (â|n〉) = 〈n|â†â|n〉= 〈n|N̂|n〉= n〈n|n〉= n. (4.13.26)

First, we notice that the number operator commutes with 
the Hamiltonian: 
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[N̂, Î] = 0. (4.13.20)
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where n is a positive integer and En, n=1,2,3,… are the 
energy eigenvalues.

Next, we compute the commutator of a and a+ with N. We 
have
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· (â|n〉) = 〈n|â†â|n〉= 〈n|N̂|n〉= n〈n|n〉= n. (4.13.26)

Similarly,
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Using â|n〉= an|n−1〉, we have
(
〈nâ†|
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By acting on the state |n⟩, the operator a decreases the 
number n by unity and generates a new eigenstate |n − 1⟩, 
that is, 
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Similarly, we arrive at

|bn|2 = n+ 1. ⇒ bn =
√

n+ 1. (4.13.29)

Equation (4.13.28) shows that n is equal to the norm squared of the vector â|n〉 and, hence,
cannot be negative, that is, n≥ 0. Since, n is a positive integer, the energy spectrum of the
one-dimensional harmonic oscillator is discrete and non-degenerate.

We can now apply the creation operator â† on |0〉 to generate all possible excited state
energy eigenvectors. We have

|1〉= â†|0〉, (4.13.30)

|2〉= 1√
2

â†|1〉= 1√
2!

â†2|0〉, (4.13.31)

|3〉= 1√
3

â†|2〉= 1√
3!

â†3|0〉, (4.13.32)

......................................, (4.13.33)

......................................, (4.13.34)

|n〉= 1√
n

â†|n−1〉= 1√
n!

â†n|0〉. (4.13.35)

Hence, to find any excited state eigenvector |n〉, we need to apply the creation operator n
successive times to the vacuum state |0〉. Furthermore, since the energy spectrum of the
Hamiltonian is non-degenerate, any two of the energy eigenvectors |n′〉 and |n〉
(corresponding to different eigenvalues) are orthogonal, and the sequence of the vectors
{|0〉, |1〉, |2〉 |3〉,. . . ,|n〉} constitutes an orthonormal and complete basis:

〈n′|n〉= δn′n,
∞

∑
n=0

|n〉〈n|= Î. (4.13.36)

Note that the formalism of number operator for the harmonic oscillator is very useful and
is frequently used in quantum optics and quantum field theory in general.
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〈nâ†|

)
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Second Quantization: Creation and Annihilation Operators

Occupation number representation. Any state of a system of identical particles
can be described as a linear combination of many-particle basis states: |Ψ〉 =

∑

j cj|Φj〉.
A basis state can be completely specified in terms of the occupation number nα for each
member of a complete set of orthonormal single-particle states, {|α〉, α = 1, 2, 3, . . .}.
The set of occupation numbers contains all the information necessary to construct an
appropriately symmetrized or antisymmetrized basis vector, denoted

|Φ〉 = |n1, n2, . . . , nα, . . .〉.

For bosons, nα must be a non-negative integer; for fermions, the Pauli exclusion prin-
ciple restricts nα to be either 0 or 1.

The vector space spanned by the set of all such basis states is called the Fock
space. A feature of the Fock space is that the total number of particles is not a fixed
parameter, but rather is a dynamical variable associated with a total number operator

N =
∑

α

nα.

There is a unique vacuum or no-particle state:

|0〉 = |0, 0, 0, 0, . . .〉.

The single-particle states can be represented

|α〉 = |0, 0, . . . , 0, nα = 1, 0, . . .〉 ≡ |01, 02, . . . , 0α−1, 1α, 0α+1, . . .〉.

Bosonic operators. Let us define the bosonic creation operator a†
α by

a†
α|n1, n2, . . . , nα−1, nα, nα+1, . . .〉 =

√
nα+1 |n1, n2, . . . , nα−1, nα+1, nα+1, . . .〉, (1)

and the corresponding annihilation operator aα by

aα|n1, n2, . . . , nα−1, nα, nα+1, . . .〉 =
√

nα |n1, n2, . . . , nα−1, nα−1, nα+1, . . .〉. (2)

Equations (1) and (2) allow us to define the number operator Nα = a†
αaα, such that

Nα|n1, n2, . . . , nα, . . .〉 = nα|n1, n2, . . . , nα, . . .〉

and
N =

∑

α

Nα.

The simplest application of the creation and annihilation operators involves the
single-particle states:

a†
α|0〉 = |α〉, aα|β〉 = δα, β|0〉.

1

For bosons, n� must be a non-negative integer; for fermions, 
the Pauli exclusion principle restricts n� to be either 0 or 1. 
There is a unique vacuum or no-particle state: 
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We can define the number operator 
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When applied to multi-particle states, the properties of the creation and annihila-
tion operators must be consistent with the symmetry of bosonic states under pairwise
interchange of particles. It is clear from Eqs. (1) and (2) that for any pair of single par-
ticle states |α〉 and |β〉, and for any vector |Ψ〉 in the Fock space, a†

αa†
β|Ψ〉 = a†

βa†
α|Ψ〉

and aαaβ|Ψ〉 = aβaα|Ψ〉. One also finds that a†
αaβ|Ψ〉 = aβa†

α|Ψ〉 for α "= β. However,
a†

αaα|φ〉 = nα|Φ〉 for any basis state |Φ〉, while aαa†
α|Φ〉 = (nα +1)|Φ〉. This means that

for any |Ψ〉 in the Fock space

aαa†
α|Ψ〉 − a†

αaα|Ψ〉 = (Nα+1)|Ψ〉 − Nα|Ψ〉 = |Ψ〉.

The properties described in the preceding paragraph can be summarized in the
commutation relations

[a†
α, a†

β] = [aα, aβ] = 0, [aα, a†
β] = δα, βI. (3)

One consequence of these commutation relations is that any multi-particle basis state
can be written

|n1, n2, . . . , nα, . . .〉 =
(

a†
1

)n1
(

a†
2

)n2
. . .

(

a†
α

)nα
. . . |0〉,

or equally well, as any permutation of the above product of operators acting on the
vacuum. For example,

|2, 1, 0, 0, . . .〉 = a†
1a

†
1a

†
2|0〉 = a†

1a
†
2a

†
1|0〉 = a†

2a
†
1a

†
1|0〉.

Equations (1)–(3) define the key properties of bosonic creation and annihilation
operators. Note the close formal similarity to the properties of the harmonic oscillator
raising and lowering operators.

Fermionic operators. The fermionic case is a little trickier than the bosonic one
because we have to enforce antisymmetry under all possible pairwise interchanges. We
define the fermionic creation operator c†α by

c†α|n1, n2, . . . , nα−1, 0α, nα+1, . . .〉 = (−1)να |n1, n2, . . . , nα−1, 1α, nα+1, . . .〉,
(4)

c†α|n1, n2, . . . , nα−1, 1α, nα+1, . . .〉 = 0,

and the annihilation operator cα by

cα|n1, n2, . . . , nα−1, 1α, nα+1, . . .〉 = (−1)να |n1, n2, . . . , nα−1, 0α, nα+1, . . .〉,
(5)

cα|n1, n2, . . . , nα−1, 0α, nα+1, . . .〉 = 0.

In both Eqs. (4) and (5),

να =
∑

β<α

Nβ, where Nβ = c†βcβ, (6)

measures the total number of particles in single-particle states having an index β < α.
It is straightforward to check that Eqs. (4)–(6) are self-consistent, in the sense that
with the phase factor (−1)να as defined above,

Nα|n1, n2, . . . , nα, . . .〉 = nα|n1, n2, . . . , nα, . . .〉 for nα = 0 or 1.
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Equations (1)–(3) define the key properties of bosonic creation and annihilation
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2

or equally well, as any permutation of the above product of 
operators acting on the vacuum. For example, 

When applied to multi-particle states, the properties of the creation and annihila-
tion operators must be consistent with the symmetry of bosonic states under pairwise
interchange of particles. It is clear from Eqs. (1) and (2) that for any pair of single par-
ticle states |α〉 and |β〉, and for any vector |Ψ〉 in the Fock space, a†

αa†
β|Ψ〉 = a†

βa†
α|Ψ〉

and aαaβ|Ψ〉 = aβaα|Ψ〉. One also finds that a†
αaβ|Ψ〉 = aβa†

α|Ψ〉 for α "= β. However,
a†

αaα|φ〉 = nα|Φ〉 for any basis state |Φ〉, while aαa†
α|Φ〉 = (nα +1)|Φ〉. This means that

for any |Ψ〉 in the Fock space

aαa†
α|Ψ〉 − a†

αaα|Ψ〉 = (Nα+1)|Ψ〉 − Nα|Ψ〉 = |Ψ〉.

The properties described in the preceding paragraph can be summarized in the
commutation relations

[a†
α, a†

β] = [aα, aβ] = 0, [aα, a†
β] = δα, βI. (3)

One consequence of these commutation relations is that any multi-particle basis state
can be written

|n1, n2, . . . , nα, . . .〉 =
(

a†
1

)n1
(

a†
2

)n2
. . .

(

a†
α

)nα
. . . |0〉,

or equally well, as any permutation of the above product of operators acting on the
vacuum. For example,

|2, 1, 0, 0, . . .〉 = a†
1a

†
1a

†
2|0〉 = a†

1a
†
2a

†
1|0〉 = a†

2a
†
1a

†
1|0〉.

Equations (1)–(3) define the key properties of bosonic creation and annihilation
operators. Note the close formal similarity to the properties of the harmonic oscillator
raising and lowering operators.

Fermionic operators. The fermionic case is a little trickier than the bosonic one
because we have to enforce antisymmetry under all possible pairwise interchanges. We
define the fermionic creation operator c†α by

c†α|n1, n2, . . . , nα−1, 0α, nα+1, . . .〉 = (−1)να |n1, n2, . . . , nα−1, 1α, nα+1, . . .〉,
(4)

c†α|n1, n2, . . . , nα−1, 1α, nα+1, . . .〉 = 0,

and the annihilation operator cα by

cα|n1, n2, . . . , nα−1, 1α, nα+1, . . .〉 = (−1)να |n1, n2, . . . , nα−1, 0α, nα+1, . . .〉,
(5)

cα|n1, n2, . . . , nα−1, 0α, nα+1, . . .〉 = 0.

In both Eqs. (4) and (5),

να =
∑

β<α

Nβ, where Nβ = c†βcβ, (6)

measures the total number of particles in single-particle states having an index β < α.
It is straightforward to check that Eqs. (4)–(6) are self-consistent, in the sense that
with the phase factor (−1)να as defined above,

Nα|n1, n2, . . . , nα, . . .〉 = nα|n1, n2, . . . , nα, . . .〉 for nα = 0 or 1.

2



25/11/2022 Jinniu Hu

Occupation number representation 

The fermionic case is a little trickier than the bosonic one 
because we have to enforce antisymmetry under all 
possible pairwise interchanges. We define the fermionic 
creation operator c†� by 


and the annihilation operator c� by 


When applied to multi-particle states, the properties of the creation and annihila-
tion operators must be consistent with the symmetry of bosonic states under pairwise
interchange of particles. It is clear from Eqs. (1) and (2) that for any pair of single par-
ticle states |α〉 and |β〉, and for any vector |Ψ〉 in the Fock space, a†

αa†
β|Ψ〉 = a†

βa†
α|Ψ〉

and aαaβ|Ψ〉 = aβaα|Ψ〉. One also finds that a†
αaβ|Ψ〉 = aβa†

α|Ψ〉 for α "= β. However,
a†

αaα|φ〉 = nα|Φ〉 for any basis state |Φ〉, while aαa†
α|Φ〉 = (nα +1)|Φ〉. This means that

for any |Ψ〉 in the Fock space

aαa†
α|Ψ〉 − a†

αaα|Ψ〉 = (Nα+1)|Ψ〉 − Nα|Ψ〉 = |Ψ〉.

The properties described in the preceding paragraph can be summarized in the
commutation relations

[a†
α, a†

β] = [aα, aβ] = 0, [aα, a†
β] = δα, βI. (3)

One consequence of these commutation relations is that any multi-particle basis state
can be written

|n1, n2, . . . , nα, . . .〉 =
(

a†
1

)n1
(

a†
2

)n2
. . .

(

a†
α

)nα
. . . |0〉,

or equally well, as any permutation of the above product of operators acting on the
vacuum. For example,

|2, 1, 0, 0, . . .〉 = a†
1a

†
1a

†
2|0〉 = a†

1a
†
2a

†
1|0〉 = a†

2a
†
1a

†
1|0〉.

Equations (1)–(3) define the key properties of bosonic creation and annihilation
operators. Note the close formal similarity to the properties of the harmonic oscillator
raising and lowering operators.

Fermionic operators. The fermionic case is a little trickier than the bosonic one
because we have to enforce antisymmetry under all possible pairwise interchanges. We
define the fermionic creation operator c†α by

c†α|n1, n2, . . . , nα−1, 0α, nα+1, . . .〉 = (−1)να |n1, n2, . . . , nα−1, 1α, nα+1, . . .〉,
(4)

c†α|n1, n2, . . . , nα−1, 1α, nα+1, . . .〉 = 0,

and the annihilation operator cα by

cα|n1, n2, . . . , nα−1, 1α, nα+1, . . .〉 = (−1)να |n1, n2, . . . , nα−1, 0α, nα+1, . . .〉,
(5)

cα|n1, n2, . . . , nα−1, 0α, nα+1, . . .〉 = 0.

In both Eqs. (4) and (5),

να =
∑

β<α

Nβ, where Nβ = c†βcβ, (6)

measures the total number of particles in single-particle states having an index β < α.
It is straightforward to check that Eqs. (4)–(6) are self-consistent, in the sense that
with the phase factor (−1)να as defined above,

Nα|n1, n2, . . . , nα, . . .〉 = nα|n1, n2, . . . , nα, . . .〉 for nα = 0 or 1.

2

When applied to multi-particle states, the properties of the creation and annihila-
tion operators must be consistent with the symmetry of bosonic states under pairwise
interchange of particles. It is clear from Eqs. (1) and (2) that for any pair of single par-
ticle states |α〉 and |β〉, and for any vector |Ψ〉 in the Fock space, a†

αa†
β|Ψ〉 = a†

βa†
α|Ψ〉

and aαaβ|Ψ〉 = aβaα|Ψ〉. One also finds that a†
αaβ|Ψ〉 = aβa†

α|Ψ〉 for α "= β. However,
a†

αaα|φ〉 = nα|Φ〉 for any basis state |Φ〉, while aαa†
α|Φ〉 = (nα +1)|Φ〉. This means that

for any |Ψ〉 in the Fock space

aαa†
α|Ψ〉 − a†

αaα|Ψ〉 = (Nα+1)|Ψ〉 − Nα|Ψ〉 = |Ψ〉.

The properties described in the preceding paragraph can be summarized in the
commutation relations

[a†
α, a†

β] = [aα, aβ] = 0, [aα, a†
β] = δα, βI. (3)

One consequence of these commutation relations is that any multi-particle basis state
can be written

|n1, n2, . . . , nα, . . .〉 =
(

a†
1

)n1
(

a†
2

)n2
. . .

(

a†
α

)nα
. . . |0〉,

or equally well, as any permutation of the above product of operators acting on the
vacuum. For example,

|2, 1, 0, 0, . . .〉 = a†
1a

†
1a

†
2|0〉 = a†

1a
†
2a

†
1|0〉 = a†

2a
†
1a

†
1|0〉.

Equations (1)–(3) define the key properties of bosonic creation and annihilation
operators. Note the close formal similarity to the properties of the harmonic oscillator
raising and lowering operators.

Fermionic operators. The fermionic case is a little trickier than the bosonic one
because we have to enforce antisymmetry under all possible pairwise interchanges. We
define the fermionic creation operator c†α by

c†α|n1, n2, . . . , nα−1, 0α, nα+1, . . .〉 = (−1)να |n1, n2, . . . , nα−1, 1α, nα+1, . . .〉,
(4)

c†α|n1, n2, . . . , nα−1, 1α, nα+1, . . .〉 = 0,

and the annihilation operator cα by

cα|n1, n2, . . . , nα−1, 1α, nα+1, . . .〉 = (−1)να |n1, n2, . . . , nα−1, 0α, nα+1, . . .〉,
(5)

cα|n1, n2, . . . , nα−1, 0α, nα+1, . . .〉 = 0.

In both Eqs. (4) and (5),

να =
∑

β<α

Nβ, where Nβ = c†βcβ, (6)

measures the total number of particles in single-particle states having an index β < α.
It is straightforward to check that Eqs. (4)–(6) are self-consistent, in the sense that
with the phase factor (−1)να as defined above,

Nα|n1, n2, . . . , nα, . . .〉 = nα|n1, n2, . . . , nα, . . .〉 for nα = 0 or 1.

2

where 


When applied to multi-particle states, the properties of the creation and annihila-
tion operators must be consistent with the symmetry of bosonic states under pairwise
interchange of particles. It is clear from Eqs. (1) and (2) that for any pair of single par-
ticle states |α〉 and |β〉, and for any vector |Ψ〉 in the Fock space, a†

αa†
β|Ψ〉 = a†

βa†
α|Ψ〉

and aαaβ|Ψ〉 = aβaα|Ψ〉. One also finds that a†
αaβ|Ψ〉 = aβa†

α|Ψ〉 for α "= β. However,
a†

αaα|φ〉 = nα|Φ〉 for any basis state |Φ〉, while aαa†
α|Φ〉 = (nα +1)|Φ〉. This means that

for any |Ψ〉 in the Fock space

aαa†
α|Ψ〉 − a†

αaα|Ψ〉 = (Nα+1)|Ψ〉 − Nα|Ψ〉 = |Ψ〉.

The properties described in the preceding paragraph can be summarized in the
commutation relations

[a†
α, a†

β] = [aα, aβ] = 0, [aα, a†
β] = δα, βI. (3)

One consequence of these commutation relations is that any multi-particle basis state
can be written

|n1, n2, . . . , nα, . . .〉 =
(

a†
1

)n1
(

a†
2

)n2
. . .

(

a†
α

)nα
. . . |0〉,

or equally well, as any permutation of the above product of operators acting on the
vacuum. For example,

|2, 1, 0, 0, . . .〉 = a†
1a

†
1a

†
2|0〉 = a†

1a
†
2a

†
1|0〉 = a†

2a
†
1a

†
1|0〉.

Equations (1)–(3) define the key properties of bosonic creation and annihilation
operators. Note the close formal similarity to the properties of the harmonic oscillator
raising and lowering operators.

Fermionic operators. The fermionic case is a little trickier than the bosonic one
because we have to enforce antisymmetry under all possible pairwise interchanges. We
define the fermionic creation operator c†α by

c†α|n1, n2, . . . , nα−1, 0α, nα+1, . . .〉 = (−1)να |n1, n2, . . . , nα−1, 1α, nα+1, . . .〉,
(4)

c†α|n1, n2, . . . , nα−1, 1α, nα+1, . . .〉 = 0,

and the annihilation operator cα by

cα|n1, n2, . . . , nα−1, 1α, nα+1, . . .〉 = (−1)να |n1, n2, . . . , nα−1, 0α, nα+1, . . .〉,
(5)

cα|n1, n2, . . . , nα−1, 0α, nα+1, . . .〉 = 0.

In both Eqs. (4) and (5),

να =
∑

β<α

Nβ, where Nβ = c†βcβ, (6)

measures the total number of particles in single-particle states having an index β < α.
It is straightforward to check that Eqs. (4)–(6) are self-consistent, in the sense that
with the phase factor (−1)να as defined above,

Nα|n1, n2, . . . , nα, . . .〉 = nα|n1, n2, . . . , nα, . . .〉 for nα = 0 or 1.

2



25/11/2022 Jinniu Hu

Occupation number representation 

measures the total number of particles in single-particle 
states having an index � < �. 


Therefore, in Fermionic system, the particle number 
operator has

When applied to multi-particle states, the properties of the creation and annihila-
tion operators must be consistent with the symmetry of bosonic states under pairwise
interchange of particles. It is clear from Eqs. (1) and (2) that for any pair of single par-
ticle states |α〉 and |β〉, and for any vector |Ψ〉 in the Fock space, a†

αa†
β|Ψ〉 = a†

βa†
α|Ψ〉

and aαaβ|Ψ〉 = aβaα|Ψ〉. One also finds that a†
αaβ|Ψ〉 = aβa†

α|Ψ〉 for α "= β. However,
a†

αaα|φ〉 = nα|Φ〉 for any basis state |Φ〉, while aαa†
α|Φ〉 = (nα +1)|Φ〉. This means that

for any |Ψ〉 in the Fock space

aαa†
α|Ψ〉 − a†

αaα|Ψ〉 = (Nα+1)|Ψ〉 − Nα|Ψ〉 = |Ψ〉.

The properties described in the preceding paragraph can be summarized in the
commutation relations

[a†
α, a†

β] = [aα, aβ] = 0, [aα, a†
β] = δα, βI. (3)

One consequence of these commutation relations is that any multi-particle basis state
can be written

|n1, n2, . . . , nα, . . .〉 =
(

a†
1

)n1
(

a†
2

)n2
. . .

(

a†
α

)nα
. . . |0〉,

or equally well, as any permutation of the above product of operators acting on the
vacuum. For example,

|2, 1, 0, 0, . . .〉 = a†
1a

†
1a

†
2|0〉 = a†

1a
†
2a

†
1|0〉 = a†

2a
†
1a

†
1|0〉.

Equations (1)–(3) define the key properties of bosonic creation and annihilation
operators. Note the close formal similarity to the properties of the harmonic oscillator
raising and lowering operators.

Fermionic operators. The fermionic case is a little trickier than the bosonic one
because we have to enforce antisymmetry under all possible pairwise interchanges. We
define the fermionic creation operator c†α by

c†α|n1, n2, . . . , nα−1, 0α, nα+1, . . .〉 = (−1)να |n1, n2, . . . , nα−1, 1α, nα+1, . . .〉,
(4)

c†α|n1, n2, . . . , nα−1, 1α, nα+1, . . .〉 = 0,

and the annihilation operator cα by

cα|n1, n2, . . . , nα−1, 1α, nα+1, . . .〉 = (−1)να |n1, n2, . . . , nα−1, 0α, nα+1, . . .〉,
(5)

cα|n1, n2, . . . , nα−1, 0α, nα+1, . . .〉 = 0.

In both Eqs. (4) and (5),

να =
∑

β<α

Nβ, where Nβ = c†βcβ, (6)

measures the total number of particles in single-particle states having an index β < α.
It is straightforward to check that Eqs. (4)–(6) are self-consistent, in the sense that
with the phase factor (−1)να as defined above,

Nα|n1, n2, . . . , nα, . . .〉 = nα|n1, n2, . . . , nα, . . .〉 for nα = 0 or 1.

2
and

From Eqs. (4)–(6) it is clear that for any |Ψ〉, c†αc†β|Ψ〉 = −c†βc†α|Ψ〉 for α #= β, while
c†αc†α|Ψ〉 = 0 = −c†αc†α|Ψ〉. Similarly, cαcβ|Ψ〉 = −cβcα|Ψ〉 for α #= β, and cαcα|Ψ〉 = 0.

We also have c†αcβ|Ψ〉 = −cβc†α|Ψ〉 for α #= β. However, c†αcα|Φ〉 = nα|Φ〉 for any
basis state |Φ〉, whereas cαc†α|Φ〉 = (1 − nα)|Φ〉. Thus,

(cαc†α + c†αcα)|Ψ〉 = (1−Nα)|Ψ〉 + Nα|Ψ〉 = |Ψ〉

for any |Ψ〉 in the Fock space.
The properties above can be summarized in the anticommutation relations

{c†α, c†β} = {cα, cβ} = 0, {cα, c†β} = δα, βI, (7)

where {A,B} = AB +BA is the anticommutator of A and B. These anticommutation
properties fundamentally distinguish the fermionic operators from their commuting
bosonic counterparts. The (−1)να phase factors entering Eqs. (4) and (5) were chosen
specifically to ensure that Eqs. (7) are satisfied. Alternative phase conventions can be
adopted, so long as the anticommutation relations are preserved.

Given the anticommutation relations, any multi-particle basis state can be written

|n1, n2, . . . , nα, . . .〉 =
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c†1
)n1
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c†2
)n2

. . .
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c†α
)nα

. . . |0〉,

or equally well, as any permutation of the above product of creation operators with a
sign change for each pairwise interchange of adjacent operators. For example,
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†
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†
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†
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†
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†
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†
1|0〉 = −c†3c

†
2c

†
1|0〉 = c†3c

†
1c

†
2|0〉 = −c†1c

†
3c

†
2|0〉.

Equations (4)–(7) define the key properties of fermionic creation and annihilation
operators.

Basis transformations. The creation and annihilation operators defined above were
constructed for a particular basis of single-particle states {|α〉}. We will use the no-
tation b†α and bα to represent these operators in situations where it is unnecessary to
distinguish between the bosonic and fermionic cases.

Consider an alternative single-particle basis {|α̃〉}, which—like {|α〉}—is complete
and orthonormal. The Fock space can be spanned by many-particle basis states of the
form

|Φ̃〉 = |ñ1, ñ2, . . . , ñα̃, . . .〉,

and one can define operators b̃†α̃ and b̃α̃ by analogy with those for {|α〉}. It is important
to note that the vacuum state |0〉 can (and will) be chosen to be the same in both the
original and new bases.

The relations |α〉 = b†α|0〉, |α̃〉 = b̃†α̃|0〉, and |α̃〉 =
∑

α |α〉〈α|α̃〉 (completeness) are
all consistent with the unitary transformation

b̃†α̃ =
∑

α

〈α|α̃〉b†α, b̃α̃ =
∑

α

〈α̃|α〉bα. (8)

An important special case of a basis transformation involves single-particle basis
states of well-defined position r and spin z component σ: {|α̃〉} = {|r,σ〉}, where
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to note that the vacuum state |0〉 can (and will) be chosen to be the same in both the
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The operators which involve sum over only single particles 
are known as single-particle operators 

In second quantization, this operator can be written as 

3 Observables

Does it make sense to talk of the momentum !pi of a single particle i? The answer is NO, since the
particles are indistinguishable. We can only talk about sums such as

∑

i !pi

3.1 Single Particle Operators

The operators which involve sum over only single particles are known as single particle operators

F̂1 =
∑

i

f̂1 (!ri, !pi) (20)

In second quantization, this operator can be written as

F̂1 =
∑

l,l′

〈l|f̂1|l′〉a†l al′ (21)

where,

〈l|f̂1|l′〉 =

∫

r
φ∗l (r)f̂1(r, p)φl′(r) (22)

3.2 Two Particle Operators

The operators which involve sum over two particles are known as two particle operators

F̂2 =
1

2

∑

i#=j

f̂2 (!ri, !pi;!rj , !pj) (23)

In second quantization, this operator can be written as

F̂2 =
∑

l1,l2,l3,l4

〈l1l2|f̂2|l4l3〉a†l1a
†
l2
al3al4 (24)

where,

〈l1l2|f̂2|l4l3〉 =

∫

r1,r2

φ∗l1(r1)φ
∗
l2(r2)f̂2(r1, p1; r2, p2)φl4(r1)φl3(r2) (25)

The good thing about this representation is that it is independent of the nature of the particles.

4 Change of Basis

Suppose we have creation operators a†λ corresponding to the basis {|λ〉}. Now we want to go to a

different basis {|λ̃〉}. What are a†
λ̃
s in terms of a†λs?

Since {|λ〉} is a basis, we can write a state |λ̃〉 as

|λ̃〉 =
∑

λ

〈λ|λ̃〉|λ〉 (26)

Thus,

a†
λ̃
|0〉 =

∑

λ

〈λ|λ̃〉a†λ|0〉 (27)
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Exercise

1. Three spinless non-interacting particles, with respective 
masses m1, m2 , and m3 in the ratio m1:m2 :m3=1:2:3, are 
subject to a common infinite square well potential of width 
L in one spatial dimension. Determine the energies and the 
corresponding wave functions in the three lowest lying 
states of the system. 
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masses m1, m2 , and m3 in the ratio m1:m2 :m3=1:2:3, are 
subject to a common infinite square well potential of width 
L in one spatial dimension. Determine the energies and the 
corresponding wave functions in the three lowest lying 
states of the system. 


Solution: The corresponding single-particle wave functions 
and energies are
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distinguishable by their masses, that is, each of the particles has its own mass
m j, j = 1,2,3, . . . ,N, different from the masses of all other particles of the system. Under
these conditions, the time-independent Schrödinger equation (10.1.8) permits separation
of variables leading to N independent single-particle Schrödinger equations

− h̄2

2m j
!∇2

jφ (!r j)+V (!r j)φ j(!r j) = E jφ j(!r j), j = 1,2,3, ...,N. (10.2.2)

The solution of each of these equations yields a single-particle wave function φn j
corresponding to the energy eigenvalue En j , j = 1,2,3, ...,N, where n j stands for the entire
set of quantum numbers of the jth particle. The stationary state wave function of the
system is then given by the product of the single-particle wave functions

ψ(!r1, ...,!rN , t) = φ1(!r1)φ2(!r2)φ3(!r3)...φN(!rN) e−
i
h̄ (E1+E2+E3+...+EN )t

=

(
N

∏
j=1

φ j(!r j)

)
e−

i
h̄ Et , (10.2.3)

with energy

E = E1 +E2 +E3 + ...+EN =
N

∑
j=1

E j. (10.2.4)

Example 10.2.1: Three spinless non-interacting particles, with respective masses m1,m2,
and m3 in the ratio m1 : m2 : m3 = 1 : 2 : 3, are subject to a common infinite square well
potential of width L in one spatial dimension. Determine the energies and the
corresponding wave functions in the three lowest lying states of the system.

Solution: In the given case, the stationary Schrödinger equation (10.1.8)) splits up into three
independent single-particle equations (one each for the individual particles):

− h̄2

2m j

d2φ (x j)

dx2
j

+V (x j)φ j(x j) = E jφ j(x j), j = 1,2,3. (10.2.5)

The corresponding single-particle wave functions and energies are:

φn j(x j) =

√
2
L

sin
(n jπ

L
x j

)
, j = 1,2,3, (10.2.6)

E j =
n2

jπ2h̄2

2m jL2 , j = 1,2,3. (10.2.7)
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Exercise

Ground state: For the ground state, we have n1 = n2 = n3 = 1, 
and the energy of the system will be 
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Ground state: For the ground state, we have n1 = n2 = n3 = 1, and the energy of the
system will be

E111 =
π2h̄2

2L2

(
1

m1
+

1
m2

+
1

m3

)
=

11π2h̄2

12m1L2 . (10.2.8)

The corresponding ground state wave function is given by

ψ111(x1,x2,x3) =

√
8
L3 sin

(π
L

x1

)
sin

(π
L

x2

)
sin

(π
L

x3

)
. (10.2.9)

First excited state: Since m3 > m2 > m1, the first excited state will correspond to n1 =
n2 = 1 and n3 = 2. This is because of the fact that this combination of the quantum numbers
yields the minimum value of energy that must be given to the system to go from the ground
state to the first excited state. Consequently, the energy of the first excited state, E112,
will be

E112 =
π2h̄2

2L2

(
1

m1
+

1
m2

+
4

m3

)
=

17π2h̄2

12m1L2 . (10.2.10)

The wave function of the first excited state reads

ψ112(x1,x2,x3) =

√
8
L3 sin

(π
L

x1

)
sin

(π
L

x2

)
sin

(
2π
L

x3

)
. (10.2.11)

Second excited state: The second excited state corresponds to the case when n1 = 1 and
n2 = n3 = 2. Hence, its energy, E122, equals:

E122 =
π2h̄2

2L2

(
1

m1
+

4
m2

+
4

m3

)
=

13π2h̄2

6m1L2 . (10.2.12)

The corresponding wave function is given by

ψ122(x1,x2,x3) =

√
8
L3 sin

(π
L

x1

)
sin

(
2π
L

x2

)
sin

(
2π
L

x3

)
. (10.2.13)

Similarly, one can determine the energies and the corresponding wave functions of all other
excited states of this three-particle system.

Example 10.2.2: Consider two distinguishable non-interacting particles 1 and 2 with
masses m1 and m2, respectively. If m1 > m2 and they are subject to a common
three-dimensional potential

V (x,y,z) =
{

0, for 0 < x < a,0 < y < b,0 < z < c,
∞ for x≥ a,y≥ b,z≥ c, (10.2.14)

The corresponding ground state wave function is given by 
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Similarly, one can determine the energies and the corresponding wave functions of all other
excited states of this three-particle system.

Example 10.2.2: Consider two distinguishable non-interacting particles 1 and 2 with
masses m1 and m2, respectively. If m1 > m2 and they are subject to a common
three-dimensional potential

V (x,y,z) =
{

0, for 0 < x < a,0 < y < b,0 < z < c,
∞ for x≥ a,y≥ b,z≥ c, (10.2.14)

First excited state: Since m3 > m2 > m1, the first excited state 
will correspond to n1 = n2 = 1 and n3 = 2. 
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Similarly, one can determine the energies and the corresponding wave functions of all other
excited states of this three-particle system.
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Similarly, one can determine the energies and the corresponding wave functions of all other
excited states of this three-particle system.
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masses m1 and m2, respectively. If m1 > m2 and they are subject to a common
three-dimensional potential
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{
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∞ for x≥ a,y≥ b,z≥ c, (10.2.14)
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Exercise

Second excited state: The second excited state corresponds 
to the case when n1 = n3 = 1 and n2 =2. Hence, its energy, E121, 
equals: 


The corresponding wave function is given by 
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)
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First excited state: Since m3 > m2 > m1, the first excited state will correspond to n1 =
n2 = 1 and n3 = 2. This is because of the fact that this combination of the quantum numbers
yields the minimum value of energy that must be given to the system to go from the ground
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Similarly, one can determine the energies and the corresponding wave functions of all other
excited states of this three-particle system.

Example 10.2.2: Consider two distinguishable non-interacting particles 1 and 2 with
masses m1 and m2, respectively. If m1 > m2 and they are subject to a common
three-dimensional potential

V (x,y,z) =
{

0, for 0 < x < a,0 < y < b,0 < z < c,
∞ for x≥ a,y≥ b,z≥ c, (10.2.14)

Similarly, one can determine the energies and the 
corresponding wave functions of all other excited states of 
this three-particle system. 


E121 = π2ℏ2

2L2 ( 1
m1

+ 4
m2

+ 1
m3 ) = 5π2ℏ2

3mL2
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Exercise

2. Two non-interacting particles, each of mass m, are 
confined to move in a one-dimensional potential well: V (x) 
= 0, for 0 < x < 2a and V (x) = ∞ elsewhere, where a is a 
positive constant. What are the energies and the 
corresponding degeneracies of the three lowest lying states 
of the system, if the particles are indistinguishable spin-1/2 
fermions?
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Exercise

2. Two non-interacting particles, each of mass m, are 
confined to move in a one-dimensional potential well: V (x) 
= 0, for 0 < x < 2a and V (x) = ∞ elsewhere, where a is a 
positive constant. What are the energies and the 
corresponding degeneracies of the three lowest lying states 
of the system, if the particles are indistinguishable spin-1/2 
fermions?


Solution: The single particle wave function and energy are
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or nx = 0,ny = 1,nz = 0 or nx = 0,ny = 0,nz = 1. Since the spatial parts of the
single-particle wave function of the particles are different, both the symmetric and
the anti-symmetric spatial parts of the total wave function will be non-zero. The
former will have to be combined with the anti-symmetric singlet spin state, while the
latter has to be combined with the symmetric triplet spin state. Hence, there are in
all four spin configurations. In addition, as mentioned earlier, the first excited state
of one of the particles can be realized in three different ways. Therefore, the total
degeneracy of the first excited state of the system is 3×4 = 12.

(b) In the case of two spin-1 bosons, the overall wave function must be symmetric. The
system’s spin function is obtained by combining the spins of the two particles. As
we know, there are six symmetric and three anti-symmetric spin functions for this
system. For the ground state of the system, when both the bosons are in the
single-particle ground state with nx j = ny j = nz j = 0, j = 1,2, there is a single
symmetric spatial part of the wave function, which must be combined with one of
the six symmetric spin functions to give an overall symmetric wave function.
Hence, the degeneracy of the ground state in this case is six.
The first excited state, analogous to the case of fermions, will have a symmetric or an
anti-symmetric spatial part of the wave function. Once again the symmetric spatial
part is combined with the three anti-symmetric spin parts and the anti-symmetric
spatial part is combined with six symmetric spin parts of the wave function. In this
case too, the first excited state of one of the particles can be realized in three different
ways. So, in this case of bosonic system, the total degeneracy of the first excited state
will be 9×3 = 27.

Example 10.5.2: Two non-interacting particles, each of mass m, are confined to move in a
one-dimensional potential well: V (x) = 0, for 0 < x < 2a and V (x) = ∞ elsewhere, where
a is a positive constant. What are the energies and the corresponding degeneracies of the
three lowest lying states of the system, if the particles are (i) indistinguishable spin-1/2
fermions?, and (ii) distinguishable spin-1/2 fermions?.

Solution: The single-particle spatial part of the stationary state wave functions, satisfying
the standard boundary conditions at x = 0 and x = 2a, are

ψn(ξ , t) = φn(x) e−
i
h̄ Ent , (10.5.20)

where n is a positive integer,

φn(x) =

√
1
a

sin
(nπ

2a
x
)

(10.5.21)
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and En, given by

En =
n2 π2 h̄2

8ma2 (10.5.22)

is the single-particle energy in the nth state.
It is obvious that the nth energy state of the system will be characterized by two sets

of quantum numbers n1 and n2. The corresponding stationary state wave function of the
system will be

ψn1n2(ξ1,ξ2, t) = φn1n2(x1,x2) χ(S1,S2) e−
i
h̄ En1n2 t , (10.5.23)

where

En1n2 = En1 +En2 =
(
n2

1 + n2
2
) π2 h̄2

8ma2 (10.5.24)

gives the total energy of the system.

(i) Since the particles are indistinguishable fermions, the ground state of the system will
have both the fermions in the single-particle states with n1 = n2 = 1 under the condition
that they will have opposite spins. Hence, the ground state will have energy E11 =
E1 +E1 = π2h̄2/4ma2.

We have n1 = n2 = 1, which means that the anti-symmetric spatial part of the wave
function will be zero. Since for a fermionic system the overall wave function must be
anti-symmetric, the ground state wave function will be given by

ψ11(ξ1,ξ2) =
1
a

sin
(n1π

2a
x1

)
sin

(n2π
2a

x2

)
χsinglet(s1,s2), (10.5.25)

where χsinglet(s1,s2) given by

χsinglet(s1,s2) =
1√
2

[
χ (+)

1 χ (−)
2 −χ (−)

1 χ (+)
2

]
, (10.5.26)

is anti-symmetric with respect to the interchange of particles. The superscripts ‘(+)’
and ‘(−)’ stand for spin up and spin down, respectively. Evidently, the ground state
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It is obvious that the nth energy state of the system will 
be characterized by two sets of quantum numbers n1 and n2. 
The corresponding stationary state wave function of the 
system will be 
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Since for a fermionic system the overall wave function must 
be anti-symmetric, the ground state wave function will be 
given by 
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is anti-symmetric with respect to the interchange of 
particles. The superscripts ‘(+)’ and ‘(−)’ stand for spin up 
and spin down, respectively. 
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The wave function of the system will be given by 
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The wave function of the system will be given by

ψa(ξ1,ξ2) =

{
φs(x1,x2) χsinglet(s1,s2)

φa(x1,x2) χtriplet(s1,s2).
(10.5.28)

where χsinglet(s1,s2) is given by (10.5.26), while χtriplet(s1,s2) stands for three possible
symmetric spin functions given by

χtriplet(s1,s2) =






χ (+)
1 χ (+)

2 ,

1√
2

[
χ (+)

1 χ (−)
2 + χ (−)

1 χ (+)
2

]

χ (+)
1 χ (+)

2 .

(10.5.29)

The spatial parts of the wave function are

φs(x1,x2) =
1√
2a

[
sin

(π x1

2a

)
sin

(π x2

a

)
+ sin

(π x1

a

)
sin

(π x2

2a

)]
, (10.5.30)

φa(x1,x2) =
1√
2a

[
sin

(π x1

2a

)
sin

(π x2

a

)
− sin

(π x1

a

)
sin

(π x2

2a

)]
. (10.5.31)

Since there are four possible spin configurations, the first excited state of the system is
4-fold degenerate.
The second excited state of the system corresponds to n1 = n2 = 2 and the energy of
the system in this state will be

E(2) = E22 =
π2h̄2

ma2 . (10.5.32)

Once again, since the overall wave function of the system must be anti-symmetric and
n1 = n2 = 2, the anti-symmetric spatial part of the wave function will be zero. Hence,
the total wave function of the second excited state will be

ψ22(ξ1,ξ2) =
1
a

sin
(π x1

a

)
sin

(π x2

a

)
χsinglet(s1,s2). (10.5.33)

Just like the ground state, the second excited state of the system will also be non-
degenerate.

(ii) Since the particles are distinguishable fermions, there is no restriction on the symmetry
of the wave functions: neither on the spatial part nor on the spin part.
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The spatial parts of the wave function are 
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Just like the ground state, the second excited state of the system will also be non-
degenerate.

(ii) Since the particles are distinguishable fermions, there is no restriction on the symmetry
of the wave functions: neither on the spatial part nor on the spin part.

Since there are four possible spin configurations, the first 
excited state of the system is 4-fold degenerate. 

The second excited state of the system corresponds to n1 = 
n2 = 2 and the energy of the system in this state will be 
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degenerate.

(ii) Since the particles are distinguishable fermions, there is no restriction on the symmetry
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3. Show that operators a and a+ are not Hermitian while 
operator a+ a is Hermitian. 
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Solution: The matrix elements of a and a+ are: 
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With the use of Eqn. (3.145), we get:
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Generalization of ψ x( )2  and ψ x( )1  yields:

 ( )ψ = α
π
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 (3.169)

12. Show that operators a  and †a  are not Hermitian while operator †a a is Hermitian.

SOLUTION

For a Hermitian matrix A, † *= ⇒ =A A A Aij ji. The matrix elements of a  and †a  are:

 = = − = δ −a m a n n m n nmn m n1 , 1 (3.170a)

and:

 ( )( ) = = − = δ −a n a m m n m mnm n m1* * *
, 1 (3.170b)

which yield ( )≠a amn nm
*, and hence a  is not a Hermitian operator. Further:

 1 1 1 ,† †
, 1( ) = = + + = + δ +a m a n n m n n

mn m n  (3.171)

and:
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We thus !nd that †a  is not a Hermitian operator.
The matrix elements of operator †a a are:

 † †( ) = = δa a m a a n n
mn mn (3.173)
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With the use of Eqn. (3.145), we get:
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The matrix elements of a+a are: 
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and:

 †
*

† *{ }( ) = = δa a n a a m m
nm nm (3.174)

Since, m and n are integer number, † †( ) ( )=a a a a
nm mn

. Hence †a a is a Hermitian 
operator.

13. Use the Heisenberg equation and show that the time dependence of annihi-
lation and creation operators for a 1D harmonic oscillator can be expressed as: 

= − ωa t a e i t( ) (0)  and ( ) (0)† †= ωa t a ei t.

SOLUTION

From Eqn. (3.125), we have:
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The Heisenberg equation for time-independent operators gives:
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which implies = − ωdp
dt

m x2 . And:
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