个人资料
- 性别: 男
- 部门: 物理学院
- 联系电话:
- 通讯地址:
- 职称: 副教授
- 电子邮箱: kongxt@nankai.edu.cn
- 办公地址: 五教418
教育经历
✨ 2008-09-01至2013-06-20,就读于南开大学光学专业,2013年6月博士研究生毕业,获得理学博士学位,导师:田建国教授
✨ 2004-08-30至2008-07-10,就读于东北大学应用物理学专业,2008年7月大学本科毕业,获得理学学士学位
工作经历
✨ 2021-01-11至现在,南开大学(天津),物理科学学院,副教授
✨ 2018-08-01至2019-07-31,University of Washington(Seattle, WA, USA),Department of Chemistry,Research Associate,Tutor: Prof. David J. Masiello
✨ 2015-09-15至2018-07-31,Ohio University(Athens, OH, USA),Department of Physics and Astronomy, Visiting Postdoctoral Researcher,Tutor: Prof. Alexander O. Govorov
✨ 2015-06-18至2018-10-12,电子科技大学(四川,成都),博士后,合作导师:王志明教授
✨ 2013-07-03至2015-05-07,国家纳米科学中心(北京),博士后,合作导师:戴庆研究员
个人简介
孔祥天,南开大学物理科学学院副教授,主要从事纳米光子学研究。
研究方向
当前研究领域
基于二维材料的手性光学信号的产生、增强和调控。侧重于可见光波段的研究。
以往研究领域
2020年之前的研究领域包括(一)等离激元纳米结构的手性光学性质和光热效应;(二)金属纳米结构表面热电子生成效应及其在光催化领域的应用;(三)石墨烯等离激元特性和其它线性光学性质;(四)金属纳米颗粒、微纳结构的等离激元光学性质以及金属超颖材料、超表面的光学响应。
(一)等离激元纳米结构的手性光学性质和光热效应
在等离激元手性光学领域的学术贡献包括两个方面。
一方面,提出了光热圆二色性光谱技术理论。论证了手性超表面的手性光学吸收可在纳秒时间范围内转化为手性依赖强烈的温度分布。针对化学分子手性光学吸收非对称性弱的问题,具体提出了应用于手性光化学和手性辐射测量计的超表面设计理论方案,为对偏振依赖敏感的光化学和手性辐射测量提供了基础理论。
另一方面,通过设计石墨烯纳米组件手性超表面,将等离激元圆二色性光谱技术引入到中红外波段。根据中红外掺杂石墨烯纳米结构的等离激元共振效应,给出了设计手性石墨烯纳米组件的一般性规则,详细阐述了等离激元耦合和结构手性对中红外圆二色性光谱的影响。这个工作为增强一些重要的生物分子(如DNA分子、多肽分子等)的振动光活性提供了研究基础;同时其圆二色性谱线峰位处于人体热辐射峰位附近,为设计相应的热成像光学器件提供了可能性。
这个领域代表作包括: Kong, X.-T.; Khorashad, L. K.; Wang, Z.; Govorov, A. O. Photothermal Circular Dichroism Induced by Plasmon Resonances in Chiral Metamaterial Absorbers and Bolometers. Nano Lett. 2018, 18, 2001–2008. Kong, X.-T.; Zhao, R.; Wang, Z.; Govorov, A. O. Mid-Infrared Plasmonic Circular Dichroism Generated by Graphene Nanodisk Assemblies. Nano Lett. 2017, 17, 5099–5105. Kong, X.-T.; Besteiro, L. V.; Wang, Z.; Govorov, A. O. Plasmonic Chirality and Circular Dichroism in Bioassembled and Nonbiological Systems: Theoretical Background and Recent Progress. Adv. Mater. 2020, 32, 1801790.
(二)金属纳米结构表面热电子生成效应及其在光催化领域的应用
针对等离激元热电子生成及其在光催化领域的应用,我们提出并发展了复杂结构金属纳米晶体表面热电子生成和注入的理论和一般性计算方法。 具体研究了日光照射下多“热”点纳米晶体表面热电子生成率和金属二氧化钛界面的热电子由金属表面隧穿到二氧化钛的注入率。阐述了金属热电子生成率和注入率对其材料、形状、尺寸的依赖关系。指出了银纳米晶体和小尺度金属纳米晶体在光催化领域的优势。我们在与Temple University的Hai-Lung Dai教授和美国陆军作战能力发展司令部化学生物中心的Brendan G. DeLacy博士合作过程中,将该理论应用于解释附着有银纳米盘的二氧化钛纤维对化学战模拟剂甲基对氧的增强催化分解效应 [J. Phys. Chem. C 2019, 123, 19579-19587];在与西弗吉尼亚大学Nianqiang Wu教授合作中,通过该理论共同阐述了半导体二氧化钛中经由金纳米晶体注入的热电子的非热平衡分布 [ACS Nano 2018, 12, 7117-7126]; 在与美国阿贡国家实验室纳米材料中心Gary P. Wiederrecht博士合作中,将该理论应用于支持近红外狭缝等离激元的金属超表面结构中,解释了其超宽带热电子生成增强效应 [Nat. Commun. 2017, 8, 986];在与西班牙维哥大学(Universidade de Vigo)的Miguel A. Correa-Duarte教授合作中,应用该理论解释了各向异性等离激元纳米晶体在二氧化钛光催化反应中的增强催化作用 [J. Phys. Chem. C 2016, 120, 11690-11699] 以及提供了通过控制热点空间分布以实时调控光催化效率的理论机制 [ChemCatChem 2018, 10, 1867-3880]。
这个领域代表作包括: Kong, X.-T.; Wang, Z.; Govorov, A. O. Plasmonic Nanostars with Hot Spots for Efficient Generation of Hot Electrons Under Solar Illumination. Adv. Opt. Mater. 2017, 5 (15), 1600594. Besteiro, L. V.; Kong, X.-T.; Wang, Z.; Hartland, G.; Govorov, A. O. Understanding Hot-Electron Generation and Plasmon Relaxation in Metal Nanocrystals: Quantum and Classical Mechanisms. ACS Photonics 2017, 4 (11), 2759–2781.
(三)石墨烯等离激元特性和其它线性光学性质
在石墨烯光学研究领域,我们研究了石墨烯等离激元在非平整介面的传播特性,论证了通过设计非极性介质凹槽基底以减小石墨烯等离激元传播损耗同时避免等离激元和基底声子耦合的可行性 [Opt. Lett. 2015, 40, 1-4];分析了偏压下非均匀费米面分布对石墨烯纳米结构等离激元特性的影响 [Opt. Lett. 2014, 39, 1345-1348];设计了石墨烯菲涅尔片透镜,并论证了可见光波段石墨烯菲涅尔片的聚光能力 [ACS Photonics 2015, 2, 200-207]。这些工作是在可见光和中红外波段应用石墨烯材料于光学探测、超薄超轻器件的基础性研究工作,为相应的应用研究创造了基础。尤其,我们设计出的石墨烯透镜为二维材料组成,是世界上最薄的透镜,因此被学术媒体广泛报导,例如Chemical and Engineering News 2015, 93(6), 25。
这个领域代表作包括: Kong, X.-T.; Bai, B.; Dai, Q. Graphene Plasmon Propagation on Corrugated Silicon Substrates. Opt. Lett. 2015, 40 (1), 1–4. Kong, X.-T.; Yang, X.; Li, Z.; Dai, Q.; Qiu, X. Plasmonic Extinction of Gated Graphene Nanoribbon Array Analyzed by a Scaled Uniform Fermi Level. Opt. Lett. 2014, 39 (6), 1345–1348. Kong, X.-T.; Khan, A. A.; Kidambi, P. R.; Deng, S.; Yetisen, A. K.; Dlubak, B.; Hiralal, P.; Montelongo, Y.; Bowen, J.; Xavier, S.; Jiang, K.; Amaratunga, G. A. J.; Hofmann, S.; Wilkinson, T. D.; Dai, Q.; Butt, H. Graphene-Based Ultrathin Flat Lenses. ACS Photonics 2015, 2 (2), 200–207.
(四)金属纳米颗粒、微纳结构的等离激元光学性质以及金属超颖材料、超表面的光学响应
我们根据变换光学理论,在对金属等离激元波导进行全面的模式分析基础上 [Opt. Express 2012, 20, 12133],提出了金属等离激元波导中模式转换器的设计理论 [Opt. Express 2013, 21, 9437-9446];分析复杂金属纳米结构的等离激元共振特性(如铜纳米杯在近红外波段的光学吸收特性 [ACS Photonics 2017, 4 (11), 2881]、双层金属'纳米指甲'在可见光的透射性质 [Nanoscale 2020, 12, 3827]);利用等离激元耦合效应实现局域化温度控制 [ACS Nano 2019, 13(8), 9655];研究等离激元纳米颗粒在中红外光谱学 [Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 2288 ,Phys. Rev. B 2020, 101, 085409] 和隔离红外辐射 [Nano Lett. 2018, 18, 3147] 等领域的应用。
这个领域代表作包括: Kong, X.-T.; Yan, W.-G.; Li, Z.-B.; Tian, J.-G. Optical Properties of Metal-Multi-Insulator-Metal Plasmonic Waveguides. Opt. Express 2012, 20, 12133. Kong, X.-T.; Li, Z.-B.; Tian, J.-G. Mode Converter in Metal-Insulator-Metal Plasmonic Waveguide Designed by Transformation Optics. Opt. Express 2013, 21 (8), 9437.
(五)其它研究领域
我们的研究工作还涉及到近红外胶体量子点荧光性质 [Adv. Sci. 2018, 5, 1800656;Adv. Energy Mater. 2018, 8, 1701432]、氧化锌-氨基酸共结晶体中的量子局域效应 [J. Phys. Chem. C 2018, 122, 6348]、硅纳米结构周期阵列的光学性质 [Appl. Phys. Lett. 2014, 105, 053108] 以及应用于光学传感的石墨烯线性光学性质研究 [Sci. Rep. 2012, 2, 908]。
研究成果
发表文章列表
Google Scholar h-index: 21, as of August 2022.
No. | Author | Title | Year | Journal/Book |
---|
47 | Negrín-Montecelo, Y.; Kong, X.-T.; Besteiro, L.V.; Carbó-Argibay, E.; Wang, Z.M.; Pérez-Lorenzo, M.; Govorov, A.O.; Comesaña-Hermo, M & Correa-Duarte, M.A. | Synergistic Combination of Charge Carriers and Energy-Transfer Processes in Plasmonic Photocatalysis | 2022 | ACS Appl. Mater. Interfaces, ASAP | 46 | Ávalos-Ovando, O.; Santiago, E.Y.; Movsesyan, A.; Kong, X.-T.; Yu, P.; Besteiro, L.V.; Khorashad, L.K.; Okamoto, H.; Slocik, J.M.; Correa-Duarte, M.A.; Comesaña-Hermo, M.; Liedl, T.; Wang, Z.; Markovich, G.; Burger, S. & Govorov, A.O. | Chiral Bioinspired Plasmonics: A Paradigm Shift for Optical Activity and Photochemistry | 2022 | ACS Photonics Vol. 9(7), pp. 2219-2236 | 45 | Movsesyan, A.; Besteiro, L.V.; Kong, X.-T.; Wang, Z. & Govorov, A.O. | Engineering Strongly Chiral Plasmonic Lattices with Achiral Unit Cells for Sensing and Photodetection | 2022 | Adv. Opt. Mater., pp. 2101943 | 44 | Li, D.; Su, B.; Wen, R.; Hu, Z.; Huo, C.; Yan, X.; Kong, X.-T.; Liu, Z. & Tian, J. | Abnormal Spatial Shifts in Graphene Measured via the Beam Displacement Amplification Technique: Implications for Sensors Based on the Goos-Hänchen Effect | 2021 | ACS Appl. Nano Mater. Vol. 4(12), pp. 13477-13485 | 43 | Ma, C.; Yu, P.; Wang, W.; Zhu, Y.; Lin, F.; Wang, J.; Jing, Z.; Kong, X.-T.; Li, P.; Govorov, A.O.; Liu, D.; Xu, H. & Wang, Z. | Chiral Optofluidics with a Plasmonic Metasurface Using the Photothermal Effect | 2021 | ACS Nano Vol. 15(10), pp. 16357-16367 | 42 | Besteiro, L. V.; Kong, X.-T.; Wang, Z.M. & Govorov, A. O. | Theory of Plasmonic Excitations | 2021 | Plasmonic Catalysis, pp. 1-35 | 41 | Alam, M. K.; Niu, C.; Wang, Y.; Wang, W.; Li, Y.; Dai, C.; Tong, T.; Shan, X.; Charlson, E.; Pei, S.; Kong, X.-T.; Hu, Y.; Belyanin, A.; Stein, G.; Liu, Z.; Hu, J.; Wang, Z. & Bao, J. | Large graphene-induced shift of surface-plasmon resonances of gold films: Effective-medium theory for atomically thin materials | 2020 | Phys. Rev. Research Vol. 2(1), pp. 013008 | 40 | Aleshire, K.; Pavlovetc, I. M.; Collette, R.; Kong, X.-T.; Rack, P. D.; Zhang, S.; Masiello, D. J.; Camden, J. P.; Hartland, G. V. & Kuno, M. | Far-field midinfrared superresolution imaging and spectroscopy of single high aspect ratio gold nanowires | 2020 | Proc. Natl. Acad. Sci. Vol. 117(5), pp. 2288-2293 | 39 | Kong, X.-T.; Besteiro, L. V.; Wang, Z. & Govorov, A. O. | Plasmonic Chirality and Circular Dichroism in Bioassembled and Nonbiological Systems: Theoretical Background and Recent Progress | 2020 | Adv. Mater. Vol. 32(41), pp. 1801790 | 38 | Librizzi, P.; Biswas, A.; Chang, R.; Kong, X.-T.; Moocarme, M.; Ahuja, G.; Kretzschmar, I. & Vuong, L. T. | Broadband chiral hybrid plasmon modes on nanofingernail substrates | 2020 | Nanoscale Vol. 12(6), pp. 3827-3833 | 37 | Santiago, E. Y.; Besteiro, L. V.; Kong, X.-T.; Correa-Duarte, M. A.; Wang, Z. & Govorov, A. O. | Efficiency of Hot-Electron Generation in Plasmonic Nanocrystals with Complex Shapes: Surface-Induced Scattering, Hot Spots, and Interband Transitions | 2020 | ACS Photonics Vol. 7(10), pp. 2807-2824 | 36 | Wu, Y.; Hu, Z.; Kong, X.-T.; Idrobo, J. C.; Nixon, A. G.; Rack, P. D.; Masiello, D. J. & Camden, J. P. | Infrared plasmonics: STEM-EELS characterization of Fabry-Pérot resonance damping in gold nanowires | 2020 | Phys. Rev. B Vol. 101(8), pp. 085409 | 35 | Bhattacharjee, U.; West, C. A.; Jebeli, S. A. H.; Goldwyn, H. J.; Kong, X.-T.; Hu, Z.; Beutler, E. K.; Chang, W.-S.; Willets, K. A.; Link, S. & Masiello, D. J. | Active Far-Field Control of the Thermal Near-Field via Plasmon Hybridization | 2019 | ACS Nano Vol. 13(8), pp. 9655-9663 | 34 | Kuhn, D. L.; Zander, Z.; Kulisiewicz, A. M.; Debow, S. M.; Haffey, C.; Fang, H.; Kong, X.-T.; Qian, Y.; Walck, S. D.; Govorov, A. O.; Rao, Y.; Dai, H.-L. & DeLacy, B. G. | Fabrication of Anisotropic Silver Nanoplatelets on the Surface of TiO2 Fibers for Enhanced Photocatalysis of a Chemical Warfare Agent Simulant, Methyl Paraoxon | 2019 | J. Phys Chem C Vol. 123(32), pp. 19579-19587 | 33 | Urban, M. J.; Shen, C.; Kong, X.-T.; Zhu, C.; Govorov, A. O.; Wang, Q.; Hentschel, M. & Liu, N. | Chiral Plasmonic Nanostructures Enabled by Bottom-Up Approaches | 2019 | Annu. Rev. Phys. Chem. Vol. 70(1), pp. 275-299 | 32 | Besteiro, L. V.; Kong, X.-T.; Wang, Z.; Rosei, F. & Govorov, A. O. | Plasmonic Glasses and Films Based on Alternative Inexpensive Materials for Blocking Infrared Radiation | 2018 | Nano Lett. Vol. 18(5), pp. 3147-3156 | 31 | Cushing, S. K.; Chen, C.-J.; Dong, C. L.; Kong, X.-T.; Govorov, A. O.; Liu, R.-S. & Wu, N. | Tunable Nonthermal Distribution of Hot Electrons in a Semiconductor Injected from a Plasmonic Gold Nanostructure | 2018 | ACS Nano Vol. 12(7), pp. 7117-7126 | 30 | Kong, X.-T.; Khorashad, L. K.; Wang, Z. & Govorov, A. O. | Photothermal Circular Dichroism Induced by Plasmon Resonances in Chiral Metamaterial Absorbers and Bolometers | 2018 | Nano Lett. Vol. 18, pp. 2001-2008 | 29 | Muhammed, M. A. H.; Lamers, M.; Baumann, V.; Dey, P.; Blanch, A. J.; Polishchuk, I.; Kong, X.-T.; Levy, D.; Urban, A. S.; Govorov, A. O.; Pokroy, B.; Rodr\iguez-Fernández, J. & Feldmann, J. | Strong Quantum Confinement Effects and Chiral Excitons in Bio-Inspired ZnO–Amino Acid Cocrystals | 2018 | J. Phys. Chem. C Vol. 122(11), pp. 6348-6356 | 28 | Negr\in-Montecelo, Y.; Comesaña-Hermo, M.; Kong, X.-T.; Rodr\iguez-González, B.; Wang, Z.; Pérez-Lorenzo, M.; Govorov, A. O. & Correa-Duarte, M. A. | Traveling Hot Spots in Plasmonic Photocatalysis: Manipulating Interparticle Spacing for Real-Time Control of Electron Injection | 2018 | ChemCatChem Vol. 10(7), pp. 1561-1565 | 27 | Tong, X.; Kong, X.-T.; Wang, C.; Zhou, Y.; Navarro-Pardo, F.; Barba, D.; Ma, D.; Sun, S.; Govorov, A. O.; Zhao, H.; Wang, Z. M. & Rosei, F. | Optoelectronic Properties in Near-Infrared Colloidal Heterostructured Pyramidal “Giant” Core/Shell Quantum Dots | 2018 | Adv. Sci. Vol. 5(8), pp. 1800656 | 26 | Tong, X.; Kong, X.-T.; Zhou, Y.; Navarro-Pardo, F.; Selopal, G. S.; Sun, S.; Govorov, A. O.; Zhao, H.; Wang, Z. M. & Rosei, F. | Near-Infrared, Heavy Metal-Free Colloidal 'Giant' Core/Shell Quantum Dots | 2018 | Adv. Energy Mater. Vol. 8(2), pp. 1701432 | 25 | Besteiro, L. V.; Kong, X.-T.; Wang, Z.; Hartland, G. & Govorov, A. O. | Understanding Hot-Electron Generation and Plasmon Relaxation in Metal Nanocrystals: Quantum and Classical Mechanisms | 2017 | ACS Photonics Vol. 4(11), pp. 2759-2781 | 24 | Kong, X.-T.; Wang, Z. & Govorov, A. O. | Plasmonic Nanostars with Hot Spots for Efficient Generation of Hot Electrons under Solar Illumination | 2017 | Adv. Opt. Mater. Vol. 5(15), pp. 1600594 | 23 | Kong, X.-T.; Zhao, R.; Wang, Z. & Govorov, A. O. | Mid-infrared Plasmonic Circular Dichroism Generated by Graphene Nanodisk Assemblies | 2017 | Nano Lett. Vol. 17(8), pp. 5099-5105 | 22 | Qin, Y.; Kong, X.-T.; Wang, Z.; Govorov, A. O. & Kortshagen, U. R. | Near-Infrared Plasmonic Copper Nanocups Fabricated by Template-Assisted Magnetron Sputtering | 2017 | ACS Photonics Vol. 4(11), pp. 2881-2890 | 21 | Sykes, M. E.; Stewart, J. W.; Akselrod, G. M.; Kong, X.-T.; Wang, Z.; Gosztola, D. J.; Martinson, A. B. F.; Rosenmann, D.; Mikkelsen, M. H.; Govorov, A. O. & Wiederrecht, G. P. | Enhanced generation and anisotropic Coulomb scattering of hot electrons in an ultra-broadband plasmonic nanopatch metasurface | 2017 | Nat. Commun. Vol. 8(1), pp. 986 | 20 | Yan, X.-Q.; Liu, F.; Kong, X.-T.; Yao, J.; Zhao, X.; Liu, Z.-B. & Tian, J.-G. | Polarization dependence of graphene transient optical response: interplay between incident direction and anisotropic distribution of nonequilibrium carriers | 2017 | J. Opt. Soc. Am. B Vol. 34(1), pp. 218-226 | 19 | Sousa-Castillo, A.; Comesaña-Hermo, M.; Rodr\iguez-González, B.; Pérez-Lorenzo, M.; Wang, Z.; Kong, X.-T.; Govorov, A. O. & Correa-Duarte, M. A. | Boosting Hot Electron-Driven Photocatalysis through Anisotropic Plasmonic Nanoparticles with Hot Spots in Au–TiO2 Nanoarchitectures | 2016 | J. Phys. Chem. C Vol. 120(21), pp. 11690-11699 | 18 | Gao, C.; Zhao, X.; Yao, J.; Yan, X.-Q.; Kong, X.-T.; Chen, Y.; Liu, Z.-B. & Tian, J.-G. | Sign of differential reflection and transmission in pump-probe spectroscopy of graphene on dielectric substrate | 2015 | Photon. Res. Vol. 3(2), pp. A1-A9 | 17 | Kong, X.-T.; Bai, B. & Dai, Q. | Graphene plasmon propagation on corrugated silicon substrates | 2015 | Opt. Lett. Vol. 40(1), pp. 1-4 | 16 | Kong, X.-T.; Khan, A. A.; Kidambi, P. R.; Deng, S.; Yetisen, A. K.; Dlubak, B.; Hiralal, P.; Montelongo, Y.; Bowen, J.; Xavier, S.; Jiang, K.; Amaratunga, G. A. J.; Hofmann, S.; Wilkinson, T. D.; Dai, Q. & Butt, H. | Graphene-Based Ultrathin Flat Lenses | 2015 | ACS Photonics Vol. 2(2), pp. 200-207 | 15 | Yang, X.-X.; Kong, X.-T. & Dai, Q. | Optical properties of graphene plasmons and their potential applications | 2015 | 物理学报 Acta Phys. Sinica Vol. 64(10), pp. 106801 | 14 | Yang, X.; Kong, X.-T.; Bai, B.; Li, Z.; Hu, H.; Qiu, X. & Dai, Q. | Substrate Phonon-Mediated Plasmon Hybridization in Coplanar Graphene Nanostructures for Broadband Plasmonic Circuits | 2015 | Small Vol. 11, pp. 591-596 | 13 | Yao, J.; Zhao, X.; Yan, X.-Q.; Kong, X.-T.; Gao, C.; Chen, X.-D.; Chen, Y.; Liu, Z.-B. & Tian, J.-G. | Making transient optical reflection of graphene polarization dependent | 2015 | Opt. Express Vol. 23(19), pp. 24177 | 12 | Kong, Xiangtian; Li, Zubin & Tian, Jianguo | Mode Converter in Insulator-Metal-Insulator Plasmonic Waveguide Designed by Transformation Optics | 2014 | 南开大学学报(自然科学版) Acta Scientiarum Naturalium Universitatis Nankaiensis Vol. 47(2), pp. 9-17 | 11 | Kong, X.-T.; Butt, H.; Yetisen, A. K.; Kangwanwatana, C.; Montelongo, Y.; Deng, S.; Cruz Vasconcellos, F. d.; Qasim, M. M.; Wilkinson, T. D. & Dai, Q. | Enhanced reflection from inverse tapered nanocone arrays | 2014 | Appl. Phys. Lett. Vol. 105(5), pp. 053108 | 10 | Kong, X.-T.; Yang, X.; Li, Z.; Dai, Q. & Qiu, X. | Plasmonic extinction of gated graphene nanoribbon array analyzed by a scaled uniform Fermi level | 2014 | Opt. Lett. Vol. 39(6), pp. 1345-1348 | 9 | Kong, X.-T.; Li, Z.-B. & Tian, J.-G. | Mode converter in metal-insulator-metal plasmonic waveguide designed by transformation optics | 2013 | Opt. Express Vol. 21(8), pp. 9437 | 8 | Yan, W.-G.; Kong, X.-T.; Li, Z.-B. & Tian, J.-G. | Nanostructure Fabricated by Nanosphere Lithography Assisted with O2 Plasma Treatment | 2013 | J. Nanosci. Nanotechnol. Vol. 13, pp. 4311-4315 | 7 | Yan, W.-G.; Ying, C.-F.; Kong, X.-T.; Li, Z.-B. & Tian, J.-G. | Fabrication and Optical Properties of Inclined Au Nanocup Arrays | 2013 | Plasmonics Vol. 8(4), pp. 1607-1611 | 6 | Ye, Q.; Wang, J.; Liu, Z.; Deng, Z.-C.; Kong, X.-T.; Xing, F.; Chen, X.-D.; Zhou, W.-Y.; Zhang, C.-P. & Tian, J.-G. | Polarization-dependent optical absorption of graphene under total internal reflection | 2013 | Appl. Phys. Lett. Vol. 102(2), pp. 021912 | 5 | Kong, X.-T.; Yan, W.-G.; Li, Z.-B. & Tian, J.-G. | Optical properties of metal-multi-insulator-metal plasmonic waveguides | 2012 | Opt. Express Vol. 20, pp. 12133 | 4 | Xing, F.; Liu, Z.-B.; Deng, Z.-C.; Kong, X.-T.; Yan, X.-Q.; Chen, X.-D.; Ye, Q.; Zhang, C.-P.; Chen, Y.-S. & Tian, J.-G. | Sensitive Real-Time Monitoring of Refractive Indexes Using a Novel Graphene-Based Optical Sensor | 2012 | Sci. Rep. Vol. 2(1), pp. 908 | 3 | Li, Z.-B.; Zhou, W.-Y.; Kong, X.-T. & Tian, J.-G. | Polarization dependence and independence of near-field enhancement through a subwavelength circle hole | 2010 | Opt. Express Vol. 18, pp. 5854 | 2 | Li, Z.-B.; Yang, Y.-H.; Kong, X.-T.; Zhou, W.-Y. & Tian, J.-G. | Fabry–Perot resonance in slit and grooves to enhance the transmission through a single subwavelength slit | 2009 | J. Opt. A: Pure Appl. Opt. Vol. 11, pp. 105002 | 1 | Li, Z.-B.; Yang, Y.-H.; Kong, X.-T.; Zhou, W.-Y. & Tian, J.-G. | Enhanced transmission through a subwavelength slit surrounded by periodic dielectric bars above the metal surface | 2008 | J. Opt. A: Pure Appl. Opt. Vol. 10, pp. 095202 |
感谢下列基金的支持
✨2021,国家自然科学基金面上项目,资助号:12174205,主持,在研
✨2016,中央高校基本科研业务费,资助号:ZYGX2015J136,主持,已结题
✨2015,中国博士后科学基金面上资助一等资助,资助号:2015M580778,主持,已结题
✨2014,国家自然科学基金青年基金,资助号:11404075,主持,已结题
✨2014,中国博士后科学基金面上资助二等资助,资助号:2014M560930,主持,已结题
教学经历
学年 | 学期 | 课程序号 | 课程代码 | 课程名称 | 教学班 | 周课时 | 学分 | 授课语言 | 课时 | 起止周 | 实际上课人数 | 备注 |
---|
2022-2023
| 1
| 1076 | CPTD0002 | 大学物理学基础III | 年级:2021级,院系:化学学院 本科 | 4 | 2 | 中文 | 32 | 3-9 | 120 | 周一10:00-11:40; 周三8:00-9:40 八里台二主楼A504 | 2021-2022
| 2
| 1035 |
| 大学物理实验 -- 迈克尔是干涉仪 | 年级:2021级 本科 | 4 | 2 | 中文 |
| 4, 11-14 |
| 周二9:00-11:15; 津南综合实验楼B219 | 2021-2022
| 1
| 1141 | CPTD0001 | 大学物理学基础 Ⅳ | 年级:2020级,院系:生命科学学院 本科 | 4 | 2 | 中文 | 32 | 10-16 | 75 | 周一10:00-11:40; 周三8:00-9:40 八里台二主楼A301 | 2021-2022
| 1
| 1157 | CPTD0002 | 大学物理学基础 Ⅲ | 年级:2020级,院系:医学院,周恩来政府管理学院,药学院 本科 | 3.5 | 2 | 中文 | 32 | 1-9 | 31 | 周二周四10:00-11:40; 津南公教楼C区114 | 2020-2021
| 2
| 3356 | PHYS0110 | 基础物理实验(一) -- COMSOL模拟 | 年级:2020级,专业:物理(伯苓班), 理科试验班(数理科学与大数据)本科 | 4 | 2 | 中文 | 64 | 2-17 | 143 | 周三18:30-20:45; 综合实验楼A303 |
|