Phase-transition optical activity in chiral metamaterials

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.125.237401?utm_source=email&utm_medium=email&utm_campaign=prl-alert

ABSTRACT

Optical activity from chiral metamaterials is both fundamental in electrodynamics and useful for polarization control applications. It is normally expected that due to infinitesimally small thickness, two-dimensional (2D) planar metamaterials cannot introduce large optical rotations. Here, we present a new mechanism to achieve strong optical rotation up to 90° by evoking phase transition in the 2D metamaterials through tuning coupling strength between meta-atoms. We analytically elucidate such phenomenon by developing a model of phase-transition coupled-oscillator array. And we further corroborate our ideas with both numerical simulations and experiments. Our findings would pave a new way for applying the concept of phase transition in photonics for designing novel optical devices for strong polarization controls and other novel applications.


 
【Close】